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Abstract

Background: DNA methylation is an important epigenetic mechanism of transcriptional control that plays

an essential role in several cellular functions. Aberrant DNA methylation in cancer has been frequently
associated with downregulation of microRNAs and protein coding genes, such as miR-200c/miR-141 cluster
and E-cadherin. Current strategies to assess DNA methylation, including bisulfite treatment-based assays,

tend to be time-consuming and may be quite expensive when a precise appraisal is required. The Sanger-
sequencing of the amplified bisulfite-treated DNA (BSP) might represent a practical option to measure DNA
methylation at single CpG resolution. However, this strategy often produces noisy data, which affects accurate
quantification. Here we propose an improved, reliable and cost-effective BSP-based protocol that allows
proper DNA methylation assessment.

Methods: Our strategy, named normalized-BSP (NBSP), takes advantage of tailed C-balanced primers and a
normalization procedure based on C/T ratio to overcome BSP-associated noise problems and nucleotide signal
unbalance. NBSP was applied to estimate miR-200c/miR-141 locus methylation in serial dilution experiments
and was compared to conventional methods. Besides, it was applied in the analysis of FFPE breast cancer
samples and further validated in the context of the E-cadherin promoter.

Results: NBSP strategy outperformed conventional BSP in the estimate of the fraction of methylated cytosine
in serial dilution experiments, providing data in agreement with the widely used but cumbersome cloning-
based protocol. This held true for both miR-200c/miR-141 locus and E-cadherin promoter analyses. Moreover,
the miR-200c/miR-141 locus methylation reflected the decrease in miRNA expression both in breast cancer
cell lines and in the FFPE samples.

Conclusions: NBSP is a rapid and economical method to estimate the extent of methylation at each CpG of a given
locus. Notably, NBSP works efficiently on FFPE samples, thus disclosing the perspective of its application also in the
diagnostic setting.
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Background

DNA methylation, one of the best-characterized epigen-
etic modifications, consists in the addition of a methyl
group to cytosines included in CpG dinucleotides. The
methylation of CpG islands (CGI), which are common
in promoter regions, correlates with gene transcriptional
repression [1, 2]. Aberrant DNA methylation is typically
observed in tumors where it occurs at both protein
coding gene and microRNA (miRNA) loci [3-5].

Several technologies have been developed to profile
the methylation at CGIL. These include comprehensive
but expensive next-generation sequencing-based ap-
proaches (i.e.. WGBS [6, 7], RRBS [8], MethylCap-seq
[9] or MBD-seq [10] as well as array- and PCR-based
methods, more affordable and still used [11, 12]. Most
techniques rely on the bisulfite conversion of unmethy-
lated cytosine to uracil, and thus to thymine after PCR,
leaving unaltered the methylated cytosine [13].

Rapid and simple methods to detect the ratio between
C and T include the Sanger sequencing of PCR products
of bisulfite-treated DNA (BSP). However, this approach
fails to provide a quantitative measure of methylation
because of high background noise and overscaled cyto-
sine signals due to the DNA sequencing software that
artificially adjusts signal strengths of underrepresented
bases [14]. On the other hand, the cloning and subse-
quent Sanger sequencing of the PCR clones (cloning-
based sequencing method) [15], although more accurate,
is time-consuming and expensive, as it needs the se-
quencing of a significant number of clones for statistical
accuracy [16].

Here we report an enhanced Sanger sequencing-based
protocol for quantifying CGI promoter methylation
based on the use of 5’-end tailed PCR primers that allow
for the improvement of both signal-to-noise and C/T ra-
tio. The method was successfully applied to assess the
methylation status of both a miRNA locus (miR-200c/
miR-141) and the promoter of E-cadherin and was also
suitable for the analysis of FFPE tumor samples.

