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Abstract

Background: Variability in drug response between individual patients is a serious concern in medicine. To identify
single-nucleotide polymorphisms (SNPs) related to drug response variability, many genome-wide association studies
have been conducted.

Methods: We previously applied a knowledge-based bioinformatic approach to a pharmacogenomics study in
which 119 fluoropyrimidine-treated gastric cancer patients were genotyped at 109,365 SNPs using the Illumina
Human-1 BeadChip. We identified the SNP rs2293347 in the human epidermal growth factor receptor (EGFR) gene
as a novel genetic factor related to chemotherapeutic response. In the present study, we reanalyzed these
hypothesis-free genomic data using extended knowledge.

Results: We identified rs2867461 in annexin A3 (ANXA3) gene as another candidate. Using logistic regression, we
confirmed that the performance of the rs2867461 + rs2293347 model was superior to those of the single factor
models. Furthermore, we propose a novel integrated predictive index (iEA) based on these two polymorphisms in
EGFR and ANXA3. The p value for iEA was 1.47 × 10−8 by Fisher’s exact test. Recent studies showed that the
mutations in EGFR is associated with high expression of dihydropyrimidine dehydrogenase, which is an inactivating
and rate-limiting enzyme for fluoropyrimidine, and suggested that the combination of chemotherapy with
fluoropyrimidine and EGFR-targeting agents is effective against EGFR-overexpressing gastric tumors, while ANXA3
overexpression confers resistance to tyrosine kinase inhibitors targeting the EGFR pathway.

Conclusions: These results suggest that the iEA index or a combination of polymorphisms in EGFR and ANXA3 may
serve as predictive factors of drug response, and therefore could be useful for optimal selection of chemotherapy
regimens.
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Background
Inter-individual variation in drug response is clinically
expected, but relatively difficult to predict [1, 2]. Chemo-
therapy, in particular, is plagued by highly variable re-
sponse rates as well as significant toxicity [1]. Genetic
variation is an important cause of inter-individual vari-
ability in drug response. Dihydropyrimidine dehydrogen-
ase (DPD), an enzyme encoded by the DPYD gene, plays
a key role in the adverse effects of fluoropyrimidine
treatment: it participates in the catabolism of fluoropyri-
midines, such as 5-fluorouracil (5-FU) and its prodrugs
capecitabine and S-1 (trade name TS-1, the 5-fluorouracil
derivative developed by Tetsuhiko Shirasaka). DPD is an
inactivating and rate-limiting enzyme for 5-FU, which is
used in various chemotherapeutic regimens to treat
gastrointestinal, breast, and head/neck cancers [3]. The
antitumor effect of 5-FU is due to its intracellular conver-
sion into antiproliferative nucleotides via anabolic path-
ways. DPD affects 5-FU availability by rapidly degrading it
to 5,6-dihydrofluorouracil (DHFU) [4]. 5-FU catabolism
occurs in various tissues including tumors, but is most ac-
tive in the liver [5, 6].
Wide variability in DPD activity (8- to 21-fold) was

shown in Caucasians, and 3–5 % of Caucasians had
reduced DPD activity [7, 8]. To date, at least 68 variant
DPYD alleles exerting various effects on DPD activity
have been reported [3, 9–13]. Of these alleles, the splice
site polymorphism IVS14 + 1G>A, which causes skipping
of exon 14, is occasionally detected in Northern
Europeans with an allele frequency of 0.01–0.02 [9]. Of
the patients with a 5-FU-associated grade 3 or 4 adverse
event, 24–28 % are heterozygous or homozygous for the
IVS14 + 1G>A single nucleotide polymorphism (SNP) [9].
This SNP, however, has not been reported in Japanese or
African-American populations [3], and therefore this SNP
is not predictive of antitumor effect.
A genome-wide association study (GWAS) is an exam-

ination of many common genetic variants in different
individuals to determine whether a particular variant is
associated with a trait. GWAS using hypothesis-free gen-
omic data is a powerful approach to identify common
genetic variants between patients. However, multiple
testing problems are a limitation of this approach. We
addressed this issue in previous reports by proposing a
combined method consisting of a knowledge-based algo-
rithm, two stages of screening, and permutation test to
identify significant SNPs [14]. The usability of our com-
bined method was confirmed by applying it into another
dataset [15]. In general, the objective of statistical or bio-
informatics analysis is the enrichment of important
information from a large dataset [16–25]. The use of a
knowledge-based algorithm is not a novel concept, but
is both practical and useful [26–36]. In the previous
study, we applied our combined method to data from

