
Kawazoe et al. BMC Cancer  (2015) 15:258 
DOI 10.1186/s12885-015-1276-z
RESEARCH ARTICLE Open Access
A retrospective observational study of
clinicopathological features of KRAS, NRAS, BRAF
and PIK3CA mutations in Japanese patients with
metastatic colorectal cancer
Akihito Kawazoe1, Kohei Shitara1,2, Shota Fukuoka1, Yasutoshi Kuboki1, Hideaki Bando1, Wataru Okamoto1,2,
Takashi Kojima1, Nozomu Fuse1, Takeharu Yamanaka2,3, Toshihiko Doi1,2, Atsushi Ohtsu1,2 and Takayuki Yoshino1,2*
Abstract

Background: The mutation in KRAS exon 2 is a validated biomarker of resistance to anti-epidermal growth factor
receptor (EGFR) therapy in metastatic colorectal cancer (mCRC). Several reports have confirmed associations of
other RAS mutations with resistance to anti-EGFR therapy. However, the impact of BRAF and PIK3CA mutations on
the efficacy of anti-EGFR therapy remains controversial. Little is known about the frequencies and clinicopathological
features of these mutations, as well as the therapeutic effects of anti-EGFR therapy in mCRC patients with these
mutations, especially in the Asian population.

Methods: In this retrospective observational study, frequencies and clinicopathological features of KRAS, NRAS,
BRAF and PIK3CA mutations were evaluated in patients with mCRC. Among patients treated with anti-EGFR therapy,
objective response, progression-free survival (PFS), and overall survival (OS) were evaluated according to gene status.

Results: Among 264 patients, mutations in KRAS exon 2, KRAS exons 3 or 4, NRAS, BRAF and PIK3CA were detected in
34.1%, 3.8%, 4.2%, 5.4% and 6.4%, respectively. Thus, a total of 12.1% of patients without KRAS exon 2 mutations had
other RAS mutations. Primary rectal tumors tended to be more frequently observed in RAS mutant tumors. BRAF
mutations were more frequently observed with right-sided colon, poorly differentiated or mucinous adenocarcinoma,
and peritoneal metastasis. Among the 66 patients with KRAS exon 2 wild-type tumors treated with anti-EGFR agents,
PFS (5.8 vs. 2.2 months) and OS (17.7 vs. 5.2 months) were significantly better in patients with all wild-type tumors (n = 56)
than in those with any of the mutations (n = 10). The response rate also tended to be better with all wild-type tumors
(26.8 vs. 0%).

Conclusion: Other RAS and BRAF mutations were observed in KRAS exon 2 wild-type tumors, which were associated with
some clinicopathological features and resistance to anti-EGFR therapy in our patient cohort.
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Background
Colorectal cancer was the third most common cancer in
men (746,000 cases, 10.0% of the total) and the second
in women (614,000 cases, 9.2% of the total) worldwide
in 2012 [1]. Mutations in KRAS exon 2 occur in ~35% of
all metastatic colorectal cancers (mCRCs) [2,3], and con-
stitutively activate the mitogen-activated protein kinase
(MAPK) pathway [4,5]. These mutations are validated
biomarkers for resistance to anti-epidermal growth factor
receptor (EGFR) therapy in patients with mCRC [6-11].
Although conventional KRAS tests are useful to exclude
patients without benefit from anti-EGFR therapy, response
rates and disease control rates to anti-EGFR antibody
monotherapy among patients with KRAS exon 2 wild-type
tumors are only 13–17% and 51%, respectively [6,7].
Therefore, more accurate patient selection requires identi-
fication of other predictive factors to improve the risk–
benefit profile of anti-EGFR therapy.
Until recently, there have been no validated bio-

markers other than KRAS exon 2 mutations. Recently,
several reports have shown that other KRAS (exons 3 or
4) and NRAS mutations (exons 2– 4) occur in ~20% of
mCRC patients with KRAS exon 2 wild-type tumors,
which are associated with resistance to anti-EGFR therapy
for mCRC [12-18].
BRAF mutations were detected in 5–10% of patients

with mCRC with V600E as a hot spot. BRAF is a down-
stream molecule of KRAS and the clinical data suggest
that BRAF V600E mutations are associated with poor
prognosis in patients with mCRC [11,12,19-24]. How-
ever, the relationship between BRAF mutations and the
efficacy of anti-EGFR therapy remains controversial
[19-22]. Besides the KRAS–BRAF pathway, the other
major downstream signaling pathway activated by EGFR
is the PI3K–AKT signaling pathway. PIK3CA mutations,
most of which were in exons 9 and 20, were detected in
10–15% of patients with mCRC. According to a European
Consortium report [19], PIK3CA mutations in exon 20
but not in exon 9 were associated with resistance to anti-
EGFR therapy for mCRC. However, in other studies, no
clear correlation between PIK3CA mutations and the effi-
cacy of anti-EGFR therapy has been observed [21,22].
Meanwhile, targeting agents for these mutations are under
development.
We previously reported that a multi-gene cancer panel

with Luminex technology (GENOSEARCH Mu-PACK,
MBL, Japan) is useful for detection of 36 mutations in
KRAS exons 3 or 4, NRAS, BRAF and PIK3CA in a single
reaction using 50-ng template DNA from formalin-fixed,
paraffin-embedded (FFPE) specimens [25]. Importantly, the
analysis of 82 samples was fully concordant with conven-
tional direct sequencing. However, information about the
frequencies and clinicopathological features of these muta-
tions in clinical practice, including the relationship between
mutation status and the efficacy of anti-EGFR therapy, es-
pecially among Asian populations, is still limited.
In the present study, we evaluated the frequencies

andclinicopathological features of KRAS, NRAS, BRAF
and PIK3CA mutations in Japanese mCRC patients, and
assessed their corresponding effects on the efficacy of
anti-EGFR therapy.