MiR-200 is a tumor suppressor miRNA family that
includes five members clustered and expressed as two sep-
arate polycistronic pri-miRNAs: the miR-200a/miR-200b/
miR-429 cluster, mapping at 1p36; and the miR-200c/
miR-141 cluster, at 12p13 [17-19]. Promoter hyper-
methylation has been reported to play a crucial role
in the downregulation of miR-200 [20-22] that has
been associated with malignancy, increased chemo- and
radio-resistance, invasiveness and transition of carcinomas
from epithelial towards a mesenchymal phenotype (EMT)
[23-29]. A hallmark of EMT is the downregulation of the
cell-cell adhesion protein E-cadherin (E-cad) [30], whose
low expression, as a result of promoter hypermethylation,
has been described in diverse carcinoma subtypes and is
associated with poor prognosis [31-33].
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Methods

Cell lines

MDA-MB-231, MDA-MB-157 and MCF7 were obtained
from ATCC (American Type Culture Collection) and
cultured as previously described [34].

Patients and samples

Formalin-fixed paraffin-embedded (FFPE) specimens
from 3 breast cancers were collected at the CRO Aviano
National Cancer Institute Biobank under patients’ in-
formed consent. The use of tumor samples for this study
was approved by the Institutional Review Board. Two
20 pum-slides with tumor cellularity greater than 70 %, as
evaluated by a breast cancer pathologist (TP), were used
per each case. Total RNA and DNA were isolated using
the Recover All Total Nucleic Acid Isolation Kit (Life
Technologies) according to the manufacturer’s instructions.

RNA extraction and gRT-PCR

Total RNA from cell lines was isolated using TRIzol
(Life Technologies). MiRNA was reverse-transcribed
and qRT-PCR performed using the TagMan MicroRNA
Assay kits specific for miR-200c and RNU48 (Life Tech-
nologies) and TaqMan Universal Master Mix (Life
Technologies) according to the manufacturer's guide-
lines. miRNA levels were normalized with RNU48 and
relative levels were calculated using the AACt method.
Three independent experiments were performed in
triplicate.

DNA extraction and bisulfite conversion

Genomic DNA was extracted from cell lines using the
EZ1 DNA Tissue Kit (Qiagen). Bisulfite conversion of
DNA (500 ng - 1 pg), obtained from cell lines and
tissues, was carried out with the EpiTect Bisulfite kit
(Qiagen), according to the manufacturer’s instructions.

Bisulfite PCR amplification
The region of the miR-200c/miR-141 locus, spanning
from position -353 to -108 relative to the pre-miRNA-
200c first nucleotide (chromosomel2:7,072,510:7,072,755;
Fig. 1a) and the promoter region from -115 to +54
nucleotide relative to the transcriptional start site of E-cad
(CDH1 gene; chromosomel6:68,771,079: 68,771,249;
Fig. 5a) were amplified with primers specifically designed
by MethPrimer (Additional file 1) [35].

5-end tailed primers were obtained by adding at the
5-end of the 200c-BSP-F and 200c-BSP-R a tail derived
from the M13 (Taill) or from the Decipher Project bar-
code library (Tail2-6; http://www.decipherproject.net).
Taill, Tail3 and Tail5 were added to the forward oligo
and Tail2, Tail4d and Tail6 to the reverse oligo
(Additional file 1). Tails 2-6 were randomly chosen
among barcodes devoid of C or G at the 5-end and in
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Fig. 1 Schematic diagram of the miR-200c/miR-141 locus and representative chromatograms of the PCR products. a Graphical depiction of the
miR-200c/miR-141 genomic locus showing individual CpG sites as vertical lines and the pre-miR-200c and pre-miR-141 sequences as gray boxes.
Arrows indicate the location of primers and delimitate the analyzed CGI that encompasses the region from =353 to —108 nucleotides, relative to
the first nucleotide of the pre-miR-200c. The bottom bar is an enlargement of the analyzed CGl. b Representative sequencing chromatogram of
the amplicon obtained from 25 % plasmid standard by using untailed primers (200c-BSP-F and 200c-BSP-R). Six out of 14 CpG are reported and
indicated by gray arrows. ¢ Part of the sequencing chromatogram of the Tail1-200c-F/Tail2-200c-R amplicon showing the Tail2 region. The black
arrows indicate the C and the white arrows the T whose peak heights were used to determine the NF

