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Human pancreatic cancer stem cells are sensitive
to dual inhibition of IGF-IR and ErbB receptors
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Abstract

overcoming the emergence of resistance.

pathways were analyzed by Western blot.

currently known anticancer agents.

Background: Pancreatic ductal adenocarcinoma is a particularly challenging malignancy characterized by poor
responsiveness to conventional chemotherapy. Although this tumor frequently overexpresses or possesses
constitutively activated variants of IGF-IR and EGFR/Her-2, clinical trials using inhibitors of these receptors have
failed. ErbB receptors have been proposed as one mechanism involved in the resistance to IGF-IR inhibitors. There-
fore, combined treatment with inhibitors of both IGF-IR and ErbB receptors would appear to be a good strategy for

Methods: Sensitivity of cells to NVP-AEW541 and lapatinib in single or combination treatment was assessed by MTT
or WST-8 assays in a panel of human pancreatic cancer cell lines and cancer stem cells. Tumorspheres enriched in
cancer stem cells were obtained from cultures growing in non-adherent cell plates. The effects on cell signalling

Results: We found that combined treatment with the IGF-IR and EGFR/Her-2 inhibitors NVP-AEW541 and lapatinib,
respectively, synergistically inhibited pancreatic cancer cell growth. Analysis at molecular level argued in favor of
cross-talk between IGF-IR and ErbBs pathways at IRS-1 level and indicated that the synergistic effect is associated
with the total abolishment of Akt, Erk and IRS-1 phosphorylation. Moreover, these inhibitors acted synergistically in
tumorsphere cultures to eliminate cancer stem cells, in contrast to their resistance to gemcitabine.

Conclusions: Taken together, these data indicate that simultaneous blockade of IGF-IR and EGFR/Her-2 using
NVP-AEW541 and lapatinib may overcome resistance in pancreatic cancer. Thus, the synergy observed with this
combined treatment indicates that it may be possible to maximize patient benefit with the appropriate combination of
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Background

Pancreatic ductal adenocarcinoma (PDAC) is one of the
five most common causes of cancer death, owing to its late
diagnosis, high dissemination at early stages, and poor re-
sponsiveness to both radio- and chemotherapy [1]. Gemci-
tabine remains the current standard first-line treatment
[2]. However, chemotherapy in advanced disease confers
only modest survival advantage and symptoms palliation.
Recent clinical trials of gemcitabine combination therapies
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have produced significant, but low, response rates in ad-
vanced pancreatic cancer, underscoring the need for new
therapeutic approaches [3-5].

An important consideration in these strategies is the
heterogeneity of pancreatic tumors. In this context, sev-
eral studies investigating pancreatic cancer biology have
identified a subpopulation of cells termed pancreatic
cancer stem cells (PCSCs) [6-8]. This subpopulation may
play a critical role in the resistance to chemotherapy and
radiation, suggesting that such cells may be the source
of some cases of pancreatic cancer relapse [9,10]. There-
fore, therapeutic modalities that lead to the elimination
of CSCs could improve clinical outcome in patients with
pancreatic cancer.
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Receptor tyrosine kinases are currently among the
most promising therapeutic targets in a wide range of
tumors. Inhibition of receptor tyrosine kinases of the
ErbB family has been approved for the treatment of differ-
ent tumors and is used extensively to treat breast cancer
[11]. There has also been growing research interest in
insulin-like growth factor-1 receptor (IGF-IR) as a target
for antitumor therapy [12-14], given the demonstrated abil-
ity of IGF-IR to potently contribute to a variety of onco-
genic effects, including cell proliferation, cell survival, and
cell differentiation [15-17]. IGF-IR is frequently overex-
pressed or activated in pancreatic cancer, a factor that most
likely contributes to the aggressive growth characteristics
and poor prognosis of these tumors [18-20]. Moreover,
molecular mechanisms that lead to autocrine activation of
the IGF-IR and stimulation of downstream signaling
through phosphorylation (activation) of Akt have been
identified and could further substantially contribute to
tumor progression and invasion [21,22].

