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Abstract

Background: Patients suffering from cancer are often treated with a range of chemotherapeutic agents, but the
treatment efficacy varies greatly between patients. Based on recent popularisation of regularised regression models
the goal of this study was to establish workflows for pharmacogenomic predictors of response to standard
multidrug regimens using baseline gene expression data and origin specific cell lines. The proposed workflows are
tested on diffuse large B-cell lymphoma treated with R-CHOP first-line therapy.

Methods: First, B-cell cancer cell lines were tested successively for resistance towards the chemotherapeutic components
of R-CHOP: cyclophosphamide (C), doxorubicin (H), and vincristine (O). Second, baseline gene expression data were
obtained for each cell line before treatment. Third, regularised multivariate regression models with cross-validated
tuning parameters were used to generate classifier and predictor based resistance gene signatures (REGS) for the
combination and individual chemotherapeutic drugs C, H, and O. Fourth, each developed REGS was used to assign
resistance levels to individual patients in three clinical cohorts.

Results: Both classifier and predictor based REGS, for the combination CHO, were of prognostic value. For patients
classified as resistant towards CHO the risk of progression was 2.33 (95% CI: 1.6, 3.3) times greater than for those
classified as sensitive. Similarly, an increase in the predicted CHO resistance index of 10 was related to a 22% (9%, 36%)
increased risk of progression. Furthermore, the REGS classifier performed significantly better than the REGS predictor.

Conclusions: The regularised multivariate regression models provide a flexible workflow for drug resistance studies
with promising potential. However, the gene expressions defining the REGSs should be functionally validated and
correlated to known biomarkers to improve understanding of molecular mechanisms of drug resistance.
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Background
Patients suffering from cancer are usually treated with a
range of chemotherapeutic agents, but the treatment
efficacy varies greatly between patients. As new thera-
peutic possibilities emerge, it is becoming increasingly
important to identify individual patients who are un-
likely to respond satisfactorily and who may benefit from
carefully selected agents [1].
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Resistance gene signatures (REGSs) for prediction of
chemoresistance have been investigated extensively since
the development of microarrays. The REGS can be
grouped into classifiers and predictors where the classi-
fiers assign a probability for each patient as sensitive or
resistant, and the predictors assign each patient a
numeric value where higher values indicate greater drug
resistance. Studies generating REGS can either be per-
formed by analysis of clinical data generated in vivo
followed by a prognosis based reverse-translational ap-
proach, or by analysis of laboratory data generated
in vitro followed by a predictive drug screen approach.
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Cell line based studies on drug resistance have typi-
cally been founded on categorisation of the cell lines
into sensitive, resistant, and intermediate groups based
on summary statistics for dose response experiments.
Subsequently, differentially expressed genes between the
sensitive and resistant cell lines are determined and used
to generate a REGS classifier typically based on a version
of Linear Discriminant Analysis (LDA). Publicly available
data from the NCI60 cell line panel generated by the
National Cancer Institute (NCI) have been used exten-
sively in such studies [2-7]. However, the approach have
been plagued with issues of irreproducibility [8-10] and
the results have been ambiguous [3,4]. Several authors
have argued that a cancer specific cell line panel could
improve performance [4,11-13]. With varying success
such an approach was used by Liedtke et al. [12] and
Boegsted et al. [4] for breast cancer, and multiple mye-
loma, respectively. In both articles a variant of LDA was
used to establish a REGS classifier neither of which
resulted in predictions related to clinical outcome.
The working hypothesis is that the combined expres-

sion pattern of a group of genes within a malignant cell
determines that cell’s level of resistance towards a
specific drug. The aforementioned REGSs have been
founded on genes selected by their marginal association
with drug resistance. Multivariate regression techniques
regularised by a penalty such as elastic net [14] may be
utilised to establish REGSs based on genes selected due
to their simultaneous capability of predicting drug resis-
tance. In additition to the REGS classifier based on
LDA, Boegsted et al. [4] used such an approach to estab-
lish a REGS predictor based on multivariate regression
for which predictions were associated with treatment
outcome. Similarly, by use of the cancer genome project
[15] (CGP) and Cancer Cell Line Encyclopedia [16]
(CCLE) Papillon-Cavanagh et al. [17] showed that REGS
predictors established using multivariate regression tech-
niques seemed to perform better than those based on
marginal associations. Recently, Geeleher et al. [18] vali-
dated that such an approach could generate REGSs of
prognostic value for patients treated with a single che-
motherapeutic agent.
The concept of the present work is that multivariate