gastric cancer patients treated with fluoropyrimidine
[14]. We found that rs2293347 in the human epidermal
growth factor receptor (EGFR) is a candidate SNP related
to chemotherapeutic response and antitumor effect. None-
theless, the comprehensiveness of the method was limited.
In the present study, to achieve a more comprehensive

analysis, we applied our combined method based on an
extended knowledge to the dataset of the previous study.
Using this approach, we identified rs2867461 in annexin
A3 (ANXA3) gene related to the chemotherapeutic re-
sponse as a novel candidate SNP. Based on discovery of
this SNP, we proposed an integrated predictive index based
on these two polymorphisms in EGFR and ANXA3 and
tested performance of this index. Furthermore, we con-
structed an EGFR and ANXA3 relation model related to
fluoropyrimidine resistance, according to the literature.

Methods
Ethics statement
This study was conducted according to the principles
expressed in the Declaration of Helsinki. The ethics
committees of the National Cancer Center and National
Institute of Health Sciences, Japan, approved the study
protocol. All patients provided written informed consent.

Preparation of hypothesis-free genomic data on gastric
cancer patients treated with fluoropyrimidine
This study was performed within the framework of the
Millennium Genome Project in Japan. A total of 128
Japanese fluoropyrimidine-naïve gastric cancer patients
at the National Cancer Center Hospital and National
Cancer Center Hospital East were included in the study.
DNA samples were extracted from peripheral blood
mononuclear cells and 109,365 SNPs were genotyped
using the Illumina Human-1 BeadChip. We further re-
stricted our analysis to 119 of the 128 patients whose
chemotherapeutic responses were evaluated using Re-
sponse Evaluation Criteria in Solid Tumors (RECIST).
Among the 119 gastric cancer patients, 58 patients were
treated with S-1, 27 patients were treated with 5-FU/
methotrexate (5-FU/MTX), 33 patients were treated with
high-dose 5-FU, and 1 patient was treated with low-dose
5-FU. We defined the 58 patients treated with S-1 as the
first dataset and the collection of all 119 patients treated
with fluoropyrimidine (including S-1, 5-FU/MTX, high-
dose 5-FU, and low-dose 5-FU) as the second dataset in
the same way as in the previous study [14].

Patient characteristics and clinical parameters
A summary of the patients’ characteristics from the two
datasets is shown in Additional file 1: Table S1. The
association of genetic or clinical parameters with chemo-
therapeutic response was examined using Fisher’s exact
test. Chemotherapeutic responses (complete response:
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CR, partial response: PR, no change: NC, progressive
disease: PD) were evaluated using RECIST. We defined
two groups: “CR + PR” (CR or PR) and “NC + PD” (NC
or PD). Grading of clinical test values was defined using
National Cancer Institute - Common Toxicity Criteria
(NCI-CTC Version 2.0).

Statistical analyses
Patients’ genotype data and clinical parameters were sta-
tistically analyzed by R packages (version 3.1.2) (http://
www.r-project.org/). Further detailed theories and algo-
rithms are shown in Additional file 2.

Results
Identification of rs2867461 in ANXA3
We reanalyzed hypothesis-free genomic data from gas-
tric cancer patients treated with fluoropyrimidine by
applying applied our combined method with extended
knowledge as described in our previous study [14], as
shown in Fig. 1. Using this approach, we extracted
rs2867461 in ANXA3 as another candidate SNP related
to chemotherapeutic response. Further detailed analyses
and the procedure are shown in Additional file 3.

Comparison of the models based on rs2867461 in ANXA3
We analyzed not only an allele model, but also dominant
and recessive models of rs2867461 in ANXA3 in the first
(S1-treated gastric cancer patients) and second datasets
(fluoropyrimidine-treated gastric cancer patients; Fig. 2).
Figure 2a shows that in the first dataset the p value of
the allele model was the lowest (p = 1.02 × 10−6, OR =

0.084), and the p value of the recessive model (p =
2.50 × 10−5, OR = 0.033) was lower than the p value of
the dominant model (p = 3.24 × 10−4, OR = 0). Similarly,
Fig. 2b shows that in the second dataset the p value of
the allele model was also the lowest (p = 5.75 × 10−5,
OR = 0.22), and the p value of the recessive model (p =
3.52 × 10−4, OR = 0.13) was lower than the p value of
the dominant model (p = 7.78 × 10−4, OR = 0.15). There-
fore, the recessive model is the best model for
rs2867461 in ANXA3. To evaluate combination effects
of multiple factors, the proportional odds model was
used to construct multiple logistic regression models.