On the basis of these findings, IGF-IR has come to be
viewed as a rational therapeutic target in pancreatic can-
cer, prompting clinical investigations of IGF-IR inhibitors.
However, recent clinical trials of anti-IGF-IR compounds
in combination with gemcitabine have failed to demon-
strate improved patient survival [23,24], a failure attribut-
able, at least in part, to the development of resistance.
One mechanism proposed to account for resistance is ac-
tivation of alternative survival pathways [25]. Among these
candidate alternative pathways are those activated by
members of the ErbB receptor family, which are import-
ant in regulating cell survival [26-28] and are frequently
overexpressed in pancreatic carcinomas [29,30]. Import-
antly, activation of mitogen-activated protein kinases
(MAPKs) by ErbB receptors signaling may counterbalance
the decrease in phosphorylated Akt induced by IGF-IR in-
hibitors. This compensatory mechanism could explain the
failure of treatments based on individual inhibition of
IGF-IR or ErbB [14,28,31], and suggests that therapeutic
strategies based on combined inhibition of IGF-IR and
ErbB receptors could overcome this resistance.

In the current study, we tested this hypothesis, investi-
gating the impact of concurrent inhibition of IGF-IRs
and epidermal growth factor receptors (EGFR/Her-2) by
NVP-AEW541 and lapatinib tyrosine kinase inhibitors,
respectively, on pancreatic cancer cell lines and particu-
larly on PCSCs.

Methods

Reagents and immunochemicals

Lapatinib was kindly provided by GlaxoSmithKline
(Brentford, UK) and NVP-AEW541 was a kind gift of
Novartis Pharma (Basel, Switzerland). Stock solutions of
drugs were prepared in dimethyl sulfoxide and stored
at -20°C, and diluted in fresh media before each
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experiment. Insulin-like growth factor (IGF-I) and Epider-
mal growth factor (EGF) (Peprotech, Rocky Hill, NJ, USA)
were dissolved in phosphate-buffered saline containing
0.1% bovine serum albumin (BSA). Cells were immuno-
stained using antibodies against EGFR (1005), Her-2 (C-
18), Her-3 (C-17), IGF-IRB (C-20) and Akt-1 (C-20) (Santa
Cruz Biotechnology, Santa Cruz, CA, USA); phospho-
Akt (Ser473), phospho-p44/42 (Thr202/Tyr204) and
p44/42 (137 F5) (Cell Signaling Technology, Danvers,
MA, USA); phospho-IRS-1 (Tyr612) and phospho-IRS-
1 (Tyr896) (Invitrogen, Camarillo, CA, USA); and f-
actin (Sigma-Aldrich, St. Louis, MO, USA).

Cell culture

NP-9, NP-18, and NP-29 cell lines (kindly provided by
Dr Capella from Hospital de la Santa Creu i Sant Pau,
Barcelona, Spain) were derived from human pancreatic
adenocarcinomas xenografted in nude mice [32]. The
BxPC3 cell line was obtained from the American Type
Culture Collection (Manassas, VA, USA). CP15T and
CP15A cell lines were also derived from a human pan-
creatic adenocarcinoma xenografted in nude mice by
our group [33]. The research protocol complied with the
ethical guidelines of the 1975 Declaration of Helsinki
and was approved by the ethics committee of Universitat
de Barcelona. All participants provided written informed
consent. NP-9, NP-29, CP15T and CP15A cells were
grown in a 1:1 mixture of Dulbecco’s modified Eagle’s
medium (DMEM) and F12 medium; BxPC3 cells were
grown in DMEM; and NP-18 cell were grown in RPMI-
1640 medium (Gibco, Grand Island, NY, USA). All media
were supplemented with 5% fetal bovine serum and anti-
biotics (penicillin/streptomycin). Cells were maintained in
a humidified atmosphere of 5% CO, at 37°C and subcul-
tured every 3—4 days.

For tumorsphere cultures, cells were grown in ultra-
low attachment plates (Corning, Gendale, AZ, USA) using
serum-free DMEM:F12 (1:1) supplemented with B-27, N2,
antibiotic-antimycotic (Invitrogen), 20 ng/ml human EGEF,
and 20 ng/ml human basic fibroblast growth factor (bFGF;
Peprotech). Tumorspheres were dissociated weekly using
trypsin and maintained for several passages. Experiments
were performed between the fourth and seventh passage
[34].