regression techniques enable development of combined
REGS for patients treated with a range of drugs. For in-
stance patients with newly diagnosed diffuse large B-cell
lymphoma (DLBCL) are usually treated with a multi-
agent chemotherapy regimen containing rituximab (R),
cyclophosphamide (C), doxorubicin (H), vincristine (O),
and prednisolone (P). Hence, in order to predict treatment
outcome of such patients it is necessary to combine the de-
veloped REGS. However, only a relatively small number of
drugs have been tested in either CGP or CCLE and of the
three chemotherapeutic agents of R-CHOP (C, H, and O)
only H has been tested so far. Thus, in order to develop
REGSs for the standard treatment of DLBCL, and many
other cancers, it is necessary to develop an in laboratory
drug screen of the used chemotherapeutics. Since it is not
feasible for small laboratories to perform such experiments
in a large-scale a smaller cell line screen of origin specific
cell lines is used.
In Falgreen et al. [19] we recently published a method

for analysing dose response experiments that accounts
for well-known issues such as varying cell line growth
kinetics and variation in seeding concentration. By com-
bining this approach with a panel of human B-cell can-
cer cell lines (HBCCL), the specific aims of this study
were to 1) ensure that REGSs developed using carefully
selected cell lines analysed to the requirements of
Falgreen et al. [19] can be of similar, or even superior,
prognostic value as those developed using a large-scale
study, 2) generate REGS classifiers and predictors for re-
sistance towards the potent chemotherapeutic agents in
R-CHOP, 3) combine them into REGSs for CHO, and 4)
compare the performance of REGS classifiers and predic-
tors in clinical data. To support the concept, resistance
signatures were tested in three clinical datasets from
DLBCL patients treated with R-CHOP therapy [20,21].

Methods
The focus of this study was to develop REGSs for the
combination treatment CHO constituting the main part
of R-CHOP first line treatment of DLBCL. Thus, the
task was not to explain the biological mechanisms lea-
ding to chemo-resistance but to establish REGS capable
of predicting whether a patient is sensitive or resistant
to chemotherapeutic agents [22]. Hence the predictive
capabilities of the established REGSs were evaluated in
pre-treatment tumour samples. Such a strategy involves
intensive data generation in the laboratory and is suc-
ceeded by data management and advanced statistical
analysis [8]. The analysis workflow is outlined in Figure 1
and each step is described in detail in the following
sections. All analyses were performed with R version
3.1.0 [23] and several add-on packages. Detailed session
information and full documentation of the statistical
analysis is provided by a Knitr document, see Additional
file 1: Text S1. Knitr enables the integration of R code
into LaTeX providing reproducible data analysis.

Data acquisition from the CGP screen
Gene expression data on the Affymetrix Genechip HG-
U133A array was obtained from ArrayExpress under acces-
sion number E-MTAB-783. The CGP dose response data
for H contained in the file gdsc_manova_input_w2.csv were
downloaded from the CGP website: www.cancerrxgene.org.
Haibe-Kains et al. [24] found the area under the dose re-
sponse curve (AUC) to be the most consistent summary

http://www.cancerrxgene.org


Figure 1 Flow diagram of the analysis strategy. The blue and green boxes indicate in vitro and in vivo data, respectively. The grey boxes
indicate the aims of the statistical analysis. First, test the level of resistance towards the three drugs C, H, and O successively on B-cell cancer cell
lines by dose response experiments in accordance with [19]. Secondly, obtain baseline gene expression data for each cell line before treatment.
Thirdly, establish a REGS classifier capable of estimating the probability of a tumour sample being sensitive or resistant. This was done by grouping the
third most sensitive and third most resistant cell lines for each drug and establishing a REGS classifier by regularised logistic regression. Fourth, establish
a REGS predictor based on the sensitivity level of each cell line without grouping them into sensitive and resistant. This was done by using the
estimated drug specific resistance for each cell line and establishing a REGS predictor by regularised linear regression. Such a REGS predictor is unable
to estimate the probability of a tumour sample being sensitive or resistant; however, the statistical analysis may gain power by using all cell lines
without categorising them. Fifth, combine the developed REGSs into a classifier and predictor for CHO. Finally, sixth, validate the established REGSs in
independent clinical cohorts.
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statistic between the two cell line screens CGP and CCLE,
hence all analyses were based on this.

