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Abstract

Background: Histologically similar tumors even from the same anatomical position may still show high variability at
molecular level hindering analysis of genome-wide data. Leveling the analysis to a gene regulatory network instead of
focusing on single genes has been suggested to overcome the heterogeneity issue although the majority of the
network methods require large datasets. Network methods that are able to function at a single sample level are
needed to overcome the heterogeneity and sample size issues.

Methods: We present a novel network method, Differentially Expressed Regulation Analysis (DERA) that integrates
expression data to biological network information at a single sample level. The sample-specific networks are
subsequently used to discover samples with similar molecular functions by identification of regulations that are
shared between samples or are specific for a subgroup.

Results: We applied DERA to identify key regulations in triple negative breast cancer (TNBC), which is characterized
by lack of estrogen receptor, progesterone receptor and HER2 expression and has poorer prognosis than the other
breast cancer subtypes. DERA identified 110 core regulations consisting of 28 disconnected subnetworks for TNBC.
These subnetworks are related to oncogenic activity, proliferation, cancer survival, invasiveness and metastasis. Our
analysis further revealed 31 regulations specific for TNBC as compared to the other breast cancer subtypes and thus
form a basis for understanding TNBC. We also applied DERA to high-grade serous ovarian cancer (HGS-OvCa) data and
identified several common regulations between HGS-OvCa and TNBC. The performance of DERA was compared to
two pathway analysis methods GSEA and SPIA and our results shows better reproducibility and higher sensitivity in a
small sample set.

Conclusions: We present a novel method called DERA to identify subnetworks that are similarly active for a group of
samples. DERA was applied to breast cancer and ovarian cancer data showing our method is able to identify reliable
and potentially important regulations with high reproducibility. R package is available at http://csbi.ltdk.helsinki.fi/
pub/czliu/DERA/.
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Background
Novel measurement technologies, such as microarrays
and deep sequencing, provide quantitative genome-scale
data from diseases, such as cancers, in an unprecedented
resolution and speed. Computational methods to analyze
and interpret large-scale biological data have become an
integral part of medical research to gain knowledge that
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leads to personalized disease prevention, prognosis and
treatment.
Particularly in cancers, genome-scale studies have

revealed large molecular heterogeneity between patients
and even different samples from the very same tumor
[1]. Although protein expression markers have been used
many years in clinics, for example in breast cancer, to clas-
sify tumors into main subtypes to guide selection of first
line drug treatment, genome wide data have significantly
facilitated more detailed subtyping and and identification
of associated pathways and subsequently novel drug tar-
gets. In breast cancer, luminal type is characterized by
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high expression of estrogen receptor (ER) and/or pro-
gesterone receptor (PR), basal type by low expression of
ER, PR and human epidermal growth factor receptor 2
(HER2), and high expression of basal epithelial genes [2],
and triple negative (TNBC) type by low expression of all
three, ER, PR and HER2 [3].
The breast cancer subtypes have different standard

drug treatments based on marker protein expression:
HER2 breast cancers are treated with HER2 inhibitors,
such as trastuzumab, whereas luminal breast cancers
are treated with adjuvant endocrine therapy, such as
aromatase inhibitors. TNBC has contrasting features as
there is no beneficial standard therapy for majority of
patients, probably reflecting the heterogeneity of this
subtype [3].
To gain a more comprehensive view to fundamental

molecular level processes altered in cancer and sug-
gest effective treatment options, several network level
approaches have been suggested [4-7], such as ScorePAGE
[8], SPIA [9] and DEAP [10]. These methods are based
on integration of pathway topology with gene expres-
sion measurement to assign a statistical significance
value to predefined pathways. Pathway topology-based
approaches have been reported [6,10] to perform bet-
ter than generic gene set analysis tools, such as Gene
Set Enrichment Analysis (GSEA) [11]. Still, there are sev-
eral limitations that need to be rectified. Firstly, most
of pathway analysis methods integrate gene expression
information separately for each individual canonical path-
way. In reality, biological pathways are interconnected
and form complex networks with shared node molecules.
Thus, studying isolated pathways may lead to significantly
biased results and loss of information [12]. Secondly, it is
possible that only a part of a pathway is contributing to
cancer progression and thus the influence of such sub-
network is challenging to identify using whole-pathway
focused algorithms.
To address these two challenges, we present a novel

