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Abstract

Background: Altered expression of STO0A16 has been reported in human cancers, but its biological role in
tumorigenesis is not fully understood. This study aimed to investigate the clinical significance and functional role of
ST00A16 in oral squamous cell carcinoma (OSCC) suppression.

Methods: ST00AT6 mMRNA and/or protein levels were examined by quantitative RT-PCR and immunohistochemistry
in whole- and laser microdissected-specimens of normal human oral mucosa (NHOM, n = 65), oral dysplastic lesions
(ODL, n=21), OSCCs (n=132) and positive cervical nodes (n=17). STO0A16 protein expression in OSCC was
examined for correlations with clinicopathological variables and patient survival. ST00A16 was over-expressed and
knocked-down in OSCC-derived (CalLH3 and H357) cells by employing retroviral constructs to investigate its effects
on cell proliferation, sphere formation and three dimensional (3D)-organotypic invasive abilities in vitro and
tumorigenesis in a mouse xenograft model.

Results: Both ST00A16 mRNA and protein levels were found to be progressively down-regulated from NHOM to
ODL and OSCC. Low S100A16 protein levels in OSCC significantly correlated with reduced 10-year overall survival
and poor tumor differentiation. Analysis of two external OSCC microarray datasets showed a positive correlation
between the mRNA expression levels of STO0AT6 and keratinocyte differentiation markers. CaLH3 and H357 cell
fractions enriched for differentiated cells either by lack of adherence to collagen IV or FACS sorting for low p75NTR
expression expressed significantly higher ST00A76 mRNA levels than the subpopulations enriched for less
differentiated cells. Corroborating these findings, retroviral mediated ST00A16 over-expression and knock-down in
CalH3 and H357 cells led to respective up- and down-regulation of differentiation markers. In vitro functional
studies showed significant reduction in cell proliferation, sphere formation and 3D-invasive abilities of CalH3 and
H357 cells upon ST100A16 over-expression. These functional effects were associated with concomitant down-
regulation of self-renewal (Bmi-1 and Oct 4A) and invasion related (MMP1 and MMP9) molecules. STO0A16 over-
expression also suppressed tumorigenesis of H357 cells in a mouse xenograft model and the resulting tumor
xenografts displayed features/expression of increased differentiation and reduced proliferation/self-renewal.

Conclusions: These results indicate that ST00A16 is a differentiation promoting protein and might function as a
tumor suppressor in OSCC.

* Correspondence: Dipak.Sapkota@k1.uib.no

'Department of Clinical Medicine, The Gade Laboratory for Pathology,
University of Bergen, Haukeland University Hospital, N-5021 Bergen, Norway
2Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry,
University of Bergen, N-5021 Bergen, Norway

Full list of author information is available at the end of the article

- © 2015 Sapkota et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-015-1622-1&domain=pdf
mailto:Dipak.Sapkota@k1.uib.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Sapkota et al. BMC Cancer (2015) 15:631

Background

Oral squamous cell carcinoma (OSCC) is an aggressive
neoplasm which is highly invasive and frequently metasta-
sizes to cervical lymph nodes leading to a severely reduced
patient survival. Despite recent advances in diagnosis and
treatment modalities, less than 50 % of OSCC patients
survive for 5 years [1]. Among the molecular and cellular
changes occurring during OSCC development, a signifi-
cant disturbance in cellular differentiation and maturation
process has been reported to be a common event in oral
carcinogenesis [2—4]. Nevertheless, the precise molecular
mechanism regulating differentiation and its contribution
to OSCC progression is not fully understood.

The S100 protein family is a multifunctional group of
EF-hand calcium binding proteins. This family consists
of small acidic proteins (10-12 kDa) that are expressed
only in vertebrates in a cell and tissue specific manner.
To date, 25 S100 protein members have been described
in humans [5, 6]. Genes encoding several of the members
of this family are clustered in the epidermal differentiation
complex (EDC) on chromosome 1q21 [7-9], and many of
the S100 members have been reported to be involved in
cellular differentiation and differentiation-related patholo-
gies [10, 11]. In addition, S100 proteins have recently been
implicated in the regulation of epithelial-mesenchymal
transition, cancer stem cells and tumor heterogeneity in
human malignancies [12—14].

S100A16 is a recent addition to the S100 protein family
[15]. Although it has been reported to be widely expressed
in human tissues [15], its precise biological functions are
not fully understood. In a recent study, SI00A16 has been
suggested to be related with cell invasion and poor prog-
nosis in human breast cancer [16]. We have identified
S100A16 to be an interaction partner of SI00A14, a prolif-
eration and invasion-related protein in OSCC [17-19].
These observations indicate that SI00A16 might be re-
lated with OSCC progression. Nevertheless, functional
roles and prognostic significance of this protein are cur-
rently unknown in OSCC. In the current study, we dem-
onstrate that down-regulation of SI00A16 expression in
OSCC specimens was associated with poor prognosis and
poor differentiation grade. Experimentally, S100A16 was
found to promote malignant keratinocyte differentiation
and to suppress aggressive tumor phenotype such as pro-
liferation, sphere formation and 3D-organotypic invasive
abilities of OSCC-derived cells in vitro and tumorigenesis
in a mouse xenograft model.