The HBCCL screen and culture conditions
The HBCCL panel consisted of 11 multiple myeloma
(MM), one plasmacytoma, one undifferentiated lymphoma,
and 13 DLBCL cell lines. Detailed information on each cell
line is available in Additional file 2: Table S1. The plasma-
cytoma and undifferentiated lymphoma cell lines were
treated as an MM and a DLBCL cell line, respectively. The
cell lines were cultured under standard conditions at
37°C in a humidified atmosphere of 95% air and 5% CO2

with the appropriate medium (RPMI1640 or IMDM),
fetal bovine serum (FBS), and 1% penicillin/streptomycin.
Penicillin/streptomycin 1%, RPMI1640, IMDM and FBS
were purchased from Invitrogen. The origin of the cell
lines is as listed: KMM-1 and KMS-11 were obtained from
JCRB (Japanese Collection of Research Bioresources).
AMO-1, DB, HT, KMS-12-PE, KMS-12-BM, LP-1, MC-
116, MOLP-8, NCI-H929, NU-DHL-1, NU-DUL-1,
OPM-2, RPMI-8226, SU-DHL-4, SU-DHL-5, and U-266
were purchased from DSMZ (German Collection of
Microorganisms and Cell Cultures). FARAGE, HBL-1,
OCI-Ly3, OCI-Ly7, OCI-Ly19, RIVA, SU-DHL-8, and
U2932 were kindly provided by Dr. Jose A. Martinez-
Climent (Molecular Oncology Laboratory University of
Navarra, Pamplona, Spain). Finally, Dr. Steven T. Rosen
generously provided MM1S [25].
The identity of the cell lines was verified by DNA bar-

coding performed every time a cell line was thawed and
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brought into culture. As DNA was not available from
each passage, a PCR analysis was performed using 0.2 ng
RNA thereby amplifying traces of genomic DNA using
the sensitive AmpFISTR Identifiler PCR amplification
kit (Applied Biosystems, CA, USA). The amplified pro-
ducts were analysed by capillary electrophoresis (Eurofins
Medigenomix GmbH, Applied Genetics, Germany). The
resulting FSA file was analysed using the Osiris software
(ncbi.nlm.nih.gov/projects/SNP/osiris) and the identity of
the cell lines were established by comparing to DNA bar-
coding profiles for known cell lines obtained with the
same markers and made publicly available at DSMZ.

CHO dose response experiments
The effect of the drugs C, H, and O on viable prolifera-
ting cells was measured on 24, 26, and 24 different hu-
man B-cell cancer cell lines in concordance with [19].
Because C requires hepatic activation to produce its
active metabolite 4-hydroxy-cyclophosphamide, the
synthetic oxazaphosphorine derivative mafosfamide with
antineoplastic properties was used as surrogate. The
number of viable cells in the culture was estimated by
absorbance measurements (CellTiter 96 Aqueous One
Solution Reagent, Promega, USA) as described by the
manufacturer. A linear relationship between the cell
count and absorbance measurements was obtained by
seeding 15,000-60,000 cells in 120 μl media per well in a
96 well plate for 24 h at standard tissue culture conditions.
Subsequently, 18 increasing concentrations of C, H, or O
were added to each cell line in triplicates. The absorbance
was measured immediately and after 48 hours of drug ex-
posure using the CellTiter reagent (CellTiter 96 Aqueous
One Solution Reagent, Promega, USA) and quantified at
492 nm using the Fluostar Optima (BMG LABTECH,
Germany). All wells were seeded with cells but border
effects were circumvented by only including non-border
wells for analysis.
The highest drug concentrations to which the cells were

exposed were 80, 10, and 20 μg/ml for C, H, and O, re-
spectively. Twofold dilution series were used. C was
purchased as powder from Niomech (Germany) and dis-
solved in isotonic salt-water aliquots and stored at −80°C
for a few weeks. H and O were purchased from
PharmaCoDane (Denmark) and TEVA (USA), respec-
tively. The drugs were diluted in isotonic salt-water prior
to use.

RNA microarray analysis
All gene expression profiles (GEP) were performed
using the Affymetrix microarray platform and standard
procedures. Total RNA was extracted from the 26 drug
naïve cell lines using TRIzol Reagent (Invitrogen, UK)
and the RNeasy Mini kit (Qiagen, Germany). The qua-
lity was checked by Agilent 2100 Bioanalyzer (Agilent,
USA) (all RIN values above 9). The samples were la-
belled using the GeneChip Expression 3′ amplification
One-cycle Target Labeling (Affymetrix) (input 5 μg total
RNA) and hybridised to the Affymetrix GeneChip HG-
U133 Plus 2.0 array according to the manufacturer’s
protocol. The .CEL-files were generated by Affymetrix
Gene-Chip Command Console Software (AGCC) and de-
posited at the NCBI Gene Expression Omnibus (GEO) re-
pository. The data fulfils the requirements of being
MIAME compliant and the .CEL files for the 26 cell line mi-
croarrays are available at http://www.ncbi.nlm.nih.gov/geo/
under GEO accession number GSE53798.