approach called Differentially Expressed Regulation Anal-
ysis (DERA). DERA elevates the analysis of expression
data to a network level instead of focusing on single genes.
DERA integrates expression data with biological network
instead of individual canonical pathways and identifies
subnetworks that are similar active for a group of sam-
ples. These advantages of DERA are particularly useful
to identify subnetworks across interconnected pathways.
DERA is suitable to analyze data from small or medium
size cohorts, which are challenging to analyze with sta-
tistical methods. To show the utility of our approach we
applied DERA to TNBC [13,14] and high-grade serous
ovarian cancer (HGS-OvCa) [15] datasets. We also com-
pared DERA with GSEA and SPIA, which are commonly
used pathway analysis methods. Our results show that
DERA is able to identify biological insights specific for

TNBC and HGS-OvCa. DERA shows better reproducibil-
ity and higher sensitivity in a small sample set compared
with GSEA and SPIA.

Methods
A schematic illustration of the DERA approach is shown
in Figure 1. Briefly, by overlaying the expression data
with the biological networks that are extracted from pub-
lic databases, DERA generates sample-specific regulation
networks for each individual patient, which further serve
to identify the core regulations associated with pheno-
types (e.g., cancer). DERA requires two types of input
data: expression data (e.g., gene or protein expression
data) and phenotypic information (e.g., group or sub-
type information). While DERA is able to integrate gene
regulation or protein-protein-interaction networks with
proper high-throughput molecular measurements, in our
case study, we focus here on integrating gene expression
data with gene regulation network.

Public databases
To construct sample-specific networks we take advan-
tage of publicly available databases: Pathway Commons
[16], WikiPathways [17] and PINA [18]. To systematically
use these sources (step 1 Figure 1), we use Moksiskaan
database, which allows making networks based on gene
lists [19]. Moksiskaan provides many useful application
programming interfaces (APIs) to integrate information
of connectivity between genes, proteins, pathways, drugs
and other biological entities in the Anduril framework
[20]. Pairwise connections between biological entities,
instead of canonical pathways, can be exported from
Moksiskaan. This allows accommodation of cross-talk
between the canonical pathways and identification of even
small regulations crossing the different pathways.

Sample-specific differentially expressed genes
We analyzed level 1 Agilent two-color gene-expression
microarray data for 522 primary breast tumors and
59 controls from The Cancer Genome Atlas (TCGA)
repository [13] as discovery dataset (TCGA_Array), and
Affymetrix Human Genome U133 Plus 2.0 Array for 43
primary breast tumors and 7 controls from GEO [21]
(accession number GSE7904 [14]) for the validation. For
the further validation, we analyzed level 3 RNA-Seq data
(TCGA_Seq) for 459 primary breast tumors and 55 con-
trols from TCGA which did not overlap with microarray
dataset.
We also analyzed level 1 Agilent two-color gene-

expression microarray data for 572 primary ovarian can-
cers and 8 controls from TCGA. Out of 572 primary
ovarian cancer, we selected 448 high-grade serous ovarian
cancer (HGS-OvCa) according to Federation of Gynecol-
ogy and Obstetrics standards.
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Figure 1 Schematic workflow of DERA. Briefly, the main steps in DERA: 1) Extraction of the prior biological network from public database. 2)
Analysis of transcriptomics data separately for each sample to build a gene activity indicator matrix. xij and yik represent expression of gene i in
tumor j and reference sample k. The value n is the number of reference samples. K is the threshold for the fold change. 3) Overcoming the cross-talk
issue between the pathways by using regulatory connections instead of restricting connections within an individual canonical pathway, and 4)
Identification core regulations for a group of samples, which are shared and identical at least in T% of samples. Node size is determined by the
number of connections.
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For TCGA Agilent array breast and ovarian cancer data,
expression intensities for tumors and controls were log2
transformed. This was followed by mean-centering across
genes. We removed probes that a) mapped to multiple
genes or b) did not map to any gene before identifying dif-
ferentially expressed genes. For GEO data, gene level nor-
malization was performed by using Robust Multi-array
Average (RMA) [22].
Differentially expressed genes for each sample are iden-