Methods

Human tissue specimens

All tissue samples were collected from Haukeland Uni-
versity Hospital after informed written patient consent.
This study was approved by the Committee for Medical
and Health Research Ethics in West Norway (2011/1244
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REK vest, 2010/481 REK vest). A total number of 75
normal human oral mucosa [NHOM, 31 formalin
fixed-paraffin embedded (FFPE) and 44 frozen], 21 oral
dysplastic lesion (ODL, all FFPE), 132 OSCC (82 FFPE
and 50 frozen) and 17 positive cervical lymph nodes
(all FFPE) were used in the current study for the ex-
pression analysis of SI00A16 by immunohistochemistry
(IHC) and/or quantitative RT-PCR (qRT-PCR). All
OSCC patients included in the study were newly diag-
nosed cases, and had no history of chemo- or radiotherapy
prior to surgery. All NHOM specimens were donated by
patients undertaking wisdom tooth extraction. For
S100A16 IHC, FFPE specimens of NHOM (# = 21), ODL
(m=11; 1 carcinoma in situ, 1 severe, 7 moderate and 2
mild dysplastic lesions), OSCCs (n = 65), and positive cer-
vical lymph nodes (n = 17) were used. Details of the clini-
copathological information of these OSCC cases are
reported in Table 1. FFPE specimens of NHOM (#n = 10),
ODL (n=10) and OSCC (n=17) were laser microdis-
sected and used for quantification of SI00A16 mRNA by
qRT-PCR. In OSCC specimens, paratumor (dysplastic)
epithelium, tumor center/core and the corresponding in-
vading front/island were microdissected. Detailed meth-
odology for laser microdissection is reported in Additional
file 1. SI00A16 mRNA expression was examined in frozen
tissues of normal human oral mucosa (NHOM, n = 44)
and OSCCs (n = 50). These tissues were stored at —80 °C
till RNA extraction.

External microarray databases

Eight external microarray datasets, four for OSCC and
head and neck SCC (mainly consisting of OSCC) [20-23],
and one each for esophageal squamous cell carcinoma
(ESCC) [24], colorectal carcinoma (CRC) [25], prostate
cancer [26] and ovarian cancer [27] were used either i) to
validate the down-regulation of SI00A16 in OSCC or in
the above mentioned malignancies or ii) for the correlation
analyses of SI00A16 and differentiation related molecules.

IHC

S100A16 IHC was performed in FFPE tissue specimens
of NHOM, ODL, OSCCs, and positive cervical lymph
nodes as described previously [19]. Briefly, antigen re-
trieval was done by microwave treatment in Tris-EDTA
buffer, pH 9.0 (DAKO). After blocking with 10 % goat
serum, rabbit polyclonal anti-human S100A16 primary
antibody (11456-1-AP, Proteintech, Chicago, IL, USA,
1:100 dilutions) was applied. After wash, anti-rabbit
secondary antibody conjugated with horseradish perox-
idase labeled polymer (EnVision System, DAKO) was
applied. Presence of antigen was visualized by staining
with 3, 3’-diaminobenzidine (DAKO), counterstained
with hematoxylin (DAKO) and mounted with EuKit
mounting medium. Sections incubated with 3 % BSA
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Table 1 S100A16 expression (PLI score) and clinicopathological
variables of the OSCC patients

PLI score at invading fronts/islands®

Variables Low, n (%) High,n (%) P
Age® (years)
<64 18 (60.0) 12 (40.0) 0.108
>64 14 (60.0) 21 (60.0)
Gender
Female 10 (47.6) 11 (524) 0.857
Male 22 (50.0) 22 (50.0)
Location
Tongue 14 (45.2) 17 (54.8) 0.566
Gingiva, buccal mucosa & oral 11 (47.8) 12 (52.2)
lip
Floor of mouth & oro-pharynx 7 (49.2) 4 (36.4)
Differentiation
Poor and moderate 22 (629) 13 (37.1) 0018
Well 10 (33.3) 20 (66.7)
Lymph node involvement
Negative (NO) 15 (39.5) 23 (60.5) 0.062
Positive (N1 & N2) 17 (63.0) 10 (37.0)
Tumor size
T &T2 19 (52.8) 17 (47.2) 0.638
T3 & T4 13 (44.8) 16 (55.2)
Recurrence
No 20 (43.5) 26 (56.5) 0.149
Yes 12 (63.2) 7 (36.8)
Tumor stage
Early (1 &2) 8(38.1) 13 (61.9) 0215
Late 3 &4) 24 (54.5) 20 (45.5)

#0SCCs were stratified into high and low ST00A16 expression groups by using
median S100A16 PLI score as a cut-off

Ppatients were categorized into low- and high-age groups based on the
median age

instead of primary antibody served as negative controls.
FFPE tissues from mouse tumor xenografts were stained
with anti-S100A16, anti-involucrin, anti-Ki67, and anti-
Bmi-1. For detailed methodology of IHC and the antibody
used, see Additional file 1.

