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Abstract

signature associated with patient outcome.

PM Cancer Centre cohort.

prognostic value for patients with cervical cancer.

Background: Cervical cancer is the third most common cancer in women globally, and despite treatment, distant
metastasis and nodal recurrence will still develop in approximately 30% of patients. The ability to predict which
patients are likely to experience distant relapse would allow clinicians to better tailor treatment. Previous studies
have investigated the role of chromosomal instability (CIN) in cancer, which can promote tumour initiation and
growth; a hallmark of human malignancies. In this study, we sought to examine the published CIN70 gene
signature in a cohort of cervical cancer patients treated at the Princess Margaret (PM) Cancer Centre and an
independent cohort of The Cancer Genome Atlas (TCGA) cervical cancer patients, to determine if this CIN

Methods: Cervical cancer samples were collected from 79 patients, treated between 2000-2007 at the PM, prior
to undergoing curative chemo-radiation. Total RNA was extracted from each patient sample and analyzed using
the GeneChip Human Genome U133 Plus 2.0 array (Affymetrix).

Results: High CIN70 scores were significantly related to increased chromosomal alterations in TCGA cervical
cancer patients, including a higher percentage of genome altered and a higher number of copy number
alterations. In addition, this same CIN70 signature was shown to be predictive of para-aortic nodal relapse in the

Conclusions: These findings demonstrate that chromosomal instability plays an important role in cervical cancer,
and is significantly associated with patient outcome. For the first time, this CIN70 gene signature provided
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Background

Chromosomal instability (CIN), a condition in which
cells change their chromosomal content at a high rate, is
a consistent feature of the majority of solid tumours
[1,2]. It has long been postulated that chromosomal im-
balance plays a role in tumourigenesis, since aneuploid
karyotypes were first observed in cancer cells over a cen-
tury ago [3]. Since then, evidence has shown that CIN
promotes tumour initiation and growth [4-7]. In patient
tumours, it has been demonstrated that CIN increases
with increasing tumour grade as well as invasiveness
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[8-11]. Some studies have alluded to the clinical value of
CIN in human cancers [8,12], although therapeutic tar-
geting of CIN remains in its infancy [13].

Using a computational approach to identify specific
genes whose expression was consistently correlated with
total functional aneuploidy across multiple cancer types,
Carter et al. developed a gene expression signature of
CIN, the CIN70, which could predict patient survival
and prognosis [14]. Over-expression of this CIN70 sig-
nature was predictive of poor clinical outcome in 12
datasets representing six types of tumour: lymphoma,
lung adenocarcinoma, glioma, medulloblastoma, meso-
thelioma, and breast cancer [15-26]. In this study, we
sought to examine CIN in cervical cancer and determine
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if the CIN70 signature could also be used to predict clin-
ical outcome in patients with cervical cancer.

Globally, cervical cancer is the third most common
cancer in women [27]. Although there has been a decrease
in cervical cancer incidence and mortality over the past
thirty years in the United States, the five-year survival rate
remains below 40% for stage III and stage IV patients [28].
Furthermore, distant metastasis and lymph node recur-
rence occurs in approximately 30% of patients following
primary treatment [29]. The ability to predict which pa-
tients are likely to experience distant relapse would allow
clinicians to better tailor patient therapy.

In this current study, the CIN70 signature was investi-
gated in a cohort of cervical cancer patients treated at the
Princess Margaret (PM) Cancer Centre (n =79), and an
independent cohort of TCGA cervical cancer patients
(n=130). CIN70 score was found to be significantly
associated with chromosomal alterations and para-
aortic distant relapse in patients. Altogether, these
findings provide insight into the role of CIN in cervical
cancer and show that CIN can harbour clinical value
for patients.

Table 1 Clinical parameters of the Princess Margaret
Cancer Centre cohort

n=79

Age (years)

Median 48

Range 26-84
Tumour size

<5cm 48 (61%)

>5cm 31 (39%)
FIGO stage

IA 0

1B 24 (30%)

A 2 (3%)

1B 35 (44%)

A 0

1B 18 (23%)
Pelvic or para-aortic node involvement

Positive 25 (32%)

Equivocal 15 (19%)

Negative 39 (49%)
Overall survival

Deaths 24 (31%)
Disease-free survival

Relapses or deaths 28 (35%)
Follow-up (years)

Median 6.0

Range 0.7-106
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Methods

Ethics statement

Written informed consent was obtained from all human
subjects, according to a protocol (09-0245-T) approved
for this study by the University Health Network Research
Ethics Board.