tified as follows (step 2 Figure 1). Gene expression data
are used to compute the gene-activity indicator matrix in
which each element can take one of three values corre-
sponding to over-expression (indicated as “1”), unchanged
expression (“0”) or under-expression (“-1”) relative to con-
trol level. The relative expression (also called fold change)
of a gene in a particular tumor is computed by sub-
tracting the expression of the gene in the tumor from
the mean expression of the same gene in the reference
sample set. A user-defined cutoff for fold-change serves
to determine the value of the gene-activity indicators,
and here we adopted a frequently used two-fold differ-
ence. Sample-specific differentially expressed genes in a
particular tumor patient are defined by the genes that
are over-expressed or under-expressed. Sample-specific
differentially expressed genes serve to induce the sample-
specific regulation networks for individuals as described
in the next step (step 3 Figure 1).

Sample-specific regulations
The key concept of DERA is the generation of sample-
specific regulation networks reflecting the uniqueness of
individual samples at the network level. DERA is designed
to improve the interpretation power of heterogeneous
samples compared to many commonly used approaches.
Sample-specific regulation networks are generated by
overlaying sample-specific differentially expressed genes
of individual samples and their gene-activity status on top
of the known biological network (step 3 Figure 1). Only
the regulations are selected as sample-specific regulations
only if their associated genes are differentially expressed
and patterns are consistent with their gene-activity status
of the individual sample. For example, given a regula-
tion where gene A activates the expression of gene B,
the regulation is defined as a sample-specific regulation
for the particular sample and is included in the sample-
specific regulation network if both genes A and B are
over-expressed or under-expressed in the particular sam-
ple. If the regulation is a gene inhibition, gene A and B are
expected to have opposite expression patterns.

Identification of core regulations
A core regulation is defined as a regulation network
which is identical within a subgroup of samples and rep-
resents at least T% of the total number of samples (step

4 Figure 1). The empirical study of the influence of T in
TCGA_Array and GEO cohorts illustrates that the num-
ber of regulations decreases dramatically with increasing
T (Additional file 1: Figure S1) as expected. We used
T value of 50, i.e., a differentially expressed regulation
was required to be found and to be identical in at least
50% of the sample-specific regulation networks in order
to be classified as a core regulation. In the validation,
we adopted a slightly low T value of 40% because of a
small in GEO cohort (n=17) and heterogeneous samples
in TNBC [3]. We used the same parameter setting for the
application of HGS-OvCa.

Results and discussion
We have applied DERA into breast cancer and ovarian
cancer data sets. In the breast cancer study, our aim was
to identify regulations that were unique to TNBC in com-
parison to other breast cancer subtypes. The aims of the
ovarian cancer case study were to test robustness of DERA
and compare regulations identified in ovarian cancer to
TNBC as they are recently suggested to share similar
molecular characteristics [13].

A case study: Triple negative breast cancer
characterization with DERA
DERA was applied to breast cancer gene expression data
to characterize gene regulations that occurred uniquely
in TNBC in comparison to other breast cancer subtypes.
We analyzed gene expression and clinical data from 366
treatment-naive breast cancer tumors from TCGA_Array
data that had ER, PR and HER2 status available. From
these samples, 55 samples were categorized as TNBCs
(based on immunohistochemistry of ER, PR and HER2).
Additionally, we used expression data from 59 samples
of normal breast tissue to identify differentially expressed
genes for each individual sample.
For validation of the results emerging from discovery

cohort (TCGA_Array) we used data from two publica-
tions. First, we used data (GEO cohort) from David M.
Livingston and colleagues who published gene expression
cohort for 17 TNBC, 26 non-TNBC and seven normal
breast tissue samples [14]. Second, we used RNA-seq
data (TCGA_Seq cohort) from TCGA, which included 56
TNBCs and 55 normal breast tissue samples that were not
present in the TCGA discovery cohort (TCGA_Array).

Characterization of TNBC
DERA identified 256 core regulations that occurred in
at least half of the TNBC samples in the discovery data
(TCGA_Array). Reproducibility of the results was tested
in two independent cohorts resulting in verification of 110
core regulations (that consisted of 119 genes, Figure 2A)
out of 254 regulations, which were validated in one or
both of the validation cohorts. Out of 110 regulations,
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Figure 2 Core set of regulations and genes for TNBC. A) 110 core regulations that were validated in one or both of the validation cohorts. B) 22
regulations that were validated in both validation cohorts. Red and green represent over-expression and under-expression, respectively.