IHC evaluation

Blinded for the clinical information, IHC evaluation of
all specimens was done at 400x (40x objective lens)
using Leica DMLB microscope (Leica Microsystems).
Inter-observer variation was controlled by calibrating
the evaluation done by three investigators (DS, TAO and
HP). Afterwards, all specimens were evaluated by one
investigator (DS). Expression pattern of S100A16 was
evaluated semiquantitatively by scoring three consecu-
tive fields (>500 cells/field, whenever possible) on the
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surface epithelium of NHOM and ODL, and at the in-
vading tumor islands of lymph nodes. For OSCCs, the
evaluation was done both at the central and the invading
front (the deepest part of an invasive tumor, >3-4 cell
layers thick). When it was not possible to identify clear
invasive fronts, deepest invading tumor islands consist-
ing of >50 cells were used for quantification. A compos-
ite scoring system combining the number of S100A16
positive cells (P score), cellular localization (membranous
or cytoplasmic or both, L score) and intensity (I score)
was used for S100A16 scoring. The final (PLI) score
was calculated by multiplying the individual P, L and I
scores and averaging PLI scores of the three evaluated
fields. For details of the PLI scoring system, see Additional
file 1.

The evaluation of Ki67 staining in the tumor xeno-
grafts was done only at the invading fronts (5-6 cell
layers). Positive and negative tumor cell nuclei were
manually counted (at least 300 cells were counted in 3-6
representative areas, at 40x objective lens) and the frac-
tion of the positive cells were calculated. Bmi-1,
S100A16 and involucrin staining in the tumor xeno-
grafts were evaluated qualitatively only.

Cell culture, construction of expression vector and
transfection

The oral squamous cell carcinoma-derived cell-lines
CalLH3 [28] and H357 [29] were cultured as described
elsewhere [17]. SI00A16 expression and shRNA vectors
were constructed as described previously [17, 19]. For
details of the expression and shRNA vector construction,
see Additional file 1. CaLH3 and H357 cells infected
with retrovirus with S100A16 insert and retrovirus with-
out S100A16 insert are referred to as ‘S100A16-CalLH3
and S100A16-H357, and ‘control-CalLH3 and control-
H357 cells, respectively.

Tissue engineering (3D-models) and evaluation of
carcinoma cell invasion

Primary carcinoma associated fibroblasts isolated from a
patient with OSCC were embedded in collagen type I
biomatrix (BD Biosciences), and seeded on top with con-
trol or S100A16 over-expressing CaLH3 cells, as previ-
ously described [30]. 3D constructs were harvested,
formalin-fixed and paraffin-embedded. Depth of invasion
was measured on 5-pm sections stained with hematoxylin
and eosin using Olympus DP.Soft 5.0 software. For the
measurement of carcinoma cell invasion, each 3D-
organotypic section was divided into fifths. The central
and the two outer fifths were excluded from measure-
ments, depth of invasion being assessed in the remaining
two fifths only. For this, a horizontal line was drawn
(using the software Olympus DP.Soft 5.0) through the
uppermost remnants of the collagen gel to visualize the
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basement membrane zone; depth of invasion was deter-
mined every 100 um along this horizontal line as the verti-
cal distance from this line to the limit of invading
epithelial cells (Fig. 5f).

RNA extraction, cDNA synthesis and qRT-PCR

RNA was extracted from frozen specimens (NHOM and
OSCC), laser microdissected FFPE tissues (NHOM, ODL
and OSCC) and OSCC-derived cell-lines respectively
using Dynabeads mRNA Direct kit (Invitrogen), RNeasy
FFPE Kit (#73504, Qiagen) and RNeasy fibrous tissue mini
kit (cat no: 74704, Qiagen Inc.). See Additional file 1: Sup-
plementary methods and Table S2 for details of the cDNA
synthesis and qRT-PCR.

Immunoblotting

Twenty to 30 pg of cell lysates were resolved in
NuPAGE® Novex 4-12 % Bis-TrisTris gel (NP0329, Life
technologies, NY, USA) and immunoblotted with anti-
bodies as described in Additional file 1: Table S3.

Real time cell proliferation assay (xCELLigence system)

The xCELLigence DP device from Roche Diagnostics
(Mannheim, Germany) was used to quantitatively and
dynamically monitor cell proliferation in real-time. Six
thousands control or S100A16 over-expressing CaLH3
and H357 cells were seeded in duplicates in the electronic
microtiter E-plates (Cat. No: 5469830001; Roche Diagnos-
tic) and proliferation was measured in real time for 72 h.
Data acquisition and analysis was performed with the
RTCA software (version 1.2.1.1002, Roche Diagnostics).

In vitro sphere formation assay

Inner surface of each well of 48 well-plate was coated
evenly with a 12 mg/mL solution of polyHEMA (sigma,
P3932) in 95 % ethyl alcohol and sterilized under UV
overnight. Afterwards, 490 pL of cell culture medium
with 1 mg/mL methylcellulose was added in each well.
One thousand cells suspended in 10 pL medium was
then added in each well and evenly mixed with the
medium. Sphere formation was quantified on 14th day by
counting the number of spheres (>50 cells) at 4x objective
under Nikon ECLIPSE TS100 fluorescent microscope.
Each experiment was repeated thrice in 6 replicates.