Selection of a model based on rs2867461 in ANXA3 and
construction of multiple regression models
We compared AICs and AUCs between 10 models:
NULL (without parameters), rs2293347 (genotype of
rs2293347 in EGFR), Cr (grade of creatinine), Chem (a
history of chemotherapy), rs2867461 (the genotype of
rs2867461 in ANXA3), rs2867461 + rs2293347, rs286
7461 + rs2293347 + Cr, rs2867461 + rs2293347 + Chem,
and rs2867461 + rs2293347 + Cr + Chem model (Fig. 3a).
ROC curves for the five logistic regression models, Cr +
Chem, rs2867461, rs2293347, rs2867461 + rs2293347,
and rs2867461 + rs2293347 + Cr, are shown in Fig. 3b.
All models performed better than the NULL model,
although the Cr + Chem model was better than either Cr
or Chem alone, and the rs2293347 and rs2867461
models performed better than the Cr + Chem model, as
shown in Fig. 3a and b. Finally, the rs2867461 +
rs2293347 + Cr model had the lowest AIC among the 10
models tested. Although the rs2867461 + rs2293347 + Cr
model gave the best results, the best cutoff value was at
a sensitivity of 68.0 % and specificity of 100.0 %, with
performance depending on only rs2867461 + rs2293347,
as shown in Fig. 3b. Therefore, we selected the
rs2867461 + rs2293347 model as the best model in the
present study, and the best cutoff value was found at a sen-
sitivity of 69.0 % and specificity of 100.0 %. The integrated
genetic factor consisting of rs2867461 and rs2293347 is a
possible predictive factor of efficacy of treatment in
fluoropyrimidine-treated gastric cancer patients.

The integrated predictive index based on two
polymorphisms in EGFR and ANXA3
To define a novel predictive factor consisting of two poly-
morphisms in EGFR and ANXA3, we defined the total
number of minor alleles of rs2293347 and rs2867461 as
an integrated predictive index based on EGFR and ANXA3
(iEA index). Contingency tables and the ROC curve for
this novel predictive factor, iEA, are shown in Fig. 4. This
figure shows that the p value of iEA was 2.56 × 10−8 by
Fisher’s exact test, and a higher iEA was correlated with
a formula for the better response rate (RR): ((CR + PR)/

Fig. 1 Extraction of candidate SNPs by an extended KB-SNP. We
performed extended KB-SNP to identify novel candidate SNPs
related to chemotherapy response. a SNPs linked to any PubMed
IDs were extracted and the SNPs related to cancer were removed, as
we had already analyzed SNPs related to cancer in the previous
study. b A total of 1,767 SNPs were extracted from 109,365 SNPs by
the extended KB-SNP and the basic filtering in the present study
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(CR + PR + NC + PD)). For example, RR = 0 % (iEA = 0
or 1), 28.1 % (iEA = 2), 46.2 % (iEA = 3), and 75.0 %
(iEA = 4). Figure 4b shows that the ROC curve for the
regression model based on iEA is approximately the
same as the ROC for the rs2867461 + rs2293347 model.
We constructed a 2 × 2 contingency table by combining
contingency tables of iEA, as shown in Fig. 4c. Figure 4c
shows that the p value of iEA was 1.47 × 10−8 by Fish-
er’s exact test. These results suggested that iEA may be
an important predictive factor of response rate in
fluoropyrimidine-treated gastric cancer patients. None-
theless, clinical utility of iEA needs to be validated in
future studies.

Discussion
In the previous study, we extracted RS numbers (SNP
IDs) related to cancer using a combination of National
Center for Biotechnology Information (NCBI) dbSNP
and NCBI PubMed [14]. In the present study, we ex-
tracted all SNP numbers linked to PubMed IDs on the
basis of dbSNP but excluded SNPs related to cancer, as we
had already analyzed SNPs related to cancer in the previ-
ous study. However, among these SNPs not directly
related to cancer, the SNPs could still be indirectly related
to cancer, as they may be involved in cellular differenti-
ation, apoptosis, drug metabolism, transporter and im-
mune system processes. Thus, this information may be
potentially useful. Therefore, we used information of SNPs
linked to any function except for cancer in the present