58 regulations were validated in the GEO cohort, 74 reg-
ulations were validated in the TCGA_Seq cohort, and
22 regulations were validated in both validation cohorts
(Figure 2B, Additional file 1: Figure S2).
We then used DAVID [23] to identify statistically sig-

nificantly enriched pathways for the 22 regulations vali-
dated in both cohorts. Eight pathways were significantly
enriched after multiple hypotheses correction ( q<0.05
[24], Table 1). Cell cycle (p = 2.42 × 10−6) was the most
significantly enriched pathway. This is consistent with
high proliferative nature of TNBC and with previous find-
ings [25,26]. Together, these results demonstrate that our
method is able to significantly improve identification of
relevant pathways and genes by combining data from
multiple cohorts.
The pathway analysis based on 110 core regula-

tions indicates that the pathways are not indepen-
dent but are connected at several levels. For instance,
FOS is present in four different pathways (Myometrial
Relaxation and Contraction Pathways, Oxidative Stress,
Corticotropin-releasing hormone, TGF-β Signaling Path-
way) (Additional file 1: Figure S3). Thus, by focusing just

on individual pathways, the cross-talk effect would have
been undetected.
The 110 core regulations consisted of 28 distinct sub-

networks (Figure 2A). Subnetworks related to candidate
therapeutic genes (BCL2 [27], FOXA1 [28], ERBB4 [29]

Table 1 Functional enrichment analysis of 22 core
regulations of TNBC validated in both cohorts

Pathways Count p-value Benjamini

Cell cycle 9 5.64 × 10−8 2.42 × 10−6

Oocyte meiosis 7 8.76 × 10−6 1.88 × 10−4

Prostate cancer 6 4.80 × 10−5 6.87 × 10−4

Pathways in cancer 9 8.12 × 10−5 8.72 × 10−4

Focal adhesion 6 2.11 × 10−3 1.80 × 10−2

Melanoma 4 4.28 × 10−3 3.03 × 10−2

Progesterone-mediated
oocyte maturation 4 7.31 × 10−3 4.41 × 10−2

Gap junction 4 8.04 × 10−3 4.25 × 10−2

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis was performed for regulations which were validated in both GEO and
TCGA_Seq (adjusted p < 0.05).
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and PGDG [30]) were under-expressed while subnet-
works related to cell cycle genes (E2F1/3, CDC6, CDC20,
CDC25A/B/C and CCNE2) were over-expressed and pro-
motes cell proliferation [31-33]. Another subnetwork con-
taining the transcription factor TFDP1, which activates
CDKN2A, RRM2, CDC6, TK1 and TYMS, implicates
oncogenic activity [34], proliferation [35], and invasive
and metastatic potential of breast cancer [36]. Under-
expression of FOS, EDN1 and/or JUN, that regulate
MMP1, and under-expression of FOSB, that regulates
MMP9, are interesting findings because activation of
MMP1 and MMP9 has been known to be involved in
breast cancer initiation, invasion and metastasis [36,37].
There were 119 differentially expressed genes in TNBC

that contributed to the core regulations. As these 119
genes were identified in TNBC, we hypothesized that
the 119 genes might be able to distinguish the TNBC
cases from the other subtypes. Hierarchical clustering
and heatmap representation for the 119 differentially
expressed genes in the TCGA_Array (n=366), TCGA_Seq
(n=319) and GEO (n=43) cohorts show that these dif-
ferentially expressed genes are associated with TNBC
phenotype and can distinguish TNBC samples from the
other subtypes (Figure 3 and Additional file 1: Figure S4).
In addition to categorizing breast cancer samples into the
subtypes with IHC markers, we used the PAM50 [38]
subtype labels. PAM50 subtype labels indicate that these
119 genes are also associated with basal-like subtype and
can distinguish basal-like samples (Figure 3). The results
show that there are substantial overlaps between TNBC
and basal-like breast cancer and this is consistent with
previous findings [39-41].
There were genes, most notably FOXA1, AR, XBP1,