which each base is roughly equally represented (22-
28 %). The tails, by contributing with C and T (G and A
in the reverse primer) allow for compensation in the
elaboration process. Primers with Taill, Tail3 and Tail5
were used in combination with primers with Tail2, Tail4
and Tail6, respectively. All the three couples of primers
well amplified miR-200c/miR-141 locus (Additional file
2). We selected Taill- and Tail2-primers for this work.
Taill and Tail2 were also added to E-cad-BSP forward
and reverse oligo, respectively.

0.7-1 pl of bisulfite-treated DNA were amplified by
using GoTaq® Polymerase (Promega) if not otherwise
specified. The PCR amplification was performed in 20 pl
reaction volume containing GoTaq® Green Master Mix
1X, 250 nM forward and reverse primers and with the
following protocol: 95 °C for 4 min, 40 X [95 °C for 45 s,
60 °C (E-cad) or 62 °C (miR-200c) for 1 min and 30 s,
72 °C for 1 min 30 s], 72 °C for 4 min. Phusion U Hot
Start DNA polymerase (Thermoscientific) was tested for
the amplification of miR-200c/miR-141 locus of genomic
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DNA standards. The PCR amplification of 20 pl mixture
containing 0.7-1 ul of bisulfite-treated DNA, 0.4 U Phu-
sion U Hot Start DNA Polymerase, 400 nM forward and
reverse primers, Phusion HF Buffer 1X and 200 pM
dNTPs was performed with the following protocol: 98 °C
for 1 min, 37 X [98 °C for 10 s, 64 °C for 15 s, 72 °C for
30 s] 72 °C for 5 min. 10 pl of PCR products were size-
checked on a 2 % agarose gel and 5 pl were purified with
2 ul of ExoSap-IT (Affymetrix).

PCR cloning and assessment of methylation
Bisulfite-treated DNA was amplified by PCR with untailed
primers (Additional file 1) and 1 pl of the PCR was dir-
ectly cloned into the pCR2.1 vector using TA Cloning Kit
(Life Technologies), according to the manufacturer’s
protocol. Plasmids DNA from at least 20 colonies were
isolated using the QiaPrep Spin Plasmid Miniprep kit
(Qiagen) and sequenced. The methylation level for each
CpG was deducted by dividing the number of C at each
CpG site for the total number of clones sequenced.

Generation of DNA standards

We generated plasmid and genomic DNA standards to
mimic different methylation levels of miR-200c/miR-141
locus. To obtain the plasmid DNA standards, miR-200c/
miR-141 locus was amplified from bisulfite-converted
DNA of MCF7 and MDA-MB-157 (unmethylated and
97 % methylated, respectively, as determined by the
cloning method) and cloned into the pCR2.1 vector (TA
Cloning Kit, Life Technologies) according to the manu-
facturer’s protocol. Two of these clones derived from
completely methylated and unmethylated (for all CpG
sites) template, respectively, were mixed to mimic differ-
ent DNA methylation percentages: 0, 12.5, 25, 55, 75,
87.5 and 100 %. The C/T ratio, calculated as described
below, was confirmed by plasmid direct sequencing
(Additional file 3).

Moreover, a set of the genomic DNA standards was
generated by mixing the bisulfite-treated DNAs of the
aforementioned cell lines in order to obtain the follow-
ing methylation levels: 0, 12.1, 24.2, 48.4, 72.6 and 97 %.

Sequencing

Sequencing reactions (10 ul) were performed using 1 pl of
ExoSap-IT-purified PCR amplicons or 500 ng of plasmids,
2 ul of BigDye Terminator v.3.1 kit (Life Technologies),
300 nM sequencing primer, corresponding to 200c-BSP-F,
Taill or Tail2 (Additional file 1), and the following proto-
col: 95 °C for 5 min, 25 X [95 °C 30 s, 50 °C for 30 s and
60 °C for 1 min and 30 s]. The sequencing reactions were
then purified using the BigDye XTerminator Purification
kit and ran on an ABI prism 3130 Genetic Analyzer
(Applied Biosystems). SeqScape® Software v2.5 with the
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KB™ basecaller software or Chromas Lite Version 2.1.1
were used for data analysis.