Adherence to collagen IV

Previous studies have shown that rapid adherence of
keratinocytes to collagen IV is a robust method to enrich
cells for stem cell properties [31, 32]. According to this
method, cells adhering most rapidly to collagen IV are
considered to be enriched for cells with a less differenti-
ated phenotype (stem cell properties); whereas the late
adherent cell population contains relatively fewer cells
with stem cell properties and the non-adherent cell
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population consists of cells with a more differentiated
phenotype. This assay was performed as described previ-
ously [33, 34]. Briefly, cell suspension was allowed to at-
tach to culture dishes coated with collagen IV (10 pg/mL)
(BD Biosciences, USA) in the cell incubator for 10 min.
Cells attached to the dishes were collected and referred to
as rapid adherent cells (RAC). The unattached cells within
the first 10 min were then transferred to a new collagen
IV-coated dish for an additional 30 min in incubator. Cells
that adhered within this period were referred to as middle
adherent cells (MAC). Remaining unattached cells were
collected as late adherent cells (LAC).

Fluorescent activated cell sorting (FACS) for p75NTR and
cytokeratin 13

p75NTR, a member of tumor necrosis factor receptor
superfamily, is a low affinity neurotrophin receptor. Ac-
cumulated evidences suggest that p75NTR is a putative
stem cell marker both in the normal oral and esophageal
tissues [35—37] as well as in the malignancies including
OSCC [37-40]. Accordingly, cells with p75NTR high ex-
pression are considered to be enriched for cells with a
less differentiated phenotype (stem cell properties), whereas
the cells with low P75NTR expression are enriched for cells
with a more differentiated phenotype. Unfixed oral cancer
cells were stained with anti-p75NTR antibody (Sigma
Aldrich, 1:250 dilutions) whereas methanol fixed cells were
stained with anti-cytokeratin 13 antibody (Novacastra,
1:350 dilutions). For detailed methodology of FACS, see
Additional file 1.

In vivo tumorigenesis assay

Protocols for all animal studies were approved by the
Norwegian Animal Research Authority (Project ID:
20124236). Twelve nonobese diabetic/severe combined
immunodeficient (NOD/SCID) mice were randomly di-
vided into two groups (n = 6, each group). One thousand
S100A16-H357 or control-H357 cells suspended in
50 pL of Matrigel (BD Biosciences) were injected in the
tongue of each mouse. Tumor development was moni-
tored regularly under inhalation anesthesia. Length and
breadth of the formed tumors were measured by Vernier
caliper and tumor volume was calculated using the fol-
lowing formula-(length x breadth?)/2. Tumor formation
was confirmed histologically.

Statistics

Statistical analysis was done using SPSS 21 and/or Graph-
Pad prism 5. Difference in means between two groups was
analyzed by using unpaired t-tests, whereas comparison
between more than two groups was done by using
ANOVA test with Bonferroni Post-Hoc. Median PLI
scores both at the tumor center and at the invading front/
island were used as cut-off values to stratify OSCCs into
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high- and low-S100A16 expression groups. According to
the differentiation status, OSCCs were categorized into
two groups: highly differentiated and moderately-poorly
differentiated. Association between the expression status
of S100A16 and other binary variables was done using
Chi-square Test. Survival analysis was performed using
the Kaplan-Meier analysis (log-rank test). Cox propor-
tional hazard model was used to examine the effect of
S100A16 expression on 10-year overall survival. Level of
significance was set at 5 %.
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Results

S100A16 was progressively down-regulated from normal
tissue to dysplasia and OSCC; and low S100A16 expression
at the invading front/islands correlated with reduced survival
and poor tumor differentiation

To examine the expression and localization of SI00A16,
IHC was performed on archived FFPE specimens of
NHOM (n =21), ODL (n =11), OSCC (n = 65) and posi-
tive cervical lymph nodes (n=17). A strong membran-
ous expression of S100A16 was found in the supra-basal
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Fig. 1 ST00A16 protein was progressively down-regulated from NHOM to ODL and OSCC and low ST00A16 protein expression correlated with
poor OSCC prognosis. a Representative NHOM specimen showed strong, predominantly membranous ST00A16 expression in the epithelial compartment.
Basal cell layer (arrowheads), however, was mostly negative for STO0A16 expression (A7). b Expression pattern of ST00A16 in ODL was similar to that of
NHOM. However, the expression intensity was weaker than that in NHOM (c) Representative OSCC lesion showing a gradient of ST00A16 expression:
central area (C1) showed a strong, membranous staining in contrast to a very weak, mostly cytoplasmic staining in the invading front area (C2). d Graphic
illustration of ST00A16 PLI score demonstrated gradual down-regulation of ST00A16 from NHOM to ODL, OSCC and positive cervical nodes. ANOVA test
with Bonferroni Post-Hoc was used for the statistical analysis. P-value: ***, <0.001; ns, not significant. @ Kaplan-Meier curves showing reduced 10-year survival
probabilities for patients with low ST00A16 PLI score. Log-Rank test was used for statistical analysis
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(committed/differentiating) epithelial cell layers of all
NHOM tissues (Fig. 1la). Negative or weak cytoplasmic
staining was found in the basal cell layer (stem cell com-
partment) in most of NHOM samples (Fig. 1a and Al).
The expression pattern of SI00A16 in ODL was similar
to that found in NHOM (Fig. 1b). The superficial and
central areas of OSCC specimens demonstrated similar
staining pattern to that found in NHOM, whereas very
weak or negative expression was observed at the invad-
ing front/island of tumor cells with concomitant mem-
brane to cytoplasmic translocation in majority of the
cases (Fig. 1 C1 and C2). Nevertheless, SI00A16 staining
was relatively strong with membranous localization at
the invading front/island of well-differentiated OSCCs
(Additional file 2: Figure S1A). S100A16 staining was
very weak or absent in the infiltrating tumor islands of posi-
tive cervical lymph nodes (Additional file 2: Figure S1B).