Dose-response assays
Dose-response assays were performed by seeding 2-
5x10% cells/well in 96-well culture plates. Cultures
were exposed to increasing concentrations of lapatinib
and/or NVP-AEW541 for 72 h, at which time cell via-
bility was determined by MTT (3-[4,5-dimethylthiazol-
2-y1]-2,5 diphenyl tetrazolium bromide) assay.

Assays comparing monolayers and tumorspheres were
performed by seeding single-cell suspensions at a density
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of 1.5x10% cells/well in standard or ultra-low-adhesion
96-well culture plates, respectively, with increasing con-
centrations of lapatinib and/or NVP-AEW541. Cell viabil-
ity was determined 72 h post-treatment using a WST-8
assay (Sigma-Aldrich), as described by the manufacturer.

Data were fitted to a dose—response curve using stand-
ard nonlinear regression, adapting a Hill equation with
Grafit software (Erithacus Software, Ltd., Horley, UK) to
obtain 50% inhibitory concentration (ICsp) values. Cell
survival for all experiments is expressed as the percent-
age of viable cells relative to that in untreated cells (de-
fined as 100%).

The coefficient of drug interaction (CDI) was used to
analyze the effect of drug combination. CDI was calcu-
lated based on the absorbance in each group, as CDI =
AB/(A x B), where AB is the ratio for the combination
group relative to the control group, and A and B are the
ratios of each single agent group relative to the control
group. Thus, a CDI value <1 indicates synergy, a CDI
value =1 indicates additive effects, and a CDI value > 1
indicates antagonism. CDIs less than 0.7 indicate a sig-
nificant synergistic effect.

Protein extraction and Western blot

Cells were lysed in ice-cold lysis buffer containing
20 mM Tris (pH 8), 150 mM NaCl, 10 mM EDTA,
10 mM NayP,0,, 2 mM VO3, 100 mM NaF, 1 mM pB-
glycerophosphate, 1% NP40, and protease and phos-
phatase inhibitor cocktails (Roche Applied Sciences,
Penzberg, Germany). Lysates containing equal amounts
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of protein (20 pg for monolayer experiments and 30 pg for
experiments comparing monolayers and tumorspheres),
assessed by Bradford assay (Bio-Rad, Hercules, CA, USA),
were electrophoretically separated on 8% polyacrylamide-
sodium dodecyl sulfate gels and transferred to nitrocellu-
lose membranes (Schleicher and Schuell, Dassel, Germany).
Membranes were immunoblotted with the indicated pri-
mary antibodies. Antibody labeling was detected using an
enhanced chemiluminescence detection kit (Biological In-
dustries, Kibbutz Beit Haemek, Israel).

Results
Sensitivity of human pancreatic cancer cell lines to
NVP-AEW541 and lapatinib
Expression levels of IGF-IR and ErbB family receptors
were examined in a panel of human pancreatic cancer
cell lines. IGF-IR expression levels varied, with high
levels detected in NP-29 and CP15A cell lines. Notably,
the highest levels of EGFR expression were also found in
NP-29 cells, whereas EGFR expression was negligible in
CP15T and CP15A cells. In contrast, Her-2, which was
observed in all cell lines, showed marked expression in
CP15T and CP15A cells. Her-3 expression was only
clearly detectable in NP-29, CP15T, and CP15A cells.
Intracellular signaling pathways were assessed by evalu-
ating Akt and Erk (extracellular signal-regulated kinase)
phosphorylation. These experiments revealed a range of
activation levels, with NP-9 cells showing the highest
levels of Akt phosphorylation and CP15A cells showing
the lowest levels of Erk phosphorylation (Figure 1A).
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Figure 1 Inhibition of IGF-I and ErbB receptors with NVP-AEW541 and lapatinib in pancreatic cancer cell lines. (A) Basal levels of IGF-I
and ErbB receptors and their signaling pathway components. Cells cultured to approximately 90% confluence were lysed and proteins in lysates were
analyzed by Western blot. (B) Dose-response curves and ICsq values for NVP-AEW541 and lapatinib in the panel of cell lines. Cells were treated 24 h
after seeding with increasing concentrations of NVP-AEW541 or lapatinib, and cell viability was measured by MTT assay 72 h after the start of treatment.
Data are presented as means + standard deviation of a representative experiment (n = 3). @ NP-9, ¢ NP-18, m NP-29, @ CP15T, A CP15A.
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The effects of the IGF-IR inhibitor, NVP-AEW541,
and the EGFR and Her-2 inhibitor, lapatinib were then
examined in all five cell lines. NVP-AEW541 induced a
concentration-dependent inhibition of growth in all cell
lines. ICsq values ranged from 4.4 to 17.6 pM, with the
most potent effect observed in NP-18 cells. Lapatinib
also induced concentration-dependent growth inhibition
in all cell lines. Again, NP-18 cells showed the highest
sensitivity, and ICsq values ranged from 8.0 to 41.2 uM
(Figure 1B).