study. Furthermore, Illumina Human-1 BeadChip is one
of the most preliminary types of arrays; their detectable
SNPs are not tag SNPs and it is difficult to reduce multiple
comparisons problem by constructing linkage disequilib-
rium blocks. Therefore, we focused on the combination of
dbSNP and PubMed as the most reliable information.
An SNP extracted using the combined method, rs2867461

in ANXA3, was previously reported as a genetic factor
associated with rheumatoid arthritis, systemic lupus er-
ythematosus, and Graves’ disease in a Japanese popula-
tion [37]. Although the relationship between cancer
and rs2867461 in ANXA3 has not been reported to
date, many studies have recently been published on the as-
sociation between ANXA3 and drug resistance or chemo-
therapy response [38]. The annexin family is a well-known
multigene family of Ca2+-regulated phospholipid- and
membrane-binding proteins [39]. ANXA3 is a member of
the annexin family, and important functions of ANXA3 in
tumor development, metastasis, and drug resistance have
been demonstrated [38]. For example, ANXA3 overex-
pression was found to correlate with enhanced drug resist-
ance in ovarian cancer, promote the development of
colorectal adenocarcinoma and pancreatic carcinoma, and
facilitate metastasis of lung adenocarcinoma and hepato-
carcinoma. In contrast, decreased ANXA3 expression
negatively correlates with the development of prostate and
renal carcinoma [38]. To identify drug resistance mecha-
nisms, Pénzváltó et al. tested 45 cancer cell lines for sensi-
tivity to five tyrosine kinase inhibitors targeting the ERBB/

Fig. 2 Contingency tables for rs2867461 in ANXA3 for each model using each dataset. a S-1-treated gastric cancer patients (first dataset).
b Fluoropyrimidine (including S-1)-treated gastric cancer patients (second dataset). P values were calculated using Fisher’s exact test. OR: odds
ratio, CI: confidence interval, RECIST: Response Evaluation Criteria in Solid Tumors, CR: complete response, PR: partial response, NC: no change, PD:
progressive disease
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RAS pathway: sunitinib, erlotinib, lapatinib, sorafenib, and
gefitinib [40]. The authors identified ANXA3 as one of the
two significant genes from microarray analysis and this
finding was validated by quantitative real-time PCR. To
identify key proteins related to multidrug resistance
(MDR) of hepatocellular carcinoma, Tong et al. analyzed
the 5-FU-resistant BEL7402/5-FU cell line and parental
BEL7402 cells [41]. Among the highly expressed proteins
in BEL7402/5-FU associated with MDR, only the expres-
sion of ANXA3 was verified using an isobaric tag for rela-
tive and absolute quantitation-coupled two-dimensional
liquid chromatography tandem mass spectrometry. Fur-
thermore, in a recent study that compared EGFR-
mutated and EGFR-wild type tumors, ANXA3 was
identified as one of only four downregulated genes in-
volved in prostate cancer progression [42]. These and
other results suggest that ANXA3 is a tyrosine

phosphorylation target of EGFR [43] and expression of
EGFR may generally suppress expression of ANXA3
[42]. Therefore, high expression of ANXA3 may confer
drug resistance.
According to our previous report, the rs2293347 SNP

in EGFR was extracted as a potential predictive factor
of chemotherapeutic response in Japanese gastric can-
cer patients treated with fluoropyrimidine [14]. This
study showed that the rs2293347GA/AA genotype was
associated with a lower risk of progressive disease com-
pared with the rs2293347GG genotype (OR = 0.048, p =
6.32 × 10−5). Recently, Mochinaga et al. reported that
high expression of DPD in lung adenocarcinoma is as-
sociated with mutations in EGFR [44]. Several studies
have demonstrated that high DPD levels result in low
sensitivity to fluoropyrimidine for various cancers, such
as gastric cancer [45, 46], colon cancer [47], bladder can-
cer [48], and breast cancer [49]. Therefore, rs2293347
might affect DPD expression related to sensitivity to
fluoropyrimidine.
The rs2293347G>A polymorphism located in exon 25

of EGFR is a synonymous SNP (D994D), while the
rs2867461G>A polymorphism is located in intron 7 of
ANXA3. These polymorphisms do not change the amino
acid sequence of the protein. However, if rs2867461 and
rs2293347 have no function, these SNPs are possible
predictive factors linked with other functional polymor-
phisms in ANXA3 and EGFR, respectively. Therefore,
rs2867461 in ANXA3 and rs2293347 in EGFR are prom-
ising predictive factors that can be used for selection of
chemotherapy regimens: for instance, fluoropyrimidine
alone or a combination of fluoropyrimidine with EGFR-
targeting agents. Further research is needed to elucidate
the clinical relevance of these SNPs.
As mentioned above, many studies suggest that the EGFR