SPDEF, BCL2, CYP4B1, CAMK2B, MYB, NRIP1, SHC2
and ERBB4, that were uniquely down-regulated in the
TNBC samples while up-regulated in the other subtypes.
For instance, FOXA1 is a key determinant of estro-
gen receptor function [42] and negatively correlates with
tumor size, tumor grade and basal-subtype, and it is an
independent predictor of breast cancer survival [43]. Loss
of FOXA1 expression shifts luminal gene expression sig-
nature to basal-like and increases migration and invasion
of luminal cancer cells [44]. This was consistent with our
observations that FOXA1 was down-regulated in >85%
of TNBC samples while it was up-regulated in 65-93%
of the other subtype samples. Furthermore, FOXA1 was
up-regulated in only 7% of the TNBC samples while
it was down-regulated in 3-17% of the other subtype
samples.

Comparison of TNBC and the other breast cancer subtypes
The prognosis for a patient with TNBC is significantly
worse than a breast cancer patient having the other breast
cancer subtypes [45]. Therefore, we compared the core

regulations and genes in TNBC to those in the other sub-
types with the aim of identifying functional modules that
may convey sensitivity to current breast cancer treatments
and suggest effective therapeutic targets.
We performed identical DERA analysis for Luminal

1 (n=219), Luminal 2 (n=69) and Non-luminal HER2+
(n=23) breast cancer subtypes as for TNBC (n=55) using
the TCGA_Array data. The number of differentially
expressed genes (n=189) composing the core regula-
tions in TNBC was much higher than that in Non-
luminal HER2+ (n=150), Luminal 1 (n=109) and Luminal
2 (n=150), which reflects the fact that in general TNBCs
are more aggressive, larger in size and higher grade than
the other breast cancers [3]. Furthermore, this suggests
that the molecular processes involved in TNBC progres-
sion are more complex than in other subtypes.
There were 256 core regulations in TNBC compared to

122 in Luminal 1, 185 in Luminal 2 and 180 in non-luminal
HER2+, which may at least partly affect the poor response
of TNBC to current therapeutic regimens. We identified
31 TNBC specific regulations consisting of 47 differen-
tially expressed genes (Figure 4A), which were validated at
least in one of TCGA_Seq and GEO cohorts. Five of these
genes were regulated by the transcription factor TFDP1 in
TNBC. TFDP1 related regulations were unique in TNBC.
TFDP1 is frequently amplified and associated with tumor
proliferation and cell cycle progression in breast cancer
[46]. Additionally, strong association between the high
expression of TFDP1 and decreased overall survival has
been observed [47]. Consequently, our results suggest that
the activation of CDKN2A, RRM2, CDC6, TK1 and TYMS
by TFDP1 might be one of the possible reasons for the
aggressiveness of TNBC [34-36].
Many of 31 regulations identified with DERA were

visible in independent cohorts as shown in Figure 4B.
We noticed an up-regulation of CCNE1 by SKP2, which
is oncogenic in breast cancer [48]. High expression
of CCNE1 is independently associated with a short
metastasis-free survival and the worst prognosis has been
found for ER negative tumors which express high CCNE1
[49]. A recent study has showed that inhibition of SKP2
in prostate and lung cancer cells results in significant
reduction of cancer cell proliferation and survival [50].
Our results show that although CCNE1 is up-regulated
in all the subtypes (Figure 4C), the expression differ-
ence is even higher in TNBC than in the other subtypes
in all TCGA_array (Figure 4C), TCGA_Seq and GEO
cohorts (Additional file 1: Figure S5). Similarly, SKP2 had
higher expression in TNBC and non-luminal HER2+ sub-
types compared to the other subtypes in all the cohorts
(Figure 4C, Additional file 1: Figure S5). Thus, our results
suggest that higher proliferation and worse survival in
TNBC might be due to up-regulation of CCNE1 accel-
erated by further activation of its regulator SKP2. Thus,