Quantification of SI00A16 staining showed that SI00A16
PLI score was gradually decreased during the transition
from NHOM to ODL and OSCC (Fig. 1d). Of note, PLI
score was found to be lower at the invading front/island as
compared to the central areas in OSCCs (Fig. 1d). Examin-
ation of possible correlation between S100A16 expression
and clinical parameters showed that low S100A16 PLI score
at the invading front/island was associated with reduced
10-year overall survival (Log-Rank test, P=0.017) (Fig. le),
moderate-poorly differentiated OSCCs (P=0.018) and
lymph node involvement (P = 0.062) (Table 1). Multivariate
Cox regression analysis demonstrated that S100A16 ex-
pression was a significant prognostic factor (HR =0.483,
CI=0.24-0.95, P=0.037) for the survival of OSCC pa-
tients (Table 2). However, no significant correlations were
observed between the PLI score at the tumor center and
clinicopathological variables (Additional file 1: Table SI).
A trend for better survival probabilities was found for well
differentiated and early stage tumors, but the results were
not statistically significant (data not shown).

S100A16 mRNA level was progressively down-regulated
from NHOM to ODL and OSCC

Expression levels of SI00A16 mRNA were quantitatively
examined in an independent cohort of frozen specimens
of NHOM (n = 44) and OSCC (n =50) by qRT-PCR. The
mean expression of SI00A16 mRNA was found to be
significantly down-regulated in OSCC compared to NHOM
(P<0.0001) (Fig. 2a). Down-regulation of SI00A16 mRNA
levels was verified in three independent microarray
datasets for OSCC (Fig. 2b—d). To validate the progres-
sive down-regulation of SI00A16 mRNA expression
during OSCC progression, FFPE specimens of NHOM,
ODL and OSCC were laser dissected and mRNA levels
were quantitatively examined. Parallel to the IHC findings,
mRNA expression level was progressively down-regulated
in the oral keratinocytes during the transition from
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Table 2 Results of a multivariate Cox regression analysis for
predicting the overall survival of OSCC cases

Variables Assigned score Hazard ratio 95 % Cl P-value

Age
<64 0 1.51
>64 1

0.82-294  0.169
Sex
Female 0 1.18
Male 1

060-233 0623
Differentiation

Well 0 1.09 0.53-294  0.803
Moderate & poor 1
T-stage
T &T2 0

T3 &T4 1

0.871 039-190 0.728
Clinical stage

Early (1 & 2) 0

Late (3 & 4) 1
S100A16

High 0

Low 1

1.371 0.55-333 0494

0483 0.24-095  0.037

Cl, Confidence interval

NHOM to ODL, including paratumor epithelium, and
OSCC (Fig. 2e).

S100A16 mRNA level was down-regulated during tumor
progression of several other human malignancies

To investigate whether S100A16 down-regulation is a
common event during tumor progression of other carcin-
omas as well, the expression levels of SI00A16 mRNA
were examined in external microarray datasets of other
human malignancies and tumor progression model sys-
tems. Similar to OSCC, SI00A16 mRNA level was found
to be significantly down-regulated in ESCC and CRC as
compared to the corresponding control specimens
(Additional file 3: Figure S2A-B). Moreover, progressive
down-regulation was observed during various stages of
tumor progression in prostate cancer and in ovarian
cancer model systems (Additional file 3: Figure S2C-D).

S100A16 mRNA expression was positively correlated with
differentiation markers in OSCC specimens and in cell
fractions enriched for differentiated cells

Positive correlation between the expression of SI00A16
as examined by IHC and the differentiation status found
in the OSCC specimens prompted us to further examine
the correlation between S100A16 and differentiation
markers in OSCC specimens in vivo, and in the differen-
tiated cell fractions in vitro. SI00A16 mRNA levels were
positively correlated with mRNA levels of several of the
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Fig. 2 ST00A16 mRNA level was progressively down-regulated from NHOM to ODL and OSCC. a ST00AT6 mRNA expression was examined in
frozen specimens of NHOM (n =44) and OSCCs (n =50) by using gRT-PCR. Mean S100A76 mRNA was found to be significantly down-regulated in
OSCCs (P<0.0001). STO0A16 mRNA expression levels were normalized to GAPDH mRNA expression. Error bars represent SEM. Student's-t test was
performed for statistical analysis. b-d Down-regulation of ST00A16 mRNA levels in OSCC was verified in three independent microarray datasets.
Error bars represent SEM. Student's-t test was performed for statistical analysis. e Gradual down-regulation of ST00A76 mRNA during the transition
from NHOM to ODL and OSCC was validated in laser dissected specimens of NHOM, ODL, paratumor (dysplastic) epithelium, tumor center and
invading front by gRT-PCR. gRT-PCR was done in duplicates and ST00A16 mRNA level was normalized to GAPDH and ACTB mRNA levels. Error bars
represent SEM. ANOVA test with Bonferroni Post-Hoc was used for the statistical analysis. P-value: ***, <0.001; **, 0.001-0.01

differentiation markers (IVL, KRT13, TGM1I and FLG) in
two independent microarray datasets [20, 21] (Fig. 3a—d
and Additional file 4: Figure S3). In parallel, similar cor-
relation was also found in the LAC and p75NTR"" cell
fractions (enriched for differentiated cells) compared to
the RAC/MAC and p75NTR"€" fractions (enriched for
less differentiated cells) (Fig. 3e—g).