Clinical cohorts
The workflow for generating REGS is exemplified for
the haematological malignancy DLBCL. Patients with
newly diagnosed DLBCL are usually treated with a
multi-agent chemotherapy regimen containing C, H, O,
and P. This so-called CHOP regimen was developed de-
cades ago and has ever since been the backbone of
DLBCL treatment. The only significant improvement
during the last decade has been the addition of the mono-
clonal CD20 antibody rituximab (R) to CHOP (R-CHOP),
which has led to an increase in overall survival (OS) of 10-
15% [26-30]. However, with a 3-year progression free sur-
vival (PFS) of 55-87% depending on the number of risk
factors there is still room for improvement [31]. An im-
portant clinical challenge is how to manage the large
number of patients with disease primary refractory to R-
CHOP. Currently used treatment algorithms for DLBCL
are still based on the International Prognostic Index (IPI)
which is derived from simple and easily available clinico-
pathological features [32,33]. Within the individual risk
groups, however, there is great variation in outcome
which indicates that additional features such as tumour-
biological heterogeneity impact on drug sensitivity
[20,34,35]. Three patient cohorts, with GEP datasets avail-
able at http://www.ncbi.nlm.nih.gov/geo/, consisting of
DLBCL patients treated with R-CHOP were used to vali-
date the generated REGS:

1. The International DLBCL Rituximab-CHOP
Consortium MD Anderson (IDRC) cohort of 470
DLBCL patients treated with R-CHOP first-line
therapy [36]. Gene expression data are available at
GEO under accession number GSE31312. The data
collection was approved by the Institutional Review
Board at The University of Texas MD Anderson
Cancer Center in Houston, Texas [36].

2. The Lymphoma/Leukemia Molecular Profiling Project
R-CHOP (LLMPP) cohort of 233 DLBCL patients
treated with R-CHOP first-line therapy [20]. GEP data
from the tumour before treatment and clinical
information is publicly available under GEO

http://www.ncbi.nlm.nih.gov/geo/
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accession number GSE10846. Progression free survival
on the patients was made available by personal
communication with Lenz. The data was studied in
accordance with a protocol approved by the
Institutional Review Board of the National Cancer
Institute [20].

3. The Mayo-Dana-Farber Cancer Institute (MDFCI)
cohort of 67 DLBCL patients treated with R-CHOP
first-line therapy [21]. GEP data from tumour before
treatment and clinical information is available under
GEO accession number GSE34171. The data was
studied in accordance with protocols approved by the
Institutional Review Board from three institutions
(Mayo Clinic, Brigham & Women Hospital, and
Dana-Farber Cancer Institute) [21].

To determine whether or not the established REGS
predict prognosis in DLBCL treated with R-CHOP, a co-
hort consisting of patients not treated with the combi-
nation therapy R-CHOP was used. Here the University
of Arkansas for Medical Sciences (UAMS) cohort of 565
multiple myeloma patients was used [37]. The institu-
tional review board of UAMS approved data collection
and research [37]. The patients from UAMS received
total therapy 2 and 3 (TT2 and TT3). Although these
regimens both included doses of C, H, and O in various
combinations and in addition to several other drugs
(thalidomide, bortezomib, cisplatin, etoposide) the most
important disease controlling elements of the TT2 and
TT3 regimens were melphalan-based tandem trans-
plants. Thus, for the multiple myeloma patients from
UAMS C, H, and O did not form the chemotherapeutic
backbone of a curative treatment as for the DLBCL
patients. GEP data from plasma cells and clinical infor-
mation is available under GEO accession number
GSE24080. The UAMS.
All GEP data are on the Affymetrix Genechip HG-

U133 Plus 2.0 array and all DLBCL cohorts included in-
formation on IPI. All research has been performed in
compliance with the Helsinki declaration.

Statistical analysis
CHO dose response analysis
Dose response experiments are conventionally sum-
marised by dose response curves where the net growth
of a cell line treated with a range of concentrations are
compared to the net growth of the same cell line un-
treated. However, this may lead to dose response curves
that are biased so fast growing cell lines appear overly
sensitive [19]. Here, we used an alternative method for
summarising dose response experiments, which has been
described in [19]. This approach generates dose response
curves by comparing the growth rates of a treated cell
line with the growth rate of the same untreated cell line
thereby removing the aforementioned bias under the
assumption of exponential growth [19].
According to [38] the area under the dose response

curve AUC is the overall best performing summary sta-
tistic of a dose response experiment. In concordance
with this, the area under the dose response curve where
this is positive (AUC0) was used to summarise the dose
response experiments [19].