Response of pancreatic cancer cells to combined IGF-IR
and EGFR/Her-2 inhibition

Resistance to individual treatment with the IGF-IR and
EGFR/Her-2 inhibitors NVP-AEW541 and lapatinib, re-
spectively, has been reported, reflecting the operation of
compensatory mechanisms between the two pathways. To
evaluate whether the individual effects of these drugs are
potentiated by concurrent inhibition of both pathways, we
assayed these two drugs in combination in the five cell
lines. Increasing concentrations of lapatinib were com-
bined with a fixed (IC,,) concentration of NVP-AEW541.
When used in combination, these drugs exhibited very po-
tent synergy in all cell lines, with coefficients of drug inter-
action (CDIs) clearly < 0.7; remarkably, in some cases, CDI
values were < 0.1 (Figure 2A).

To evaluate the effects of these drugs on the intracel-
lular signaling activity of both pathways, we selected
the NP-29 cell line, which exhibited the lowest CDI. In
control cells, an IGF-I stimulus promoted substantial
Akt and IRS-1 (Y612) phosphorylation and a small in-
crease in IRS-1 (Y896) phosphorylation, but did not
affect Erk1/2 phosphorylation. This suggests that the
activity of the Ras-MAPK pathway is independent of
IGF-I in these cells. Conversely, EGF stimulation re-
sulted in elevated phosphorylation of Erk1/2, IRS-1
(Y612), and IRS-1 Y896 (Figure 2B). Inhibition of IGF-IR
by NVP-AEW541 decreased IGF-I-induced phosphoryl-
ation of Akt and IRS-1 (Y612). In cells stimulated with
EGF or IGF-1+EGE, NVP-AEW541 treatment increased
EGER pathway activation to a greater degree than in con-
trol cells, enhancing phosphorylation of Erk1/2, IRS1
(Y612), and IRS1 Y896 (Figure 2B). Whereas treatment
with lapatinib diminished EGF-stimulated activation of
Erk1/2 and IRS-1 (Y896), it did not significantly attenuate
IGF-I- or IGF-I + EGF-induced activation of Akt and IRS-
1 (Y612) (Figure 2B). Interestingly, simultaneous inhib-
ition of both IGF-IR and EGFR/Her-2 by NVP-AEW541
and lapatinib completely abrogated IGF-I-, EGF-, and
IGF-1 + EGF-stimulated phosphorylation of Akt, Erk1/2,
IRS-1 (Y612) and IRS-1 (Y896), confirming at the molecu-
lar level the strong synergy observed in cytotoxicity exper-
iments (Figure 2B,C).
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Effect of IGF-IR and/or EGFR/Her-2 inhibition on
tumorspheres viability

The role of CSCs in the resistance to different drugs has
been extensively reported in recent years. Thus, the po-
tent synergy obtained in tumor cells prompted us to
examine the effects of NVP-AEW541 and lapatinib on
cell viability in tumorspheres. These experiments were
performed using the two cell lines that exhibited the
highest synergy and in BxPC3 cells, a commercially
available cell line previously reported to be capable of
forming tumorspheres [35,36] that also exhibited a po-
tent synergy (Additional file 1: Figure S1). An analysis of
morphology and cell cycle profile in tumorspheres ob-
tained from CP15T and BxPC3 cells revealed PCSC
characteristics, but PCSC enrichment in NP-29 cells was
questionable (Additional file 2: Figure S2A,B, Additional
file 3: Supplemental methods).