Methods
Patients
We have conducted a retrospective observational study in
our institution to evaluate the frequencies and clinicopatho-
logical features of KRAS, NRAS, BRAF and PIK3CA muta-
tions in Japanese mCRC patients. Principal inclusion
criteria were as follows: histologically confirmed adenocar-
cinoma of the colon or rectum; and presence of unresect-
able metastatic disease.
Between January 2013 and June 2014, we analyzed 264

patients with mCRC who met the inclusion criteria. The
study was conducted with the approval of the National
Cancer Center Institutional Review Board. Written in-
formed consent was obtained from as many patients as
possible. For the deceased patients and their relatives,
we also disclosed the study design at the website of
National Cancer Center and gave them the opportunity
to express their wills in accordance with the Epidemio-
logical Study Guideline of Ministry of Health, Labour
and Welfare in Japan.

Molecular profiling and data analysis
Genomic DNA was extracted from FFPE cancer speci-
mens (239 primary tumors and 25 metastases). A total
of 36 mutations were analyzed using Luminex (xMAP)
technology (GENOSEARCH Mu-PACK, MBL), includ-
ing: KRAS codon 61 (Q61K, Q61E, Q61L, Q61P, Q61R
and Q61H); KRAS codon 146 (A146T, A146S, A146P,
A146E, A146V and A146G); NRAS codon 12 (G12S,
G12C, G12R, G12D, G12V and G12A), codon 13 (G13S,
G13C, G13R, G13D, G13V and G13A); codon 61 (Q61K,
Q61E, Q61L, Q61P, Q61R and Q61H); BRAF codon 600
(V600E); PIK3CA exon 9 codon 542 (E542K); codon 545
(E545K); codon 546 (E546K); and exon 20 codon 1047
(H1047R, H1047L). The lower limit of the percentage of
mutant allele in the tumor samples accepted by the
study was 5%. Initially, 50-ng samples of template DNA
were collected from FFPE tissue samples and were amp-
lified using polymerase chain reactions (PCRs) with a
biotin-labeled primer. Subsequently, PCR products and
fluorescent Luminex beads were bound to oligonucleo-
tide probes that were complementary to wild-type and
mutant genes, and were hybridized and labeled with
streptavidin–phycoerythrin. Subsequently, the products
were processed according to Luminex assays and data
were analyzed using UniMAG software (MBL). The
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procedure took ~4.5 h. The status of KRAS exon 2 (co-
dons 12 and 13) was evaluated by amplification using a
refractory mutation system–Scorpion assay with 1% sen-
sitivity in a central vendor laboratory.
Patient characteristics, including age, sex, site of primary

lesion, histology, site of metastases, and treatment results,
were collected from medical records. Sites of primary le-
sions were divided into right colon, left colon, and rectum.
Right-sided tumors were defined as those arising anywhere
from the cecum to the transverse colon, and left-sided tu-
mors as those arising anywhere from the splenic flexure to
the rectosigmoid junction. The efficacy of anti-EGFR ther-
apy was evaluated according to gene status in patients who
met the following inclusion criteria: Eastern Cooperative
Oncology Group performance status (ECOG PS) score ≤ 2,
KRAS exon 2 wild type, at least one prior chemotherapy
regimen, treatment with anti-EGFR either as monotherapy
or in combination with irinotecan or FOLFIRI (5-FU, L-
leucovorin and irinotecan), baseline computed tomography
(CT) performed within 28 days of anti-EGFR therapy, initial
evaluation of treatment effect via CT scan within 3 months
of initial anti-EGFR therapy and adequate hematological,
hepatic and renal function.

Statistical methods
Gene mutation frequencies and associations of RAS or
BRAF mutations with clinicopathological features were
estimated in mCRC patients.
Response rate (RR) and disease control rate (DCR; in-

cluding complete or partial response and stable disease)
were evaluated for anti-EGFR therapy according to the Re-
sponse Evaluation Criteria in Solid Tumors (RECIST; ver-
sion 1.1). Progression-free survival (PFS) was defined as
the time from initial administration of anti-EGFR regimens
until the first objective evidence of disease progression or
Table 1 Patient characteristics and clinicopathological feature