Quantification of methylation by BSP

DNA standards and bisulfite-treated DNA were ampli-
fied by PCR with tailed primers (Additional file 1) and
sequenced as described. The percentage of methylation
at each CpG site was calculated as 100 * C/(C+ T), i.e.
100 times the ratio between the peak height of C on the
sequencing chromatograms and the sum of peak height for
Cand T [36].

Quantification of methylation by NBSP
DNA standards and bisulfite-treated DNA were ampli-
fied by PCR with 5’-end tailed primers (Additional file 1)
and sequenced as above. To adjust the overscaled C sig-
nals in the sequencing chromatograms we introduced a
normalization factor (NF), based on the ratio of the signals
for the C and T encoded by the tails of primers. Specific-
ally, NF was calculated as the ratio between the mean of
the peak height of the C and T read in sense direction on
the sequence of Tail2 (corresponding to G and A in Tail2
reverse primer sequence; Additional file 1, Figs. 1c and 5c).
Then, the peak height of each C (C;) included in the
target sequence was corrected for this NF as follow:
Chorm = C/NFE. Finally, the normalized C signals were
used to determine the methylation percentage as de-
scribed above, i.e. 100 * C,om/(Chomm + T).

Statistical analyses

The concordance between observed and expected values
was analyzed by using the approach recommended by
Bland and Altman [37, 38]. For all Bland—Altman plots,
the mean percentage difference between the observed
and expected results (mean bias) with associated 97.5 %
confidence intervals and limits of agreement (+1.96 SD)
were calculated (GraphPad Prism software).

Results

For the analyses of miR-200c/miR-141 promoter methy-
lation we focused on the region referred to as relevant
for transcription (-353 to -108, relative to the pre-
miRNA-200c first nucleotide) and that comprised 14
CpG sites (Fig. 1a) [17, 18].

We first performed the analysis of this region in a set
of plasmid DNA standards obtained by mixing defined
amount of clones corresponding to methylated and
unmethylated DNA (see Methods). The direct sequen-
cing of the PCR products of these standards displayed
overscaled C signals and a high background noise that
prevented the actual estimate of miR-200c/miR-141 pro-
moter methylation (Fig. 1b and Additional file 4A).

In order to improve the quality of the sequencing traces,
we amplified the aforementioned standards with 5-end
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Fig. 2 BSP and NBSP of plasmid and genomic DNA standards. Representative sequencing chromatograms of plasmid DNA standards characterized by
25 % (@) and 75 % (b) CGl methylation (see Methods). Each mixture was PCR amplified with the 5-end tailed primers for miR-200c/miR-141 locus and
the amplicons were sequenced using the Tail1 as a sequencing primer. Left panels depict 6 out of 14 CpG analyzed (indicated by gray arrows), while
the right panels show the chromatograms relative to the Tail2-200c-R primer for miR-200c/miR-141 locus. C and T used to calculate the NF in the NBSP
are highlighted by black and white arrows, respectively. c-d Bland—Altman plots of plasmid DNA standards (c) and genomic DNA standards (d) show
the extent to which observed and expected methylation values of DNA standards agree. Methylation was evaluated by BSP (c and d, left panels) or
NBSP (c and d, right panels). The solid lines represent the mean percentage difference between observed and expected (Bias) and the dashed lines
+1.96 SD of the mean percentage difference (limits of agreement). Filled circles represent individual measurements
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tailed primers (Fig. 1c and Additional files 1 and 4B) char-
acterized by at least 4 C in the tails. The sequencing of
these PCR products (BSP) provided chromatograms with-
out any or only minimal background (Fig. 2a and b). Still,
the measure of methylation extent was unsatisfactory. In
fact, especially in the presence of low-intermediate levels
of methylation, the C signals (i.e. non-converted, methyl-
ated cytosines) were overscaled, which resulted in an over-
estimate of DNA methylation. In fact, the mean bias (i.e.
average percent difference between the observed and ex-
pected methylation levels) was 7.93 (limits of agreement
from -13.66 to 29.52; Fig. 2¢ left panel). It is worth to note
that the clone from unmethylated DNA displayed a G > A
transition (at position 7,072,604 in the miR-200c/miR-141
locus). The ratio between G and A of each standard
reflected the expected methylation levels suggesting the
goodness of the standards (data not shown).