Microarray pre-processing
The .CEL-files associated with the HBCCL, CGP, and
the clinical cohorts were RMA pre-processed using the
Bioconductor package affy [39,40]. The pre-processed
GEP data for CGP along with the GEP data for the clin-
ical cohorts were probe-set wise centred to have median
equal to zero.
The pre-processed GEP data for HBCCL was split into

two datasets consisting of the DLBCL and MM cell
lines. The DLBCL GEP dataset was then probe-set wise
centred to have median equal to zero. The probe-sets of
the MM GEP data were centred to have median equal to
zero and scaled to have the same variance as that ob-
served in the DLBCL GEP data. The GEP data of the
DLBCL and MM datasets were then merged together
resulting in the HBCCL dataset.
In the development of REGS based on both the HBCCL

and CGP, each gene interrogated by multiple probe-sets
was represented by the most variable within the con-
cerned dataset. In order to homogenize the clinical and
cell line based GEP data each gene of the clinical data was
scaled to have the same variance as that observed in either
CGP or the DLBCL GEP data of HBCCL.

Establishment of in vitro based REGS
For each of the three drugs multivariate regression
models were used to establish REGSs that estimate a
malignant tumour’s resistance towards the drug. Here
the result of the dose response experiments was used as
the outcome variable and the GEPs as explanatory vari-
ables. However, the vast number of probe-sets present
on the microarray greatly outnumbers the cell lines.
Additionally, there is collinearity among the genes, and
the set of active genes that control the underlying bio-
logical process is believed to be small. Regression under
these ill-posed circumstances is typically handled by a
regularisation parameter, which shrinks the regression
coefficients by penalising their size. Increasing the
amount of regularisation increases the shrinkage of each
coefficient. Here we used the elastic net penalty [14,41]
which combines the lasso [42] and ridge regression [43].
Regression with elastic net ensures sparse solutions by
forcing small coefficients to be zero and thereby esti-
mates the set of active genes whilst fitting the model.
Similar to the lasso this penalty ensures simultaneous
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variable selection and model estimation. In contrast to
the lasso, the elastic net penalty is capable of selecting
more variables than samples.
The aforementioned collinearity among genes is par-

tially caused by genes operating in molecular pathways
wherefore their expressions are often highly correlated
[44]. We may think of such genes as a group for which
an ideal selection method will include the entire group if
one gene among them is selected. Notably, when using
elastic net, we select correlated variables in groups ensu-
ring that genes operating in pathways are selected together.
The elastic net penalty contains two parameters α and λ.

The parameter α determines the degree to which the
elastic net penalty should resemble the lasso or ridge pen-
alty with values of 0 and 1 resulting in ordinary ridge re-
gression or the lasso, respectively. As the model parameter
increases from 0 to 1, the resemblance towards lasso in-
creases. The regularisation parameter λ determines the
amount of shrinkage of the coefficients with larger values
inducing more shrinkage until no variables are contained
in the model. By plotting the coefficient associated with
each probe-set against a range of λ values so called regu-
larisations curves are obtained. For both the regularised
logistic and linear regression the R-package glmnet [41]
was used to establish the REGS.

Regularised logistic regression for establishment of REGS
classifiers
Combining the elastic net penalty with logistic regression
solved the first aim of the statistical analysis (Figure 1).
This approach established a REGS classifier capable of
assigning each tumour sample an estimate of the proba-
bility of being resistant to each of the three drugs.
For each drug the cell lines of the HBCCL screen were

categorised as sensitive, intermediate, or resistant based
on tertiles of their AUC0 values. This was done se-
parately for the two disease groups DLBCL and MM to
avoid comparison of disease type instead of drug resis-
tance. Similarly, each cell line of the CGP screen was
categorised as sensitive, intermediate, or resistant based
on tertiles of their AUC values. Because there are so
many different cancers in CGP this grouping was not
done disease wise.
The cell lines in the intermediate group were discarded,

and the cell lines categorised as either sensitive or resis-
tant were used to establish the classifier. The model para-
meter α and shrinkage parameter λ were chosen through
leave-one-out cross validation for HBCCL and 20 fold
cross validation for CGP. The α and λ parameters were
varied over a broad range of values ranging from 0.1 to 1
for α and on a log scale between −6 and 3 for λ. The opti-
mal configuration of the parameters was chosen to be the
set minimising the number of misclassifications. For ties
the smallest value of both α and λ were chosen. Once the
optimal parameters for each drug were chosen and the lo-
gistic models were fitted internally from the cell lines, it
was possible to estimate the probability of a patient being
resistant to each drug individually. This final step was
done using the median centred and scaled GEP data as de-
scribed in the section Microarray Pre-processing.
By use of Graham’s formula the HBBCL based REGS

classifiers for C, H, and O were combined into a single
REGS classifier for CHO. Let PC, PH, and PO denote the
probabilities of being resistant towards the three drugs
C, H, and O individually. Then under the assumption of
drug independence the posterior probability of being
resistant towards the combination therapy CHO was
estimated as: PC PH PO/(PC PH PO+(1-PC)(1-PH)(1-PO)).
Regularised linear regression for establishment of REGS
predictors based on HBCCL
Combining the elastic net penalty with linear regression
solved the second aim of the statistical analysis (Figure 1).
For the HBCCL panel, this approach established REGS
predictors for C, H, and O capable of estimating the
AUC0 value for a tumour sample, which indicates that
higher values are associated with greater resistance. For
the CGP panel the developed REGS predictor for H was
based on the AUC values.
To account for the two disease origins within the