Characteristics All patients All RAS

(n = 264, %) (n = 15

Age Median (range) 64 (32–86) 64 (32–

Gender Male 166 (62.9) 94 (61.4

Primary lesion Right-sided colon 53 (20.1) 29 (19.0

Left-sided colon 70 (26.5) 50 (32.7

Rectum 141 (53.4) 74 (48.3

Histology Well, mod 240 (90.9) 133 (86

Por, muc 24 (9.1) 20 (13.1

Site of metastasis Liver 137 (51.2) 73 (47.7

Lung 100 (37.9) 55 (35.9

Lymph node 150 (56.8) 87 (56.9

Peritoneum 52 (19.7) 33 (21.6

*Kruskal–Wallis test; **χ2 or Fisher exact test. aany mutations in KRAS codons 61 or
mucinous carcinoma; por: poorly differentiated adenocarcinoma; well: well-different
death from any cause. Overall survival (OS) was defined as
the time from initial administration of anti-EGFR regimens
until death from any cause. For PFS or OS, patients were
censored at the time of their last follow-up if they were free
of disease progression or alive, respectively. PFS and OS
rates were estimated using the Kaplan–Meier method, and
differences among the groups according to KRAS, NRAS,
BRAF and PIK3CA gene status were identified by univari-
ate and multivariate analyses using Cox proportional haz-
ards models and presented as hazard ratios (HRs) with
95% confidence intervals (CIs). Confounders in univariate
and multivariate analyses included ECOG PS (0 vs. 1 and
2), numbers of metastatic sites (1 vs. ≥ 2), treatment line of
anti-EGFR regimens (2nd vs. 3rd) and types of anti-EGFR
regimens (monotherapy vs. combination therapy).
The χ2 test, Fisher’s exact test, Mann–Whitney U test,

or Kruskal–Wallis test was used to compare patient
characteristics and treatment response, as appropriate.
Statistical analyses were performed using IBM SPSS Sta-
tistics version 21 (IBM Corporation, Armonk, NY, USA).
All tests were two-sided, and differences were consid-
ered significant when P was < 0.05.

Results
Frequencies of KRAS, NRAS, BRAF and PIK3CA mutations
in mCRC patients
Patient characteristics and frequencies of gene mutations
in 264 patients are shown in Tables 1 and 2, respectively.
One hundred and thirty-three patients (50.1%) had tumors
with no mutation (all wild type). Mutations in KRAS co-
dons 12 or 13, KRAS codons 61 or 146 and NRAS codons
12, 13, or 61 were detected in 90 (34.1%), 10 (3.8%) and 11
(4.2%) patients, respectively. Fourteen (5.4%) patients had
BRAF codon 600 mutations, and 17 (6.4%) had PIK3CA
mutations (13 in exon 9 and 4 in exon 20). The genotypes
s according to RAS mutations

WT KRAS exon2 MT Any other RAS MTa P value

3, %) (n = 90, %) (n = 21, %)

82) 64 (38–82) 68 (48–86) 0.32*

) 56 (62.2) 16 (76.2) 0.41**

) 21 (23.3) 3 (14.3) 0.08**

) 15 (16.7) 5 (23.8)

) 54 (60.0) 13 (61.9)

.9) 88 (97.8) 19 (90.5) 0.17**

) 2 (2.2) 2 (9.5)

) 49 (54.4) 15 (71.4) 0.10**

) 40 (44.4) 5 (23.8) 0.16**

) 49 (54.4) 14 (66.7) 0.59**

) 15 (16.7) 4 (19.0) 0.64**

146 or NRAS. mod: moderately differentiated; MT: mutation type; muc:
iated adenocarcinoma; WT: wild type.



Table 2 Mutation rates of each gene in 264 mCRC
patients

Gene Wild type Mutation type Mutation
rate (%)

KRAS codon 12,13 174 90 34.1

KRAS codon 61, 146 254 10 3.8

NRAS codon 12, 13, 61 253 11 4.2

BRAF codon 600 250 14 5.4

PIK3CA exon 9, 20 247 17 6.4
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of all samples using HGVS nomenclature are shown in
Additional file 1. All mutations were mutually exclusive ex-
cept for those in PIK3CA, and 21 (12.1%) patients without
KRAS mutations in exon 2 had other RAS mutations in ei-
ther KRAS exons 3 or 4 or NRAS exons 2 or 3 (Figure 1).

Association of RAS and BRAF mutations with
clinicopathological features
We analyzed the correlation between RAS or BRAF geno-
types and the clinicopathological features of mCRC. Pri-
mary rectal tumor tended to be more frequently observed
in KRAS exon 2 and other RAS mutant tumors than in
RAS wild-type tumors (60.0 vs. 61.9 vs. 48.3%, P = 0.08)
(Table 1), although this was not statistically significant.
BRAF mutant tumors were more likely to develop in the
right colon (57.1 vs. 18.0%, P = 0.001), and to have poorly
differentiated or mucinous adenocarcinoma (42.9 vs. 7.2%,
P = 0.001), and peritoneal metastasis (50.0 vs. 18.0%, P =
0.009) in comparison with BRAF wild-type tumors
(Table 3).