Clinical specimens

Frozen pre-treatment cancer samples were collected
from 79 patients with cervical cancer, prior to undergoing
curative chemo-radiation, consisting of external-beam
radiotherapy to the primary cervical tumour and pelvic
lymph nodes (45 to 50 Gy total, in 1.8 to 2 Gy daily frac-
tions using 18 or 25 Megavolt photons), combined with
weekly cisplatin (40 mg/m? total, 5 doses). These patients
were treated at the PM Cancer Centre between 2000 and
2007. Patients were staged using the FIGO (International
Federation of Gynecologists and Obstetricians) system,
with additional clinical information gathered using com-
puted tomography (CT) scans of the abdomen and pelvis,
as well as magnetic resonance imaging (MRI) of the pelvis
to assess local and lymphatic disease. Pelvic and para-aortic
lymph nodes were classified as positive for metastatic dis-
ease if the MRI short-axis dimension was >1 cm, and
equivocal if it was between 8 to 10 mm.

The frozen biopsy specimens were placed in a storage
medium (optimal cutting temperature (OCT) compound)
for histopathologic examination, then flash-frozen in li-
quid nitrogen. H&E-stained tissue sections were cut
from the OCT-embedded material, and evaluated by a

Table 2 Clinical parameters of TCGA cohort

n=135

Age (years)

Median 46

Range 21-88
FIGO stage

IA 2 (1.5%)

1B 82 (60.7%)

IIA 11 (8.2%)

1B 11 (8.2%)

A 0

s 19 (14.1%)

VA 1 (0.7%)

VB 3 (2.2%)

N/A 6 (4.4%)
Overall survival

Deaths 19 (14%)
Follow-up (years)

Median 0.36

Range 0-14.7
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gynecology oncology pathologist (B. Clarke). The total
cell content (stroma and tumour cells) was estimated
for all tissue samples using a light microscope, and only
samples containing at least 70% tumour cells were con-
sidered for further analysis. Flash-frozen normal cervix
tissues obtained from 11 patients who underwent total
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hysterectomy for benign causes served as the normal
comparators.

Sample processing
Two sections of 50-pm thickness were cut from the OCT-
embedded flash-frozen tissues and placed in a nuclease-free
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Figure 1 PM Cancer Centre Affymetrix heat map. Hierarchically clustered heat map showing scaled expression of CIN70 genes in cervix tumour
(n=79) and normal (n = 11) tissues, compared to CIN70 score (white to black scale). Comparisons are also made with FIGO stage (1B, 2A, 2B, and
3B), and nodal stage (1 N = negative, 2F = equivocal, 3Y = positive). P-values refer to relationship between CIN70 scores with tumour:normal, FIGO
stage, and Nodal stage.
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microtube. Total RNA was isolated using the Norgen
Total RNA Purification Kit (Norgen Biotek), according
to the manufacturer’s instructions. Gene expression
was measured with the GeneChip Human Genome
U133 Plus 2.0 array (Affymetrix).

Data analysis
Affymetrix array data were pre-processed using the Robust
Multi-array Average robust-multi array algorithm [30] in
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the R statistical environment with the affy package
[31]. CIN70 score was calculated by summing the nor-
malized expression of each gene in the CIN70 signa-
ture. For genes with more than one mapped probe set
on the array, the probe set with the highest variance
across samples was selected.

Level 3 copy-number (SNP 6.0 arrays; Affymetrix), gene-
expression (RNA-Seq; Illumina) and somatic mutation
(Exome-Seq; Illumina) data were downloaded from the

TCGA RNA-Seq Data
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Figure 2 TCGA RNA-Seq heat map. Hierarchically clustered heat map showing scaled expression of CIN70 genes in TCGA cervix tumour tissues
(n=130), compared to CIN70 score.
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Broad GDAC Firehose (http://gdac.broadinstitute.org/),
and analyzed in the R statistical environment. CIN70
score was calculated again by summing the normal-
ized expression of each gene in the CIN70 signature.
The number of copy-number alterations was calcu-
lated using segmented copy-number data, whereby
segments with a mean log2 copy-number ratio value
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>0.2 or < -0.2 were deemed altered [32,33]. Relatedly,
percent genome altered was calculated by adding
the length of each “altered” segment, divided by the
total length of the genome analyzed. The number
of mutations corresponded to somatic coding muta-
tions were called using TCGA’s Exome-Seq analysis
pipeline.
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Figure 3 Chromosomal alterations in TCGA cervix cancer tissues. Copy number alterations (top) in TCGA cervical cancer patients,
compared to CIN70 score (white to black scale), number of alterations (white to blue scale), percent genome altered (white to green
scale), and number of mutations (white to red scale). Spearman’s correlation coefficient (r), and P-values are shown for each of the

-
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Survival analysis

For each patient in the PM Cancer Centre cohort (n =79),
a risk score was calculated using the published CIN70 sig-
nature [14] and Affymetrix gene expression data. Risk
scores were dichotomized at the median (CIN70=7.57)
and the cohort was divided into low and high-risk groups.
Curves for overall survival (OS), disease-free survival
(DES), probability of local relapse, and probability of
distant relapse were plotted according to the Kaplan-
Meier method, with p-values determined using the
Wald test.