HBCCL panel an indicator variable was included in the
regression which was 0 and 1 for the DLBCL and MM cell
lines, respectively. This variable was not assigned any
penalty and was therefore included in all models. Because
some diseases are only presented by one cell line in the
CGP panel such an approach was not used in the estab-
lishment of the CGP based REGS predictor for H.
The model parameter α and shrinkage parameter λ were

chosen through leave-one-out cross validation for HBCCL
and 20 fold cross validation for CGP. The α and λ para-
meters were varied from 0.1 to 1 for α and on a log scale
between −0.17 and 7.63 for λ. The optimal configuration
of the parameters was chosen to be the set minimising the
mean squared prediction error (MSPE). Once the optimal
parameters for each drug were chosen and the linear
models were fitted internally from the cell lines, it
was possible to predict resistance indices for the clinical
cohorts. This was done using the median centred and
scaled GEP data as described in section Microarray Pre-
processing. The HBCCL based REGS predictors for the
individual drugs were combined into a single CHO pre-
dictor by the geometric mean.
Evaluation in clinical data
The generated REGS classifiers and REGS predictors
were validated in three clinical cohorts to solve the third
aim of the statistical analysis (Figure 1). The classifications
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and predictions were tested using PFS and overall survival
(OS) as surrogate endpoints for drug resistance.
Comparison of REGS developed using CGP and HBCCL
The REGS classifiers for H based on the HBCCL and
CGP screens were used to assign each patient of IDRC,
LLMPP, and MDFCI a probability of being resistant. The
patients within each dataset were categorised by tertiles
of the range of assigned probabilities and the resulting
categorisations were analysed using Cox proportional
hazards both univariately and adjusted for IPI.
The REGS predictors for H based on the HBCCL and

CGP screens were used to assign a resistance index for
each patient. For each clinical cohort the resistance indi-
ces were analysed using Cox proportional hazards both
univariately and adjusted for IPI. To ensure comparable
risk assessments for the two REGS predictors the CGP
based index was further scaled to have standard devia-
tion equal to that of the HBCCL based index.
Retrospective validation on clinical samples
The REGS classifier for each drug was used to assign
each patient of IDRC, LLMPP, and MDFCI a probability
of being resistant and the probabilities were combined
as described above. The patients within each dataset
were categorised according to tertiles of the range of
assigned probabilities. The predicted categories’ connec-
tion to clinical outcome was investigated using Kaplan-
Meier survival curves and Cox proportional hazards
models as univariate and adjusted for IPI.
The drug specific resistance indices predicted for each

cohort were continuous variables where larger values
indicated more resistance toward the drug. Cox pro-
portional hazards models were used to investigate the
predictive capabilities of the resistance indices in clinical
cohorts. For IDRC and LLMPP, PFS were modelled with
the resistance index as a linear predictor. Since PFS was
not available in MDFCI OS was used instead. The indi-
ces were both used in univariate analyses and adjusted
for IPI. Since the relationship between clinical outcome
and the drug resistance indices may be non-linear,
restricted cubic splines were used to model the relation-
ship. These models were likewise adjusted for IPI. The
Cox proportional hazard analyses were conducted using
the R-packages Hmisc and rms.
The sensitivity and specificity of the REGS classifiers

and predictors were investigated using time dependent re-
ceiver operating characteristics (ROC) curves for cumula-
tive PFS and OS. The performance of the classifier and
predictor based REGS for CHO were compared in terms
of area under the ROC curve. The analyses of ROC curves
were conducted using the R-package timeROC. This pack-
age supports estimation of time dependent ROC curves
for censored data and tests for comparing AUCs of com-
peting REGSs measured on the same data [45,46].
The patients of UAMS were categorised as being sen-

sitive, intermediate, or resistant toward the three drugs
using the REGS classifiers as described above. The
predicted categories were analysed using Kaplan-Meier
survival curves and univariate Cox proportional hazards
models with OS as endpoint. The patients were also
assigned drug specific resistance indices using the REGS
predictors. The relationship between predicted resistance
indices and OS were modelled by restricted cubic splines
and analysed by Cox proportional hazards models.