Efficacy of anti-EGFR therapies according to gene status
Patient characteristics
Between January 2013 and June 2014, 66 patients who
met the inclusion criteria were treated with second- and
Figure 1 Associations between KRAS, NRAS, BRAF and PIK3CA mutations. Al
and NRAS were mutually exclusive. Mutations in PIK3CA exons 9 and 20 ove
third-line regimens containing anti-EGFR agents. Fifty-six
patients had tumors with no mutations (all wild-type tu-
mors) and 10 had tumors with mutation in either KRAS
codons 61 or 146, NRAS, BRAF, or PIK3CA (any of the
mutations). Among the 10 patients with any of the muta-
tions, three had KRAS codon 146 mutations, two had
NRAS mutations, two had BRAF mutations, two had
PIK3CA mutations (1 in exon 9 and 1 in exon 20), and
one had BRAF and PIK3CA exon 9 mutations (Table 4).
Patients with any of the mutations were more likely

to have worse PS and to be treated with anti-EGFR
monotherapy than combination in comparison with all
wild-type tumors. No other significant difference was
seen between the two groups (Table 4).

Response to treatment
Among patients with all wild-type tumors (n = 56),
complete response, partial response, stable disease and
progressive disease were observed in 0 (0%), 15 (26.8%),
29 (51.8%) and 12 (21.4%) patients, respectively. In con-
trast, among patients with any of the mutations (n = 10),
complete response, partial response, stable disease and
disease progression were observed in 0 (0%), 0 (0%), 5
(50.0%) and 5 (50.0%) patients, respectively. Thus, RR of
patients with all wild-type tumors (n = 56) and those
with any of the mutations (n = 10) were 26.8% and 0%
(P = 0.101), respectively. Although DCR did not differ
significantly between the two groups (78.6 vs. 50.0%, P =
0.109), DCR with complete or partial response and
stable disease after > 3 months was significantly better in
patients with all wild-type tumors than in those with any
of the mutations (76.8 vs. 10%, P = 0.019).
Among the 10 patients with mutations, three were

treated with second-line anti-EGFR-containing regimens
and seven were treated with third-line regimens. All three
patients treated with second-line anti-EGFR therapy were
l mutations in KRAS codons 12 and 13, KRAS codons 61 and 146, BRAF
rlapped with those in KRAS codons 12 and 13 and BRAF.



Table 3 Clinicopathological features according to BRAF mutations

Characteristics BRAF WT BRAF MT P value

(n = 250, %) (n = 14, %)

Age Median (range) 64 (32-86) 64 (46-75) 0.53*

Gender Male 160 (64.0) 6 (42.9) 0.15**

Primary lesion Right-sided colon 45 (18.0) 8 (57.1) 0.001**

Left-sided colon 67 (26.8) 3 (21.4)

Rectum 138 (55.2) 3 (21.4)

Histology Well, mod 232 (92.8) 8 (57.1) 0.001**

Por, muc 18 (7.2) 6 (42.9)

Site of metastasis Liver 131 (52.4) 6 (42.9) 0.58**

Lung 97 (38.8) 3 (21.4) 0.26**

Lymph node 143 (57.2) 7 (50.0) 0.59**

Peritoneum 45 (18.0) 7 (50.0) 0.009

*Mann–Whitney U test; **χ2 or Fisher exact test.
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irinotecan-naïve and had stable disease. Among these, one
was treated with irinotecan plus panitumumab and
showed stable disease after > 3 months. In contrast, all
seven patients treated with third-line anti-EGFR therapy
were irinotecan refractory and only two had stable disease
at < 3 months.

Survival analysis
The median PFS of patients with any of the mutations
(n = 10; 2.2 months; 95% CI, 1.9–2.5 months) was
Table 4 Characteristics of patients who received anti-EGFR th

Characteristics

Age Median (range)

ECOG PS 0

1–2

Primary lesion Colon

Rectum

Histology Well, mod

Por, muc

Number of metastasis 1

>2

Treatment line of anti-EGFR mab 2nd line

3rd line

Treatment Combination therapy

Monotherapy

Gene mutation KRAS codon 61, 146

NRAS codon12, 13, 61

PIK3CA exon 9, 20

BRAF codon 600

*Mann–Whitney U test; **χ2 or Fisher exact test. aWild type KRAS codons 61, 146, NR
PIK3CA. mab: monoclonal antibody.
significantly shorter than that of patients with all wild-type
tumors (n = 56; 5.8 months; 95% CI, 4.8–6.7 months),
as verified in both univariate (HR 3.38; 95% CI, 1.65–
6.93; P = 0.001) and multivariate analyses (HR 2.77; 95%
CI, 1.16–6.61; P = 0.021) (Figure 2A, Table 5).
The median OS of patients with any of the mutations

(n = 10; 5.2 months; 95% CI, 3.8–6.6 months) was signifi-
cantly shorter than that of patients with all wild-type tu-
mors (n = 56; 17.7 months; 95% CI, 1.1–34.3 months), as
verified in both univariate (HR 4.94; 95% CI, 2.12–11.5;
erapy

All WTa Any MTb P value

(n = 56, %) (n = 10, %)

64 (34–79) 64 (51–74) 0.629*

38 (67.9) 3 (30.0) 0.034**

18 (32.1) 7 (70.0)

35 (62.5) 5 (50.0) 0.498**

21 (37.5) 5 (50.0)

53 (94.6) 8 (80.0) 0.162**

3 (5.4) 2 (20.0)