Results

PM and TCGA cohorts showed a distinct expression
pattern of CIN70 genes according to CIN70 score

The clinical characteristics of the 79 PM Cancer Centre
and 130 TCGA patients are shown in Tables 1 and 2,
respectively. A heat map of scaled expression of the CIN70
genes showed a distinct expression pattern in patients ac-
cording to CIN70 score (Figure 1). As expected, normal
and tumour cervix samples had significantly different
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CIN70 scores (p <0.0001). Interestingly, CIN70 score was
not significantly associated with FIGO stage (p=0.78) or
nodal stage (p=0.39). TCGA cervical cancer patients
showed a similar expression pattern of the CIN70 genes
according to CIN70 score (Figure 2).

High CIN70 score was related to increased chromosomal
alterations

A heat map of TCGA patients (Figure 3) demonstrated
the patterns of chromosomal alterations. Patients with a
high CIN70 score (white to black scale) had a higher
number of copy number alterations (white to blue scale;
Spearman’s correlation coefficient (r) =0.28, p <0.001)
and a higher percentage of genome altered (white to
green scale; r = 0.19, p = 0.016). Interestingly, the number
of mutations (white to red scale) was negatively corre-
lated with the CIN70 score, whereby patients with higher
CIN70 scores had fewer mutations (r =-0.38, p = 0.018);
however, there were a significant number of patients with
missing values for this parameter.
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Figure 4 Kaplan-Meier plot of the 79 PM Cancer Centre cervical cancer patients according to CIN70 score. A risk score was calculated for each
patient using the CIN70 signature. The median risk score was used to divide patients into high vs. low risk groups. Kaplan-Meier curves are shown
for: A) overall survival; B) disease-free survival; C) local relapse; D) para-aortic or distant relapse. HR; hazard ratio, Cl; 95% confidence interval,

P-A; para-aortic.
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CIN70 score was related to distant relapse in cervical
cancer patients

The previously published CIN70 signature [14] was used
to calculate the risk score for each patient (n=79) and
the median risk score was used to dichotomize a low vs.
high-risk group. According to the Kaplan-Meier analysis,
the CIN70 signature achieved borderline significance for
para-aortic nodal or distant relapse (Figure 4D), with a
hazard ratio of 3.02 and Wald p-value of 0.05, but not
significant for OS, DFS, or local relapse (Figure 4A-C).

Discussion

Previous studies have shown that CIN is a hallmark of
most solid and many hematopoietic human cancers
[2,8,10,11,34-37]. Various mechanisms of CIN have been
described, including centrosome duplication [38-40],
spindle assembly checkpoint defects [41,42], telomere
dysfunction [43], faulty cell-cycle regulation [44-46], sister
chromatid cohesion defects [47,48], and the regulation of
microtubule attachments to chromosomes at kinetochores
[49-51]. To date, CIN is rarely measured in cancer patients,
due to technical complexity and lack of a clear understand-
ing of the clinical value of CIN [12].

The CIN70 signature was developed by Carter et al.
using a computational method to identify specific genes
that were expressed in correlation with total functional
aneuploidy, across multiple types of cancer [14]. Over-
expression of this signature was shown to predict clinical
outcome in six types of cancer, and was also able to
stratify grade 1 and 2 breast tumours according to clinical
outcome. Birkbak et al. reported that extremes of CIN
score were associated with poor prognosis in four types of
cancer (breast, ovarian, gastric, and non-small cell lung)
[52]. Our study further extended the application of this
CIN70 signature to cervical cancer. However, we failed to
recapitulate the non-monotonic relationship of CIN with
survival as reported in the Birbak et al. study. This could be
due to the fact that our study was underpowered to detect
a difference in survival, and we examined distant relapse in-
stead of survival. Interestingly, we did observe an inverse
relationship between CIN score/copy-number variation and
the number of mutations in our cervical cancer samples.
This confirms the reported data from Ciriello et al, who
analyzed global copy number variation and number of mu-
tations across twelve different cancer types [53]. Our study,
along with the others discussed above, are a step towards
establishing CIN-associated molecular markers that can be
measured in the clinic, and help expand the prognostic util-
ity of CIN in a broad range of human malignancies. Further
work should be conducted to determine if the CIN70 sig-
nature holds clinical value for other types of cancers, in
addition to cervical cancer and the six cancers validated
in the Carter et al. study.
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Conclusions

In summary, this study was the first to evaluate the
previously published CIN70 signature in cervical cancer
patients. CIN70 score was shown to be significantly
associated with chromosomal alterations and para-
aortic distant relapse. The Carter et al. study was
the first step towards establishing CIN-associated
molecular markers that could be measured in clinical
specimens. Our study further extended the applica-
tion of this CIN70 signature, and demonstrated that
it was associated with para-aortic nodal, as well as
distant relapse in patients with cervical cancer. Once
longer follow-up is available for the TCGA cohort, it
would be important to corroborate the prognostic
value of this CIN70 signature for this independent
group of patients.
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