S100A16 modulated expression of differentiation-related
markers in OSCC-derived cells

The in vivo and in vitro association of SI00A16 with a
more differentiated phenotype led us to investigate
whether S100A16 can induce expression of differentiation-
related markers in OSCC-derived cells. Retroviral medi-
ated over-expression of SI00A16 resulted in up-regulation
of involucrin, cytokeratin 13 and transglutaminase 1 in
CaLH3 cells (expression of filaggrin could not be detected
in both control and S100A16-CalLH3 cells) (Fig. 4a). In
H357 cells, over-expression of S100A16 was associated

with up-regulation of involucrin, cytokeratin 10 and filag-
grin (expression of transglutaminase 1 and cytokeratin 13
could not be detected in both control and S100A16-H357
cells (Fig. 4a). FACS analysis further confirmed the up-
regulation of cytokeratin 13 upon S100A16 over-expression
(Fig. 4b—d). Confirming the above results, ssRNA mediated
knock-down of S100A16 resulted in down-regulation of
involucrin and cytokeratin 13 in CaLH3 cells (Fig. 4e). The
total p38 or phospho-p38 expression levels were not af-
fected by S100A16 over-expression (Fig. 4a).

S100A16 over-expression reduced cell proliferation,
sphere formation ability and 3D-invasive potential of
0SCC-derived cells in vitro

The functional role of SI00A16 in OSCC tumorigenesis
was next examined by performing a number of estab-
lished functional assays. Proliferation rates (as measured
by normalized cell index) of CaLH3 and H357 cell-lines
were found to be significantly reduced upon S100A16
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Fig. 3 ST00A16 mRNA expression was positively correlated with differentiation markers in OSCC specimens and in the cell fractions enriched for
more differentiated cells. a-d ST00AT16, IVL, KRT13, TGMT and FLG mRNA levels were obtained from external microarray dataset (Rickmen) and their
correlation was examined using Pearson analysis. e-g Cell fractions were enriched for differentiated cells either by using lack of adherence to
collagen IV or by FACS sorting for low p75NTR expression and mRNA expression levels of ST00A16 and IVL and KRT10 were examined by gRT-PCR.
e Significantly higher mRNA levels of ST00A16, IVL and KRT10 were found in LAC cell fractions (enriched for more differentiated cells) as compared
to RAC/MAC (enriched for less differentiated cells). Error bars represent SEM of 3 repeated experiments. ANOVA test with Bonferroni Post-Hoc was
used for statistical analysis. P-value: ***, <0.001. f and g Fractions enriched for differentiated cell (p75NTR®") expressed significantly higher expression
of ST00A16, IVL and KRT10 as compared to p75NTRMgh fractions in CaLH3 () and H357 (g) cells. Expression levels were normalized to GAPDH mRNA
expression. Error bars represent SEM of 3 repeated experiments. Student’s-t test was performed for statistical analysis
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Fig. 4 ST00A16 over-expression modulated differentiation-related markers in OSCC cell-lines. ST00A16 was over-expressed and knocked-
down in OSCC-derived cells by retroviral vectors and concomitant modulation of differentiation markers was examined. a Western blot
analysis showed up-regulation of several of the differentiation markers with ST00A16 over-expression. ** anti human-cytokeratin 13
(sc-58721, Santa Cruz); *anti human-cytokeratin 13 (NCL-CK13, Novacastra). b Up-regulation of cytokeratin 13 in ST00A16-CalL.H3 was
further verified by FACS analysis (b—d). Error bars in (c and d) represent SEM of 3 repeated experiments. Student's-t test was performed
for statistical analysis. d In parallel with over-expression, ST00A16 knock-down led to down-regulation of involucrin and cytokeratin 13 in
CalH3 cells

over-expression (Fig. 5a). More importantly, over-
expression of SI00A16 led to significant reduction in the
sphere formation abilities (in vitro surrogate for the in
vivo tumorigenesis assay) of both CaLH3 and H357 cell-
lines as compared to the corresponding control cells
(Fig. 5b—e) (P <0.05). Suppression in sphere formation
abilities correlated with a simultaneous down-regulation
of self-renewal markers (Oct 4A and Bmi-1) in S100A16-
CaLH3 and S100A16-H357 cells (Fig. 5h). Furthermore,
S100A16 over-expression led to significant reduction of
the invasive potential of CaLH3 cells in 3D-organotypic
cultures (Fig. 5f, quantified in g). In parallel, SI00A16
over-expression led to significant down-regulation of
MMP9 mRNA levels in both CaLH3 and H357 cells-lines
(Fig. 5j). MMP1 mRNA expression, however, was signifi-
cantly down-regulated only in H357 cells (Fig. 5i).