14 (25.0) 4 (40.0) 0.442**

42 (75.0) 6 (60.0)

27 (48.2) 3 (30.0) 0.327**

29 (51.8) 7 (70.0)

44 (78.6) 3 (30.0) 0.004**

12 (21.4) 7 (70.0)

- 3

- 2

- 3

- 3

AS, BRAF and PIK3CA; bany mutations in KRAS codons 61 or 146, NRAS, BRAF or



Figure 2 Kaplan–Meier plots of PFS and OS according to KRAS, NRAS, BRAF and PIK3CA gene status. A) The median PFS was 5.8 months (95% CI,
4.8–6.7) among patients with all wild-type tumors (n = 56) and was 2.2 months (1.9–2.5) among those with mutations in KRAS codons 61 or 146,
BRAF, NRAS or PIK3CA (n = 10). Differences in PFS between patients with all wild-type tumors and those with mutations in KRAS codons 61 or 146,
BRAF, NRAS, or PIK3CA were statistically significant (HR, 3.38; 95% CI, 1.65–6.93; P = 0.001). B) The median OS was 17.7 months (95% CI, 1.1–34.3)
among patients with all wild-type tumors (n = 56) and was 5.2 months (3.8–6.6) among those with mutations in KRAS codons 61 or 146, BRAF,
NRAS or PIK3CA (n = 10). Differences in OS values between patients with all wild-type tumors and those with mutations in KRAS codons 61 or 146,
BRAF, NRAS or PIK3CA were statistically significant (HR, 4.94; 95% CI, 2.12–11.5; P < 0.001).
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P < 0.001) and multivariate analyses (HR 3.38; 95% CI,
1.19–9.58; P = 0.022) (Figure 2B, Table 5).

Discussion
We elucidated the prevalence of KRAS, NRAS, BRAF
and PIK3CA mutations in Japanese mCRC patients, and
clarified the relationship between gene status and clini-
copathological features, including the efficacy of anti-
EGFR therapy. To date, clinical evidence about these
mutations in mCRC has been based on clinical studies
in western countries. The present study is believed to be
the first to provide information on frequency and type of
KRAS, NRAS, BRAF and PIK3CA mutations in Japanese
patients with mCRC. In addition, the clinical feasibility
of the present novel multiplex kit was demonstrated.
In our patient cohort, the frequency of patients with

KRAS exon 2 (34.1%) mutant tumors was similar to that
in previous studies [2-4]. A total of 12.1% of patients
without KRAS exon 2 mutations had other RAS mutations,
which was lower than that in recent studies from western
countries, which showed 15–26% of these mutations
[12-18]. Another previous study from Japan showed that
other RAS mutations were detected in seven (12.7%) of 55
samples without KRAS exon 2 mutations with 3–13% sen-
sitivity [26], which was similar to our result. Several possible
explanations for the relatively lower frequency of other RAS
mutations in our study compared with western studies
might be considered. First, there were some differences in
detectable RAS mutations by multiplex kit between our
study and western studies. In our study, we did not analyze
KRAS codons 59 and 117 and NRAS codons 59, 117 and
146, while these codons were analyzed in most western
studies. Although the frequencies of these mutations are
considered to be low, it might be one of the causes of the
lower frequency in our patient cohort. Second, the sensitiv-
ity of RAS mutation analysis may vary among studies. In
the present study, all mutations were detectable with 5–
10% sensitivity. In contrast, Surveyor Scan Kits, BEAMing
technology and pyrosequencing were used in pivotal stud-
ies, and RAS mutations were detected with 1–10% sensitiv-
ity [12-18]. A recent multicenter study in Japan, including
our institution, showed that other RAS mutations were de-
tected in 15% of patients with KRAS exon 2 wild type, using
a newer multiplex kit (MEBGEN RASKET Kit) [27]. This
method detected 48 RAS mutations in exon 2 (codons 12
and 13), exon 3 (codons 59 and 61) and exon 4 (codons
117 and 146), with 1–5% sensitivity in a single reaction
using 50–100-ng DNA from FFPE tissue without manual
dissection. Given these methodological differences, further
studies are required to confirm differences in the preva-
lence of other RAS mutations between Asian and western
populations. In this study, we detected BRAF mutations in
5.4% of patients. The prevalence of BRAF mutation might
be dependent on the patient population studied. mCRC pa-
tients with BRAF mutant tumors have a poor prognosis, so
the prevalence of BRAF mutant populations may decline in



Table 5 Univariate and multivariate analyses of PFS and OS

Variables No mPFS
(months)

Univariate analysis Multivariate analysis mOS
(months)

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Mutation status All WT 56 5.8 reference - reference - 17.7 reference - reference -

Any MT 10 2.2 3.38 (1.65–6.93) 0.001 2.77 (1.16–6.61) 0.021 5.2 4.94 (2.12–11.5) <0.001 3.38 (1.19–9.58) 0.022

ECOG PS 0 41 6.0 reference - reference - 31.3 reference - reference -

1-2 25 3.5 2.82 (1.53–5.20) 0.001 1.80 (0.89–3.64) 0.101 9.7 3.41 (1.52–7.69) 0.003 1.62 (0.59–4.42) 0.346