Liu et al. BMC Cancer  (2015) 15:319 Page 7 of 11

Figure 3 Unsupervised hierarchical clustering of breast cancer. Heatmap shows the relative gene expression compared to the median value of
normal breast tissue samples of 119 differentially expressed genes. In the IHC color bar, breast cancer samples (columns) are grouped into TNBC,
Luminal 1, Luminal 2 and Non-luminal HER2+ based on immunohistochemistry (IHC). In the PAM50 color bar, breast cancer samples are grouped
into Basal-like, HER2-enriched, Luminal A, Luminal B and Normal-like based on gene expression. In the heatmap plot, we used euclidean distance
measurement and Ward agglomeration method, and heatmap was scaled by row.

inhibition of SKP2 should reduce cancer cell proliferation
and survival in TNBC and constitute a promising target
for therapeutic efforts in TNBC. Another DERA identified
connection was the regulation of XBP1 by FOXA1, which
were significantly under-expressed as compared to non-
TNBC subtypes (p-value = 3.2 × 10−16) and highly corre-
lated (Pearson r=0.83, two sided p-value = 2.2 × 10−16).
Importantly, regulation pattern of XBP1 by FOXA1 was
associated with breast cancer survival (log-rank p-value =
0.02) and visible in another cohort (GSE3494) (log-rank
p-value = 2.15 × 10−3) (Figure 4D).

High-grade serous ovarian cancer characterization with
DERA
Ovarian cancer is the fifth leading cause of female cancer
deaths in Europe [51] and more than half of the patients
with high-grade serous ovarian cancer (HGS-OvCa), the
most common ovarian cancer subtype, die within five

years after diagnosis. It has been suggested recently that
HGS-OvCa is molecularly similar to TNBC [13]. Thus,
we applied DERA to expression data from 448 HGS-
OvCa patients available in TCGA [15] to see whether the
similarities can be seen at the network level.
Expression data from 448HGS-OvCa samples were ran-

domly divided into discovery set (n = 202) and validation
set (n = 246), and identical DERA analysis with the TNBC
analysis, i.e., cut-off T was 0.5 for the discovery set and 0.4
for the validation set (detailed description in Methods),
was performed to the HGS-OvCa data.
The DERA analysis identified 95 differentially expressed

regulations that were composed of 101 genes (Additional
file 1: Figure S6). All of these 95 differentially expressed
regulations were validated in the validation set (Additional
file 1: Figure S7). Even using stringent threshold 0.5 for
validation set (default cut-off T was 0.4, i.e., a differen-
tially expressed regulation was required to be found and
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Figure 4 Characteristics of 31 unique regulations in TNBC identified by DERA. A) Differentially expressed regulations specific for TNBC. Green and
red colors indicate under- and over-expression compared to median of normal breast tissues. Direction indicates gene regulation. B) Expression of
TNBC specific regulations in terms of the signed fold-changes for the 31 regulations. Expression of a regulation is represented sum of two genes. C)
Boxplot of log2 gene expression values of CCNE1 and SKP2. TCGA_Array dataset was used to compare expression of CCNE1 and SKP2 in the different
breast cancer subtypes. Grouping into subtypes, including TNBC (n=55), Luminal 1 (n=219), Luminal 2 (n=69) and Non-luminal HER2+ (n=23) is
based on immunohistochemistry (IHC) staining. Two sided t-test was used and significance is noted by *** (P < 1.0 × 10−10). D) Kaplan-Meier
survival plot of FOXA1-XBP1 regulation. Comparing patients with over-expression, neutral expression and under-expression of FOXA1-XBP1
regulation in the TCGA (left) and GSE3494 (right) datasets. Vertical ticks represent censoring events. The X and Y axes represent follow-up time in
days and the percentage of survival, respectively. The associated log-rank p-value is 0.02 in TCGA and 2.15 × 10−3 in GSE3494.
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to be identical in at least 40% of the samples), out of
95, 87 differentially expressed regulations were validated
(Additional file 1: Figure S8). This result demonstrates
that the reproducibility of our method is very high when
the data are measured with the same platform and sample
size is relatively large.
Similarity between HGS-OvCa and TNBC has been