To overcome the C overestimation, we introduced a
normalization strategy (referred in text as Normalized
BSP, NBSP) that took into account the elaboration of
overall nucleotide signals by the DNA sequencing soft-
ware. Based on the assumption that, for any given
sequence and in the absence of altering factors, the rela-
tion between mean of the peak height of two
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nucleotides, namely C and T, should be relatively con-
stant, we calculated the ratio between C and T within
the tail of the primers and used this ratio to normalize
the overscaled C signals of the sequence (see Methods).
The introduction of this normalization step significantly
improved the estimate of methylation rate reducing the
mean bias to —1.02 (Fig. 2c right panel; limits of agree-
ment from -2.71 to 0.66).

Next we validated our strategy on the genomic
DNA standards. Uracil present in the bisulfite-
converted DNA may impair the DNA polymerase
activity of Taq polymerase. Thus we compared the
results obtained with Taq polymerase and with an
uracil tolerant enzyme (Phusion U Hot start DNA
polymerase). The two DNA polymerases showed simi-
lar results (Additional file 4C-F) and, importantly,
NBSP displayed an improvement in the assessment of the
methylation rate of genomic DNA standards compared to
BSP in both analyses (Fig. 2d, Additional file 4G-H).

To further validate our signal normalization ap-
proach, we compared the performance of BSP and
NBSP to the cloning-based sequencing method. Ac-
cording to the standard BSP procedure, the percent-
ages of methylation at each CpG of the miR-200c/
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Fig. 3 Comparison between BSP, NBSP and cloning-based methods in the analysis of miR-200c/miR-141 locus of MDA-MB-231 breast
cancer cell line. @ miR-200c/miR-141 locus PCR of bisulfite treated DNA obtained from MDA-MB-231. Lane M, 100 bp size marker. NTC, no template
control. b Representative sequencing chromatogram of 6 CpG (highlighted by gray arrows; left panel) and of the reverse sequence of
Tail2 of miR-200c/miR-141 amplicon (right panel). C and T used to calculate the NF are highlighted by black and white arrows, respectively. ¢ The
methylation percentages of each CpG obtained from the cloning-based method (22 clones sequenced, white columns), BSP (black columns) and
NBSP (gray columns) are reported. BSP and NBSP were performed on three MDA-MB-231 samples. Bars correspond to standard deviation
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sequence of Tail2 of miR-200c/miR-141 amplicon (right panels; with C and T used to calculate the NF indicated by black and white arrows, respectively)
for the three breast cancer samples
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miR-141 locus in the MDA-MB-231 breast cancer cell
line ranged from~30 to 80 %. These were globally
greater than those gauged by the cloning-based
method, particularly for low and intermediate CpG
methylation (Fig. 3a-c). NBSP outperformed the BSP,
providing estimate close to those of the cloning pro-
cedure for the majority of CpG sites. Forward and
reverse tailed primers provided similar results, both
in terms of percentages of methylation and extent of
the normalization factors (Additional file 5).

The partial methylation of the miR-200c/miR-141 locus
in MDA-MB-231 corresponded to a limited expression of
miR-200c compared to the unmethylated MCF7 and the
fully methylated MDA-MB-157 (Additional file 6).