S100A16 over-expression decreased tumor formation
ability of H357 cells in NOD/SCID mice and the resulting
tumor xenografts exhibited a more differentiated and less
proliferative phenotype

The effect of SI00A16 on the in vivo tumor formation
ability was examined by injecting SI00A16 over-expressing
(S100A16-H357) or control (control-H357) H357 cells in
the tongue of NOD/SCID mice. When 1000 cells/mouse
were injected, control-H357 cells formed tongue tumors in
all of the NOD/SCID mice (6/6, 100 % tumors) whereas
S100A16-H357 cells formed tumors in 5 of the mice (5/6,
83.4 % tumors). More importantly, tongue tumors formed
by the control-H357 cells were significantly larger (at
33 days, P = 0.04) compared to that of SI00A16-H357 cells
(Fig. 6a). In addition, lag phase for SI00A16-H357 cells to
form tongue tumors was longer than that of control-H357
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Fig. 5 Retroviral mediated ST00A16 over-expression inhibited proliferation, sphere formation and 3D-invasion abilities of OSCC cells in vitro.
S100A16 was over-expressed in CaLH3 and H357 cell-lines and subsequent effect on malignant phenotype was examined. a Six thousands control
or ST00A16 over-expressing CalLH3 or H357 cells were seeded in duplicates in the microtiter E-plates and cell proliferation was measured in real
time for 72 h with the xCELLigence system. ST00A16 over-expressing cells proliferated significantly slower as compared to the control cells as
demonstrated by the normalized cell index. Similarly, sphere formation abilities of ST00A16-CalLH3 (b and d) and ST00A16-H357 (c and e) cells
were significantly reduced as compared to the corresponding controls. Error bars represent SEM of 6 replicates for each experiment. Student's-t
test was performed for statistical analysis. Expt, Experiment. ST00A16 over-expression led to significant reduction in the invasive potential of
CaLH3 cells in 3D-organotypic cultures (f, invasion quantified in g). Yellow dotted line represents the imaginary basement membrane. Black vertical
lines with double arrowheads represent the depth of invasion of malignant keratinocytes. h—j ST00A16 mediated functional effects on malignant
phenotype were associated with concomitant down-regulation of proliferation/self-renewal markers (Bmi-1 and Oct4A) (h) and invasion-promoting
molecules (MMPT and MMP9 mRNA levels) in CaLH3 and H357 cell-lines (i and j). Error bars in (g) represent SEM of 4 repeated experiments where as

in (i and j) represent 3 repeated experiments. Student's-t test was performed for statistical analyses

cells (Fig. 6b). We next examined whether the phenotype
of S100A16-H357 tumor xenografts would correlate with
the expression of differentiation and proliferation/self-re-
newal markers. As expected, S100A16-H357 xenografts
demonstrated features of well differentiation (presence of
keratin pearls, Fig. 6¢ and d) with higher expression of the
terminal differentiation marker involucrin as compared to
the control-H357 xenografts (Fig. 6e and f) Additionally,
S100A16-H357 xenografts expressed lower levels of Ki67
(Fig. 6g and h) and Bmi-1 (Fig. 6i and j) as compared to
the control-H357 xenografts.

Discussion

In the current study, assessment of whole tissue speci-
mens of NHOM, ODL, OSCC and positive lymph node
showed progressive down-regulation of both S100A16
protein and mRNA levels during OSCC progression
(Figs. 1 and 2). These data were confirmed by analyzing
S100A16 mRNA levels in laser captured microdissected
specimens and in three independent OSCC microarray
datasets (Fig. 2). These findings indicate that the reduced
level of S100A16 might be related to OSCC progression.
Given the high probability of chromosomal rearrange-
ment in 1q21 region (where SIO0AI6 is located) in hu-
man cancers, one of the mechanisms for S100A16
down-regulation in OSCC could be the deletion of
SI100A16 locus in these lesions. Indeed, a recent work re-
ported a loss in the SI00A16 locus in OSCC specimens
from India and Sri Lanka [41]. The clinicopathological
analysis of the current study showed a significant correl-
ation between low S100A16 protein (at the invading
front/island) levels and reduced 10-year overall survival
probabilities for OSCC patients (Fig. le), poor tumor
differentiation and positive cervical nodes. These data
suggest a prognostic value for S100A16 in OSCC. Of
note, S100A16 protein expression at the tumor center did
not reveal any association with clinicopathological vari-
ables. These findings are in agreement with the concept
that tumor invading fronts/islands are the more active
areas of a malignant lesion and molecular/morphological

changes at these areas are better prognosticators than those
at the central/superficial region of the tumor [42, 43].