seen at molecular level [13]. Therefore, we asked whether
TNBC and HGS-OvCa share regulations. Interestingly,
our results corroborate similarity between HGS-OvCa
and TNBC also at the gene regulatory network level. Of
the 95 differentially expressed regulations DERA identi-
fied in HGS-OvCa four regulations consisting of eight
genes were also present in the set of 22 regulations (con-
sisting of 30 genes) found to be unique in TNBC by
DERA. Additionally, five genes that were consistently dif-
ferentially expressed in both TNBC and HGS-OvCa, but
their regulations were not validated in either TNBC or
HGS-OvCa (FOXA1, CDC25C, CCNE1, CCNE2, MCM4).
We found that cell cycle related regulation and genes
(PTTG1-CDC20, CCNE1, CCNE2, CDC25C) were up-
regulated and PDGFRA regulation was down-regulated in
both TNBC and HGS-OvCa.
DERA identified a large subnetwork component where

transcription factor FOXM1 activates proliferation related
genes (AURKB, CCNB1/2, CENPA/F, and BIRC5), and
DNA repair gene BRCA2, was up-regulated in the HGS-
OvCa. It has been reported that FOXM1 correlates with
poor patient survival and paclitaxel resistance in ovar-
ian cancer [52]. This result indicates that DERA is able
to identify reliable and potentially medically important
regulations and is comparable with other methods.

Comparison of DERA with GSEA and SPIA
We compared DERA to two existing pathway analysis
methods, GSEA and SPIA. To compare sensitivity in
small sample set, we used a larger dataset TCGA_Array
(n=55) and a small cohort GEO (n=17). In the compar-
ison with GSEA, we created customized gene sets using
pathways from WikiPathways to identify the enriched
pathways. GSEA was applied to both TCGA_Array and
GEO cohorts. There were no pathways which were sig-
nificantly enriched in both cohorts at false discovery rate
(FDR) < 5% (Additional file 1: Table S1). Our results
suggest that the performance of GSEA is highly depen-
dent on the sample size. GSEA resulted in 10 significantly
enriched pathways at FDR < 5% in the TCGA_Array
cohort (Additional file 1: Table S1). However, there were
no pathways identified in the GEO cohort most likely
because of small sample size (Additional file 1: Table S1).
In the comparison with SPIA, four pathways were iden-

tified at FDR < 5% in both TCGA and GEO data (Cell
cycle, Pathways in cancer, Focal adhesion, Melanoma)
(Additional file 1: Table S2). Two pathways, Cell cycle and

Focal Adhesion, were overlapped with the DERA results.
However, several pathways that gave rise to identifying
TNBC specific regulations were not identified by SPIA
and GSEA.

Conclusion
We have presented a novel sample-specific network anal-
ysis approach DERA and shown its utility in identifying
regulations that may be behind aggressiveness and drug
resistance of the TNBC and HGS-OvCa subtypes, which
is rarely curable with the common anti-cancer regimens.
In addition to gene expression data, DERA is applicable to
proteomics data. The input for DERA is sample-specific
quantitative data and phenotype information to group
samples.
The application of DERA to TNBC expression data

shows that it is able to identify important regulations that
are related to breast cancer survival predictors and are
promising therapeutic targets. One of the most promising
observation is the regulation of CCNE1 by SKP2. Inhibi-
tion of SKP2 in the lung and prostate cancer cells has been
shown to significantly reduce cancer cell proliferation and
cancer cell survival [50]. Our result show that SKP2 is
frequently over-expressed in the TNBC and non-luminal
HER2+ subtypes. Thus, based on the DERA analysis it
is suggested that inhibition of SKP2 may improve the
survival of patients with TNBC and non-luminal HER2+
subtypes but probably not with luminal subtypes. Another
regulation identified by DERA is connection between
XBP1 and FOXA1, and over-expression of both XBP1 and
FOXA1 is significantly associated with better survival.
The application of DERA to HGS-OvCa expression data
corroborate the earlier finding that HGS-OvCa shares
similar characteristics to TNBC at themolecular level, and
our results show that the similarity is visible also at the
network level. Application of DERA to TNBC and HGS-
OvCa data shows that our method is able to identify reli-
able and potentially medically important regulations, and
has high reproducibility. In the comparison with SPIA and
GSEA, DERA shows better reproducibility and tolerance
to small sample size.
Taken together, we have integrated high-throughput

biological data to pathway information and used graph
mining [53] to identify core regulations specific to phe-
notype. Our results with breast cancer and ovarian can-
cer data illustrate that DERA is capable of producing
results that give a solid basis for suggesting experimentally
testable hypotheses.
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