Differential expression between sensitive and resistant
patient samples
The REGS classifier for CHO performed significantly
better than the corresponding predictor hence differen-
tial expression was investigated for the former. Differen-
tially expressed genes between tumours classified by the
REGS-CHO classifier as sensitive and resistant DLBCL
were detected by the moderated t-test implemented in
the Bioconductor package Limma [47]. The number of
false discoveries was controlled to be 5%. Furthermore,
only genes with a log2 fold change exceeding 1 were
considered relevant.

GO enrichment
Gene ontology (GO) [48] (www.geneontology.org) en-
richment of gene lists was performed by the over re-
presentation analysis implemented in the Bioconductor
package GOStats [49]. The P-values were adjusted by
Holm’s method [50].
For all analyses the significance level was set to 0.05

and the estimated hazard ratios (HR) were given with
95% Confidence Intervals (CI).

Results
Developing the HBCCL resistance index
The dose response experiments were analysed in con-
cordance with Falgreen et al. [19] using the area under
the positive part of the curve AUC0 as summary statistic.
The dose response curves for the three drugs together
with boxplots of the bootstrapped AUC0 summary statis-
tics are shown in Figure 2. For C the AUC0 values for
the DLBCL cell lines ranged from 165 (95% CI: 160,
169) to 346 (339, 348) with SU-DHL-5 and DB as the
most sensitive and resistant, respectively. For the MM
cell lines the AUC0 values ranged from 242 (CI: 240,
242) to 395 (CI: 391, 394) with MM1S and AMO-1 as
the most sensitive and resistant, respectively. For H the
AUC0 values for the DLBCL cell lines ranged from 167
(CI: 163, 179) to 327 (CI: 317, 33) with OCI-Ly19 and
RIVA as the most sensitive and resistant, respectively.
For the MM cell lines the AUC0 values ranged from 227

http://www.geneontology.org


Figure 2 Dose response curves for the CHO screen. In panels A and D dose response curves are shown for the 12 DLBCL and 12 MM cell
lines treated with C. In panels B and E dose response curves are shown for the 14 DLBCL and 12 MM cell lines treated with H. The dose response
curves for 12 DLBCL and 12 MM cell lines treated with O are shown in panels C and F, respectively. Finally, panels G, H, and I show bootstrapped
AUC0 values for C, H, and O, respectively. The colours represent the categorisation of the cell lines into tertiles where green, blue, and red denote
sensitive, intermediate, and resistant, respectively.
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(CI: 226, 235) to 356 (CI: 342, 358) with MM1S and
KMS-11 as the most sensitive and resistant, respectively.
For O the AUC0 values for the DLBCL cell lines ranged
from 54 (CI: 47, 69) to 131 (CI: 121, 134) with OCI-
Ly19 and DB as the most sensitive and resistant, respec-
tively. For the MM cell lines the AUC0 values ranged
from 90 (CI: 79, 96) to 187 (CI: 175, 214) with MM1S and
LP-1 as the most sensitive and resistant, respectively.
The cell lines were ranked and categorised as sensitive,

intermediate, or resistant based on tertiles of the AUC0

values. For C, H, and O the 33% and 66% percentile of
the AUC0 were [222, 279], [223, 274], and [71, 96] for
DLBCL and [306, 324], [295, 330], and [112, 126] for
MM cell lines. For C and O this categorisation gave
eight sensitive and resistant cell lines whereas for H nine
were categorised as sensitive and resistant (Figure 2G,H,
and I).

Cross validating the elastic net logistic regression models
To avoid over-fitting and limit the number of noise con-
tributing genes the elastic net parameters α and λ were
chosen by leave-one-out cross-validation for each of the
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three drugs. The optimal combination of the parameters
and thereby the number of genes were found at the
values where the minimum classification error was
attained. For the HBCCL screen the results of the cross
validation are shown in Additional file 2: Figure S1. For
C the minimum 0.31 was attained at α equal to 0.1 and
log(λ) equal to −2.27 resulting in a REGS classifier con-
sisting of 73 genes. For H the minimum classification
error 0.11 was attained at α equal to 0.1 and log(λ) equal
to −6 resulting in a REGS classifier consisting of 118
genes. Finally, the minimum classification error 0.31 was
attained at α equal to 0.1 and log(λ) equal to 0.54 for O
resulting in a REGS classifier consisting of 32 genes. For
the α value resulting in the minimum classification error
the regularisation curves are shown in Additional file 2:
Figure S2. For the CGP based REGS classifier for H the
minimum classification error 0.31 was attained at α
equal to 0.45 and log(λ) equal to −2.21 resulting in a
REGS classifier consisting of 88 genes. The complete
list of genes used in the classifiers is found in Additional
file 2: Table S2.