Expression levels of receptors and the activity of their
pathways were then determined. These analyses showed
significant decreases in receptor expression and Akt
phosphorylation in the PCSC population (Figure 3A).
Despite this, both inhibitors were able to kill 100% of
cells, showing ICs, values in the same range as were ob-
tained with the corresponding monolayers (Figure 3B,
Additional file 1: Figure S1A). These results contrast with
the resistance observed with gemcitabine (Additional file 2:
Figure S2C). Interestingly, combining these two drugs im-
proved their inhibitory effect on cell viability, yielding CDI
values near 0.7, indicative of a potent synergistic effect, at
all concentrations (Figure 3C).

Discussion

Despite rapid advances on many fronts, PDAC remains
one of the most difficult human malignancies to treat.
The clinical outcome of patients with this disease has
not improved since the approval of gemcitabine, indicat-
ing the need for novel therapeutic strategies based on a
better understanding of the molecular basis of this dis-
ease [1]. In this context, several drugs designed to inhibit
IGF-IR have been developed, reflecting the fact that this
receptor is frequently overexpressed in PDAC and is as-
sociated with tumor progression and poor prognosis
[13,17,19,37]. However, several clinical trials of IGF-IR
inhibitors have failed, probably in part because of the ac-
tivation of compensatory pathways [23,24]. ErbB recep-
tors have been proposed as one mechanism involved in
the resistance to these inhibitors [28,38]. Therefore,
combined treatment with inhibitors of both IGF-IR and
ErbB receptors would appear to be a good strategy for
overcoming the emergence of resistance.

Inhibition of IGF-IR and EGFR/Her-2 by NVP-AEW541
and lapatinib caused a concentration-dependent reduction
of cell viability in all cell lines assayed. This cytotoxic ef-
fect has been previously described in other models, and,
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(See figure on previous page.)

Figure 2 Effect of NVP-AEW541 and lapatinib combined treatment on the growth of pancreatic cancer cell lines. (A) Dose-response
curves and CDI values for NVP-AEW541 and lapatinib combinations. Twenty-four hours after seeding, cells were treated with increasing concentrations
of lapatinib alone (e) or combined with a fixed concentration of NVP-AEW541 (A) equivalent to its IC,,. Data are presented as means + standard
deviation of a representative experiment (n = 3). (B) Molecular effects of NVP-AEW541 and lapatinib treatments. Cells were treated 24 h after seeding
with a concentration equivalent to the 1Cy, of NVP-AEW541, lapatinib, or their combination. After 72 h, 50 ng/ml of IGF-I, EGF or both were added for

mechanism involved in NVP-AEW541 and lapatinib synergistic effect.

20 min, and expression of IGF-IR and EGFR pathway components was analyzed by Western blot. (C) Schematic representation of the molecular

interestingly, it is tumor-selective, as it is higher in tu-
moral cells than in normal cells [39,40]. An evaluation of
the basal expression of IGF-IR and ErbB family receptors
and signaling pathway proteins showed no correlation be-
tween the levels of these receptors and sensitivity to their
inhibition, in good agreement with previous results in sev-
eral types of cancer [38,41,42]. Moreover, when used in
combination, NVP-AEW541 and lapatinib strongly syner-
gized in all cell lines at all concentrations assayed. Using
other inhibitors, this potentiation has been reported in
PDAC [38] and other tumors [43-45].