Number of metastasis 1 18 6.0 reference - reference - 15.4 reference - reference -

>2 48 5.1 1.57 (0.82–3.00) 0.17 1.51 (0.73–3.11) 0.268 16.7 1.70 (0.68–4.29) 0.257 1.60 (0.59–4.30) 0.353

Treatment line of anti-EGFR mab 2nd 30 7.6 reference - reference - 17.7 reference - reference -

3rd 36 4.0 1.85 (1.06–3.25) 0.032 1.52 (0.83–2.79) 0.174 15.9 1.43 (0.66–3.10) 0.367 0.97 (0.41–2.29) 0.940

Combination therapy Yes 47 7.4 reference - reference - 31.3 reference - reference -

No 19 2.6 4.82 (2.49–9.35) <0.001 2.73 (1.28–5.83) 0.009 10.5 3.31 (1.48–7.41) 0.004 2.03 (0.83–4.96) 0.121

mOS, median overall survival; mPFS, median progression-free survival.
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pretreated patients compared with chemonaïve patients.
The prevalence of BRAF mutations in our patient cohort
was similar to that of previous studies of pretreated patients
with mCRC [11,12,19-24].
We also investigated the clinicopathological features of

mCRC patients with respect to RAS and BRAF muta-
tions. Primary rectal tumor tends to be more frequently
observed in KRAS exon 2 and other RAS mutant tumors
rather than RAS wild-type tumors, although this was not
statistically significant. Previous studies showed that
KRAS exon 2 mutation was significantly higher in the
right colon [28,29], in disagreement with our analysis.
No significant differences in other clinicopathological
features such as age, sex, primary lesion, histology, and
site of metastasis were observed between KRAS exon 2
and other RAS mutant tumors, which is similar to previ-
ous studies [30]. Regardless of these clinicopathological
features, it is reported that other gene expression pro-
files based on The Cancer Genome Atlas appear to be
similar in patients with KRAS and NRAS mutant mCRC,
suggesting that treatment selection based on molecular
profile is important [30]. In accordance with previous re-
ports [23,24], BRAF mutant tumors are more likely to
develop in the right colon, and to have poorly differenti-
ated or mucinous adenocarcinoma, and peritoneal me-
tastasis in comparison with BRAF wild-type tumors.
In agreement with previous studies [19,25], mutations in

KRAS exons 3 or 4, NRAS, BRAF or PIK3CA were not as-
sociated with clinical benefits from anti-EGFR therapy in
the present cohort. On the basis of recent prospective and
retrospective randomized trials of anti-EGFR therapy
[12-18], the National Comprehensive Cancer Network
(NCCN) recommends anti-EGFR therapy for mCRC pa-
tients without other RAS mutant tumors or KRAS exon 2
mutant tumors [31]. The Japanese Society of Medical
Oncology (JSMO) also recommends testing for all RAS
mutations in patients with mCRC before anti-EGFR ther-
apy. In contrast, whether BRAF and PIK3CA mutations are
predictive of the efficacy of anti-EGFR therapy remains
controversial [19-22]. Previous trials suggest that intensive
combination chemotherapy with FOLFOXIRI (5-FU, L-
leucovorin, irinotecan, and oxaliplatin) and bevacizumab
might be especially effective for BRAF mutant mCRC [32].
Recently, the combination of BRAF inhibitors and anti-
EGFR monoclonal antibodies, with or without PI3K inhibi-
tors or MEK inhibitors, has shown promising results in
phase I trials in patients with BRAF mutant CRC [33,34].
Patients with BRAF mutant CRC are often refractory to
systematic chemotherapy and have poor prognosis, there-
fore, screening for BRAF mutations is important during
recruitment of patients for these clinical trials. Accordingly,
we conducted a multi-institutional screening (GI-SCREEN)
study using the present multiplex kit to elucidate the na-
tionwide prevalence of these targetable mutations.
There were several methodological limitations to the
present study. First, not all of the patients in our study
period were evaluated for their RAS gene status. Thus,
the analysis may have been subject to some selection
bias. Second, the small sample size and single-center
population were other major limitations. Owing to the
overall small number of patients with KRAS exon 3 or 4,
NRAS, BRAF or PIK3CA mutations, we could not evalu-
ate the impact of each gene mutation on the efficacy of
anti-EGFR therapy. In addition, our analyses were ex-
plorative and hypothesis generating. This issue should
be analyzed in a larger cohort.

Conclusions
Other RAS and BRAF mutations have been observed in
KRAS exon 2 wild-type tumors, which were associated
with some clinicopathological features and resistance to
anti-EGFR therapy in our patient cohort. Importantly,
because there are a certain number of mCRC patients
with molecular alteration other than KRAS exon 2, further
refinement of tumor-specific genetic markers is needed to
improve the efficacy of anti-EGFR therapy.

Additional file

Additional file 1: The genotypes of all samples using HGVS
nomenclature.