A similar inverse association between miR-200c expres-
sion and locus methylation was observed also when NBSP
was applied to FFPE breast tumor samples, particularly for
the CpG from -223 to -135 (Fig. 4a-d). A normal breast
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tissue sample showed only one methylated CpG and, as
expected, expressed high levels of miR-200c.

Finally, we investigated the methylation pattern of E-
cad, a typical gene silenced by DNA-hypermethylation.
Our study focused on a well-defined CGI spanning be-
tween —115 and +54 nucleotides from transcription start
site of the E-cad promoter (Fig. 5a). Again, NBSP out-
performed BSP in the measure of E-cad promoter
methylation in MDA-MB-231 and provided data similar
to those obtained with standard cloning-based method
(Fig. 5b-d).

Discussion

Epigenetic inactivation of tumor suppressor genes is a
frequent event that drives tumorigenic initiation and
progression [39-41]. The increasing interest in the
evaluation of miR-200c/miR-141 locus methylation as a
measure of cancer progression [42, 43], prompted us to
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Fig. 5 CGl methylation of E-cad promoter. a Schematic representation of the region within E-cad promoter spanning from —115 to +54 nucleotides,
relative to the transcription start site (+1). Vertical lines represent each individual CpG and arrows indicate the location of primers. b
E-cadherin promoter PCR of bisulfite treated DNA obtained from MDA-MB-231. Lane M, 100 bp size marker. NTC, no template control.

¢ Representative sequencing chromatogram of 6 CpG (highlighted by gray arrows; left panel) and of the reverse sequence of Tail2 of the
Tail1-Ecad-F/Tail2-E-Cad-R amplicon (right panel). C and T used to calculate the NF are highlighted by black and white arrows, respectively.
d The graph reports the methylation percentages of each CpG (from —89 to +29) obtained from the cloning-based method (22 clones
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set up a reliable, fast and affordable method for the as-
sessment of DNA methylation.

The NBSP method here proposed relies on the use of
5-end tailed primers that reintroduce ‘true’ C, improve
the quality of sequencing traces and allow C/T signal
normalization. We implemented the normalization pro-
cedure because of the overscaled C signals engendered
by the sequencing software which, during raw data elab-
oration, tends to artificially enhance the signal of un-
derrepresented C resulted from the bisulfite
treatment. Overestimation of C may also be caused
by preferential amplification of methylated alleles,
though it occurs more rarely than the PCR bias favor-
ing the unmethylated ones [44, 45]. Furthermore, it
has been reported that tailed primers could introduce
amplification bias depending on the template [46].
However, we can exclude these biases since the amp-
lification of plasmid DNA standards harboring a G >
A variant produced the expected G/A ratio. Neverthe-
less, we cannot rule out that the chosen tails, which
work well with the two genes we analyzed, unevenly
perform with other genes.

A number of studies have proposed alternative solu-
tions for analyzing the Sanger-sequencing data, but their
algorithms are often overwhelming [14, 44]. Our ap-
proach can be easily used and, importantly, it yields an
estimate of methylation at each CpG site in agreement
with data obtained with the conventional but cumber-
some cloning-based method. Moreover, locus methyla-
tion as assessed by NBSP well reflected the miRNA
expression in FFPE breast cancer samples. Importantly,
NBSP allowed an accurate detection of methylation rate
close to 10 %, a level below which methylation has negli-
gible effects on miR-200c/miR-141 expression [47].
Finally, NBSP can be applied to other genes, such here
shown for E-cadherin.

Conclusions

We have presented here a reliable and cost-effective
method to detect the methylation level of several
CpGs. Our approach well performed in the analysis
of the miR-200c/miR-141 locus and of the E-cad pro-
moter, genes downregulated by methylation in a num-
ber of carcinoma. Besides, NBSP also works with
FFPE tissues and thus may provide a viable and
affordable tool to detect DNA methylation both for
research and for diagnostic purposes.

Additional files

Additional file 1: Primers used in the methylation analysis.
(PDF 101 kb)
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Additional file 2: Amplification of miR-200/miR-141 locus
performed with three couples of 5-end tailed primers.
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