and ANXA3 genes have relevance to fluoropyrimidine re-
sistance and their polymorphisms have links with biological
functions. Because the IntPath database is currently the
most powerful tool and also the most comprehensive inte-
grated pathway database, we first conducted pathway ana-
lysis using the IntPath database [50] to draw the genetic
networks related to EGFR and ANXA3. However, we could
not identify pathway information using this database.
Therefore, we manually constructed a hypothetical model
of relationship between EGFR and ANXA3 (Fig. 5) accord-
ing to the literature.
In this study, we extracted rs2867461 (which showed

statistical significance according to p (0.0406) < 0.05)
using a combination of two stages of screening and per-
mutation testing of prefiltered SNPs for both of first and
second sets. When only the first dataset was used, the q
value calculated by the BH method was 0.00159, as
shown in Additional file 4: Table S2. This q value is stat-
istical significance.

Fig. 3 Comparison of AIC, AUC, and ROC curves between logistic
regression models. a Parameters used for each model. b ROC curves
for the following models: rs2293347, rs2867461, Cr + Chem,
rs2867461 + rs2293347, and rs2867461 + rs2293347 + Cr. ROC:
receiver operating characteristic, AUC: area under the ROC curve,
NULL: model without any parameters. Each genetic factor indicates
proportional odds model, AIC: Akaike’s information criterion, Sens.:
sensitivity (%), Spec: specificity (%), Chem: a history of chemotherapy,
Cr: grade of creatinine
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Using our combined method involving two stages of
screening, we identified rs2867461 as a possible genetic
predictive factor. We note that our filtering methodology
may have also eliminated several interesting regulatory
marker SNPs that might be relevant to drug response, as
shown in Fig. 1. However, the sample size of this study
is not enough to identify all of these marker SNPs with-
out omission. Therefore, we prioritized control of type I
error at the cost of statistical power (type II error) in the
present study. All statistical information regarding the
chemotherapeutic response of gastric cancer patients
treated with fluoropyrimidine (p < 0.05) for each SNP is
shown in Additional file 5: Table S3, and the data are
also provided on the website Genome Medicine Data-
base of Japan (GeMDBJ) [51] (http://gemdbj.ncc.go.jp/

omics/). These data will be useful for confirmation stud-
ies or meta-analyses in the future.

Conclusions
In the present study, we reanalyzed hypothesis-free gen-
omic data from gastric cancer patients treated with
fluoropyrimidine by applying our combined method
with extended knowledge. Using this approach, we
identified rs2867461 in ANXA3 as a candidate SNP
related to response to chemotherapeutic response.
The rs2867461 + rs2293347 model has greater predict-
ive performance than clinical parameters, each single
SNP (rs2867461/rs2293347), or environmental factors,
and the rs2867461 + rs2293347 model had a sensitivity
of 69.0 % and specificity of 100.0 %. Furthermore, in

Fig. 4 Contingency tables for integrated predictive index using polymorphisms in EGFR and ANXA3 and ROC curve. a Contingency table for the iEA
index. b ROC curve for the iEA index. c The combined contingency table for the iEA index. Abbreviations are the same as defined in Figs. 2 and 3

ERBB/RAS pathway

EGFRinhibitors DPD

ANXA3
Fluoropyrimidine

resistance

Tyrosine kinase
inhibitors

Fig. 5 Hypothetical model of EGFR and ANXA3 to fluoropyrimidine resistance in fluoropyrimidine-treated gastric cancer patients. ANXA3 overexpression
confers resistance tyrosine kinase inhibitors targeting ERBB/RAS pathway. High expression of DPD is associated with mutations in EGFR. DPD is an
inactivating and rate-limiting enzyme for fluoropyrimidine
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the present study, we propose a novel integrated pre-
dictive index based on the polymorphisms in EGFR
and ANXA3, the iEA index. The p value for iEA is
1.47 × 10−8 by Fisher’s exact test. Collectively, iEA or
the combination of rs2867461 and rs2293347 may
serve as predictive factors for selecting chemotherapy
regimens for the treatment of gastric cancer patients.
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