Positive correlation between S100A16 protein level
and tumor differentiation, as found in the current study,
pointed to a functional role of SI00A16 in the regulation
of keratinocyte differentiation. In agreement, mRNA
levels of SI00A16 and differentiation markers were posi-
tively correlated in the OSCC specimens in vivo in two
independent microarray datasets (Fig. 3a—d, Additional
file 4: Figure S3) and in the cell fractions enriched for
differentiated cells in vitro (Fig. 3e—g). Furthermore,
modulation of earlier and terminal differentiation
markers in OSCC-derived cells by over-expression and
knock-down of S100A16 provided direct evidence that
S100A16 functions as a differentiation promoting pro-
tein in OSCC (Fig. 4). This corroborates well with the
observation that other members of S100 proteins are
involved in the regulation of cellular differentiation
[10, 11]. Indeed, a gradual increase in SI00A16 expres-
sion has been described previously during the differen-
tiation of preadipocytes to adipocytes [44]. However, in
malignant oral keratinocytes this function seems to be
independent of the p38 MAP kinase pathway, as no
change was observed in the current study on the p38
phosphorylation status with SI00A16 over-expression
(Fig. 4a). This warrants investigation of p38 independ-
ent mechanisms possibly involved in S100A16 medi-
ated modulation of differentiation markers in oral
cancer cells.

Poorly differentiated phenotypes with excessive cellu-
lar proliferation and invasive abilities are considered to
be characteristics of aggressive tumors. For several tumor
types, lesions with more differentiated phenotype have
been shown to have a less aggressive behavior and better
clinical outcome [45, 46], indicating that molecular regula-
tors that promote cellular differentiation might have
tumor suppressive functions [47-49]. Several observations
in the current study suggested that loss of SI00A16 might
contribute to the acquisition of aggressive OSCC pheno-
type. Firstly, significantly reduced S100A16 expression at
the invading front/island as compared to the tumor center
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xenografts. Arrowheads in (g) and (h) mark the invading front. Error bars in (h) represent SEM. Student's-t test was performed for statistical
analysis in (f). +++, strong; ++, moderate; +, weak staining

and, severely down-regulated expression in the positive
lymph nodes indicated that loss of SI00A16 might be ne-
cessary for the tumor cells to acquire an invasive pheno-
type (Figs. 1 and 2e). Further, correlation between reduced

S100A16 expression level and reduced OSCC patient
survival pointed towards a role for S100A16 in the
maintenance of less aggressive tumor phenotype. In-
deed, retroviral mediated S100A16 over-expression
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significantly suppressed several aspects of aggressive
tumor phenotype; such as proliferation, sphere forma-
tion and 3D-organotypic invasive abilities of OSCC-
derived cells in vitro (Fig. 5a—g). In parallel, SI00A16
over-expression reduced tumorigenic abilities (tumor
incidence and tumor volume) of H357 cells in NOD/
SCID mice (Fig. 6a and b). These tumor suppressive
functions were paralleled at the molecular level by con-
comitant down-regulation of self-renewal (Bmi-land
Oct4A) and invasion related (MMP1 and MMP9) mole-
cules in vitro (Fig. 5h—j). Likewise, S100A16-H357 xe-
nografts were found to be more differentiated and less
proliferative, both histologically and at the molecular
level as evidenced by the higher involucrin expression
and lower expression of Ki67 and Bmi-1 (Fig. 6¢c—j).
Taken together, these findings suggested a role for
S100A16 as a tumor suppressor in OSCC and indicated
that progressive loss of S100A16 might be related with
aggressive tumor growth and invasion leading to re-
duced patient survival. Similar to our results, IRF6
(INF regulatory factor 6), a pro-differentiating factor
which shares similar expression pattern to that of
S100A16, has been shown to have a tumor suppressive
activity in squamous cell carcinoma by promoting
keratinocyte differentiation [47, 49]. Additionally, pro-
gressive down-regulation of SI100A16 as found in
CRC, prostate and ovarian cancers (Additional file 3:
Figure S2) demonstrates a broader relevance for SI00A16
in the process of tumorigenesis of other human malignan-
cies and warrants further investigation in these tumor

types.

Conclusion

Our results indicate a novel role for S100A16 in the
regulation of OSCC differentiation and tumor suppres-
sion. Further molecular characterization of SI00A16 me-
diated tumor suppressive functions might contribute to
the better understanding of OSCC carcinogenesis and
provide opportunity for SI00A16 based better prognosti-
cation and management of OSCC.

Additional files

Additional file 1: Supplementary Methods and Tables. Table S1.
S100A16 expression and clinicopathological variables of the OSCC
patients. Table S2. Details of the TagMan assays used for gRT-PCR.
Table S3. Details of the antibodies used for immunoblotting.
(DOCX 31 kb)

Additional file 2: Figure S1. (A) ST00A16 staining was strong with
membranous localization at the invading front/island of well-differentiated
OSCC. (B) ST00A16 staining was very weak or absent in the infiltrating tumor
islands of positive cervical lymph nodes. (TIFF 2613 kb)

Additional file 3: Figure S2. Down-regulation of ST00A76 mRNA levels
in tumor tissues as compared to the normal controls in independent
microarray datasets. (A) ESCC, (B) CRC, (C) prostate cancer and (D) in
vitro progression model of ovarian cancer (MOSE-E, non-tumorigenic;
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MOSE-|, intermediate and MOSE-L, aggressive malignant phenotype).
For statistical analysis, paired-t test was performed in (A) and one way
ANOVA test with Bonferroni Post-Hoc in (B-D). Error bars represent
SEM. **,0.001-0.01. ns, not significant. (TIFF 275 kb)

Additional file 4: Figure S3. Positive correlation between ST00A16
MRNA expression and differentiation markers in OSCC specimens.
Expression data were obtained from external microarray dataset [20].
(TIFF 337 kb)
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