Abbreviations
CI: Confidence interval; CT: Computed tomography; DCR: Disease control
rate; EGFR: Epidermal growth factor receptor; FFPE: Formalin-fixed, paraffin-
embedded; mCRC: Metastatic colorectal cancer; OS: Overall survival;
PCR: Polymerase chain reaction; PFS: Progression-free survival; RR: Response rate.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KS and TY (Yoshino) conceived the study design. AK carried out the majority
of molecular genetic studies and analyses of the clinical data. KS, SF, YK, HB,
WO, TK, NF, TD, and TY (Yoshino) provided clinical data and helped collect
tumor tissues. TY (Yamanaka) statistically analyzed the clinical data. AO
coordinated the study and helped to draft the manuscript. All authors have
read and approved the final manuscript.

Acknowledgements
This study was supported by a research funding from National Cancer
Center Hospital East.

Author details
1Department of Gastroenterology and Gastrointestinal Oncology, National
Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577,
Japan. 2Exploratory Oncology Research & Clinical Trial Center, National
Cancer Center, Chiba, Japan. 3Department of Biostatistics, Yokohama City
University, Kanagawa, Japan.

Received: 29 September 2014 Accepted: 26 March 2015

References
1. International Agency for Research on Cancer. GLOBOCAN 2012.

http://www-dep.iarc.fr/CancerMondial.htm. Accessed on 29/08/2014.

http://www.biomedcentral.com/content/supplementary/s12885-015-1276-z-s1.xlsx
http://www-dep.iarc.fr/CancerMondial.htm


Kawazoe et al. BMC Cancer  (2015) 15:258 Page 9 of 9
2. Andreyev HJ, Norman AR, Cunningham D, Oates JR, Clarke PA. Kirsten ras
mutations in patients with colorectal cancer: the multicentre “RASCAL”
study. J Natl Cancer Inst. 1998;90:675–84.

3. Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A, et al.
COSMIC 2005. Br J Cancer. 2006;94:318–22.

4. Scheffzek K, Ahmadian MR, Kabsch W, Wiesmüller L, Lautwein A, Schmitz F,
et al. The Ras-RasGAP complex: structural basis for GTPase activation and its
loss in oncogenic Ras mutants. Science. 1997;277:333–8.

5. Trahey M, McCormick F. A cytoplasmic protein stimulates normal NRAS p21
GTPase, but does not affect oncogenic mutants. Science. 1987;238:542–5.

6. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al.
Wild-type KRAS is required for panitumumab efficacy in patients with
metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

7. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC,
et al. K-ras mutations and benefit from cetuximab in advanced colorectal
cancer. N Engl J Med. 2008;359:1757–65.

8. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A,
et al. Cetuximab and chemotherapy as initial treatment for metastatic
colorectal cancer. N Engl J Med. 2009;360:1408–17.

9. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al.
Randomized, phase III trial of panitumumab with infusional fluorouracil,
leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line
treatment in patients with previously untreated metastatic colorectal cancer:
the PRIME study. J Clin Oncol. 2010;28:4697–705.

10. Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y, et al.
Randomized phase III study of panitumumab with fluorouracil, leucovorin,
and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line
treatment in patients with metastatic colorectal cancer. J Clin Oncol.
2010;28:4706–13.

11. Vaughn CP, Zobell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of
KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes
Cancer. 2011;50:307–12.

12. Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al.
Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer.
N Engl J Med. 2013;369:1023–34.

13. Peeters M, Oliner KS, Price TJ, Cervantes A, Sobrero AF, Ducreux M, et al.
Analysis of KRAS/NRAS mutations in phase 3 study 20050181 of
panitumumab (pmab) plus FOLFIRI versus FOLFIRI for second-line treatment (tx)
of metastatic colorectal cancer (mCRC). J Clin Oncol. 2014;32 suppl 3:bstr LBA387.

14. Patterson SD, Peeters M, Siena S, Van Cutsem E, Humblet Y, Van Laethem J-L,
et al. Comprehensive analysis of KRAS and NRAS mutations as predictive
biomarkers for single agent panitumumab (pmab) response in a randomized,
phase 3 metastatic colorectal cancer (mCRC) study (20020408). J Clin Oncol.
2013;31(suppl):abstr 3617.

15. Tejpar S, Lenz HJ, Köhne CH, Heinemann V, Ciardiello F, Esser R, et al. Effect
of KRAS and NRAS mutations on treatment outcomes in patients with metastatic
colorectal cancer (mCRC) treated first-line with cetuximab plus FOLFOX4: New
results from the OPUS study. J Clin Oncol. 2014;32 suppl 3:abstr LBA444.

16. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U,
Al-Batran SE, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab
as first-line treatment for patients with metastatic colorectal cancer (FIRE-3):
a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–75.

17. Schwartzberg LS, Rivera F, Karthaus M, Fasola G, Canon JL, Hecht JR, et al.
PEAK: a randomized, multicentre phase II study of panitumumab plus
modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or
bevacizumab plus mFOLFOX6 in patients with previously untreated,
unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin
Oncol. 2014;32:2240–7.

18. Ciardiello F, Lenz H-F, Kohne C-H, Heinemann V, Tejpar S, Melezinek I, et al.
Treatment outcome according to tumour RAS mutation status in CRYSTAL
study patients with metastatic colorectal cancer (mCRC) randomized to
FOLFIRI with/without cetuximab. J Clin Oncol. 2014;32:5s. suppl; abstr 3506.

19. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G,
et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of
cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal
cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–62.

20. Van Cutsem E, Köhne CH, Láng I, Folprecht G, Nowacki MP, Cascinu S, et al.
Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line
treatment for metastatic colorectal cancer: updated analysis of overall
survival according to tumour KRAS and BRAF mutation status. J Clin
Oncol. 2011;29:2011–9.
21. Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S,
et al. PIK3CA mutations in colorectal cancer are associated with clinical
resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69:1851–7.

22. Karapetis CS, Jonker D, Daneshmand M, Hanson JE, O’Callaghan CJ,
Marginean C, et al. PIK3CA, BRAF, and PTEN status and benefit from
cetuximab in the treatment of advanced colorectal cancer–results from
NCIC CTG/AGITG CO.17. Clin Cancer Res. 2014;20:744–53.

23. Yokota T, Ura T, Shibata N, Takahari D, Shitara K, Nomura M, et al. BRAF
mutation is a powerful prognostic factor in advanced and recurrent
colorectal cancer. Br J Cancer. 2011;104:856–62.

24. Zlobec I, Bihl MP, Schwarb H, Terracciano L, Lugli A. Clinicopathological and
protein characterization of BRAF- and K-RAS-mutated colorectal cancer and
implications for prognosis. Int J Cancer. 2010;127:367–80.

25. Bando H, Yoshino T, Shinozaki E, Nishina T, Yamazaki K, Yamaguchi K, et al.
Simultaneous identification of 36 mutations in KRAS codons 61and 146,
BRAF, NRAS, and PIK3CA in a single reaction by multiplex assay kit. BMC
Cancer. 2013;13:405.

26. Ishige T, Itoga S, Sato K, Kitamura K, Nishimura M, Sawai S, et al. High-
throughput screening of extended RAS mutations based on high-resolution
melting analysis for prediction of anti-EGFR treatment efficacy in colorectal
carcinoma. Clin Biochem. 2014;47:340–3.

27. Kudo T, Satoh T, Muro K, Taniguchi H, Nishina T, Kajiwara T, et al. Clinical
validation of a novel multiplex kit for all RAS mutations in colorectal cancer:
Results of RASKET (RAS KEY Testing) prospective multicentre study. Ann Oncol.
2014;25 Suppl 2:ii14–104.

28. Barault L, Veyrie N, Jooste V, Lecorre D, Chapusot C, Ferraz JM, et al.
Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signal-
ing network correlate with poor survival in a population-based series of
colon cancers. Int J Cancer. 2008;122:2255–9.

29. Watanabe T, Yoshino T, Uetake H, Yamazaki K, Ishiguro M, Kurokawa T, et al.
KRAS mutational status in Japanese patients with colorectal cancer: results from a
nationwide, multicentre, cross-sectional study. Jpn J Clin Oncol. 2013;43:706–12.

30. Morris VK, San Lucas FA, Overman MJ, Eng C, Morelli MP, Jiang ZQ, et al.
Clinicopathologic characteristics and gene expression analyses of non-KRAS
12/13, RAS-mutated metastatic colorectal cancer. Ann Oncol. 2014;25:2008–14.

31. NCCN Clinical Practice Guidelines in Oncology_Colon Cancer, Rectal Cancer
Version 1.2015. http://www.nccn.org/professionals/physician_gls/pdf/colon.
pdf. Accessed on 29/08/2014.

32. Loupakis F, Cremolini C, Salvatore L, Masi G, Sensi E, Schirripa M, et al.
FOLFOXIRI plus bevacizumab as first-line treatment in BRAF mutant metastatic
colorectal cancer. Eur J Cancer. 2014;50:57–63.

33. Van Geel R, Elez E, Bendell JC, Faris JE, Lolkema MPJK, Eskens F, et al. Phase I
study of the selective BRAFV600 inhibitor encorafenib (LGX818) combined
with cetuximab and with or without the α-specific PI3K inhibitor BYL719 in
patients with advanced BRAF-mutant colorectal cancer. J Clin Oncol.
2014;32:5s. suppl; abstr 3514.

34. Bendell JC, Atreya CE, André T, Tabernero J, Gordon MS, Bernards R, et al.
Efficacy and tolerability in an open-label phase I/II study of MEK inhibitor
trametinib (T), BRAF inhibitor dabrafenib (D), and anti-EGFR antibody
panitumumab (P) in combination in patients (pts) with BRAF V600E mutated
colorectal cancer (CRC). J Clin Oncol. 2014;32:5s. suppl; abstr 3515.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.nccn.org/professionals/physician_gls/pdf/colon.pdf
http://www.nccn.org/professionals/physician_gls/pdf/colon.pdf

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Patients
	Molecular profiling and data analysis
	Statistical methods

	Results
	Frequencies of KRAS, NRAS, BRAF and PIK3CA mutations in mCRC patients
	Association of RAS and BRAF mutations with clinicopathological features
	Efficacy of anti-EGFR therapies according to gene status
	Patient characteristics
	Response to treatment
	Survival analysis


	Discussion
	Conclusions
	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