An analysis of the changes in signaling produced by
single and combined treatments argue in favor of cross-
talk between IGF-IR and ErbBs pathways upstream of
their confluence at the MAPK and Akt level. IRS-1 is
generally considered to be a unique substrate of IGF-IR,
which phosphorylates IRS-1 at Y612. Notwithstanding this
presumption, a more recent study on breast cancer sug-
gests that EGFR has the ability to recruit and phosphorylate
IRS-1 at Y896 [46]. This competence for the same substrate
is supported by our results and could contribute to the re-
sistance caused by activation of mutual compensatory
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Figure 3 IGF-IR and EGFR/Her-2 inhibition decreases the viability of pancreatic tumorspheres. (A) Basal levels of IGF-I and ErbB receptors
and their signaling pathway components in BxPC3 and CP15T tumorspheres were determined by Western blot. M, monolayer; T, tumorspheres.
(B) Dose-response curves and ICsq values for NVP-AEW541 and lapatinib. Cells were seeded with increasing concentrations of NVP-AEW541 or
lapatinib, and cell viability was measured by WST-8 assay 72 h after initiating treatment. @ BxPC3, m CP15T (C) Dose-response curves and CDI
values for NVP-AEW541 and lapatinib combinations. Cells were seeded with increasing concentrations of lapatinib alone (e) or combined with a
fixed concentration of NVP-AEW541 (A) equivalent to its IC,o. Data are presented as means + standard deviation of three experiments.
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pathways. The IRS-1 phosphorylation pattern clearly indi-
cated that blocking IGF-IR signaling strongly induced phos-
phorylation of IRS-1 at Y896. This increase in IRS-1
phosphorylation highlights the crucial influence of this new
mechanism—activation of MAPK and especially Akt phos-
phorylation—in the resistance to IGF-IR inhibitors, and
points to preferential channeling of ErbB receptor signaling
to IRS-I (Y896) phosphorylation via phosphorylated Akt.
Interestingly, when both receptors were inhibited, IRS-1,
Akt and MAPK phosphorylation were completely abol-
ished, reinforcing the utility of combined inhibition of both
pathways in averting the resistance induced by individual
treatments.

Despite these good in vitro results, the outcome in pa-
tients has been disappointing. One possible reason for the
failure of these targeted drugs could be the role of PCSCs
in resistance [47,48]. The importance of the IGF-IR path-
way in treatments targeting PCSCs has not been previ-
ously described, although several recent reports have
demonstrated an association of this receptor with cell
stemness in some tumors [49,50]. Our results showed that
pancreatic cancer tumorspheres were sensitive to treat-
ment with either NVP-AEW541 or lapatinib, in contrast
to their high resistance to gemcitabine. Remarkably, com-
bining both drugs again produced a synergistic effect simi-
lar to that observed in monolayers. This synergy in
tumorspheres, which has not been previously described,
indicates that inhibition of both pathways in PCSCs can
also overcome the resistance caused by these compensa-
tory pathways in this subpopulation.

Conclusions

Simultaneous inhibition of IGF-IR and ErbB receptors by
NVP-AEW541 and lapatinib circumvented the resistance
observed at the molecular level with individual treatments.
Interestingly, these inhibitors were also able to eliminate
PCSCs, overcoming their resistance to conventional
chemotherapy. Thus, the synergy observed with this com-
bined treatment indicates that it may be possible to
maximize patient benefit with the appropriate combin-
ation of currently known anticancer agents.

Additional files

Additional file 1: Figure S1. Effect of NVP-AEW541 and lapatinib in the
BxPC3 monolayers. (A) Dose-response curves and ICs, values for NVP-
AEWS541 and lapatinib. Cells were seeded with increasing concentrations of
NVP-AEW541 or lapatinib, and cell viability was measured by WST-8 assay

72 h after starting treatment. Data are presented as means + standard
deviation of three experiments. (B) Dose-response curve and CDI values for
NVP-AEW541 and lapatinib combination. Twenty-four hours after seeding,
cells were treated with increasing concentrations of lapatinib alone (e) or
combined with a fixed concentration of NVP-AEW541 (A) equivalent to its
IC50. Data are presented as means + standard deviation of three experiments.

Additional file 2: Figure S2. Characterization of tumorspheres
obtained from different human pancreatic cancer cell lines. (A)
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Morphology of BxPC3, CP15T, and NP-29 tumorspheres. Cells were
maintained under standard culture conditions (monolayers) or in stem
cell medium on ultra-low-adhesion plates (tumorspheres). Scale bar =

5 um. (B) Cell cycle profiles of monolayers and tumorspheres. S-phase
represented in light grey, G2/M-phase in dark grey, and GO/G1-phase in
black. (C) Dose-response curve and ICsq values of gemcitabine for mono-
layers and tumorspheres. Cells were seeded with increasing
concentrations of gemcitabine, and cell viability was measured by WST-8
assay 72 h after starting treatment. Data are presented as means +
standard deviation of three experiments. mBxPC3 monolayer, oBxPC3
tumorspheres, ®CP15T monolayer, oCP15T tumorspheres.

Additional file 3: Analysis of cell cycle by flow cytometry.
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