Cross validating the elastic net linear regression models
Similar to the regularised logistic regression the elastic
net parameters α and λ were chosen by leave-one-out
cross-validation for each of the three drugs. The optimal
combination of the parameters was found at the values
where the minimum mean square prediction error
(MSPE) was attained. The results of the cross-validation
for the HBCCL screen are shown in Additional file 2:
Figure S3. For C the minimum 2421 was attained at α
equal to 0.3 and log(λ) equal to 1.69 resulting in a REGS
predictor consisting of 27 genes. For H the minimum
MSPE 2083 was attained at α equal to 0.1 and log(λ)
equal to 2.51 resulting in a REGS predictor consisting of
52 genes. Finally, the minimum MSPE 777 was attained
at α equal to 0.1 and log(λ) equal to 45 for O resulting
in a REGS predictor consisting of 21 genes. For the α
value resulting in the minimum classification error the
regularisation curves are shown in Additional file 2:
Figure S4. For the CGP based REGS classifier for H the
minimum classification error 0.03 was attained at α
equal to 0.85 and log(λ) equal to −4.23 resulting in a
REGS classifier consisting of 141 genes. The complete
list of genes used in the predictors is found in Additional
file 2: Table S3.

Comparison of REGSs developed using CGP and HBCCL
The performance of the REGS classifiers and predictors
for H based on HBCCL and CGP were compared using
the three clinical cohorts IDRC, LLMPP, and MDFCI.
The resistance categorisations and indices assigned by
the REGS classifiers and predictors, respectively, were
analysed using Cox proportional hazards models with
progression free survival (PFS) and overall survival (OS)
as clinical endpoints with the results shown in Table 1.
In none of the three datasets did the REGS classifier nor
predictor developed based on CGP perform better than
that developed using HBCCL.

Retrospective validation on clinical samples
The HBCCL based REGS classifier for each drug was
used to assign each patient of IDRC, LLMPP, and
MDFCI a probability of being resistant. Next, the pro-
babilities were combined into a single REGS classifier
for CHO by use of Graham’s formula. The patients
within each dataset were categorised by tertiles of the
range of assigned probabilities for C, H, O, and CHO.
The two large cohorts IDRC and LLMPP were merged

into a single dataset and a likelihood ratio test was used
to determine that cohort origin was not a significant fac-
tor in a Cox proportional hazards model. For CHO the
probabilities and Kaplan-Meier curves for the resistance
categorisations are shown for the merged IDRC and
LLMPP cohort in Figure 3A and D. For MDFCI similar
plots are shown in Additional file 2: Figure S5A and B.
The categorisations were further analysed using Cox
proportional hazards models with PFS and OS as clinical
endpoints. The results for the merged IDRC and LLMPP
cohort are listed in Table 2. For patients classified as
CHO resistant in the merged IDRC and LLMPP cohort,
the risk of progression was 2.3 (95% CI: 1.57, 3.37) times
greater than for those classified as sensitive when ad-
justed for IPI. The results for the individual datasets
IDRC, LLMPP, and MDFCI are listed in Additional file
2: Table S4, showing that the classifications are of prog-
nostic value in all datasets for H, O, and CHO but not
for C solely.
For each patient of IDRC, LLMPP, and MDFCI the

HBCCL based REGS predictor for each drug was used
to assign a resistance index towards each of the three
drugs. The REGS predictors for the individual drugs
were combined into a single CHO predictor by the
geometric mean. Cox proportional hazards models were
used to analyse the relationship between the clinical
endpoints PFS and OS and the predicted resistance indi-
ces. Again the two large cohorts IDRC and LLMPP were
merged into a single dataset and a likelihood ratio test
was used to determine that cohort origin was not a sig-
nificant factor. For the merged IDRC and LLMPP cohort
the results are shown in Table 2 with PFS as endpoint
revealing that an increase in the predicted resistance
index of 10 for CHO was related to a 22% (CI: 9%, 37%)
increased risk of progression. For the individual drugs
an increase in the predicted resistance index of 10 was
related to a 10% (CI: 4%, 16%) and 59% (CI: 30%, 93%)
increased risk of progression for H and O, respectively.
Similarly to the REGS classifier, the REGS predictor



Table 1 Cox proportional hazards analyses of the association between PFS and OS and the classification of the clinical
cohorts for doxorubcin REGS developed using HBCCL or CGP cell line panels

HBCCL CGP

N HR (95% CI) P-value N HR (95% CI) P-value

REGS classifier (univariate)

IDRC (PFS) 470 2.58 (1.72,3.86) 4.37E-06 470 1.54 (1.07,2.22) 0.0211

LLMPP (PFS) 220 2.28 (1.10,4.73) 0.0269 220 1.70 (0.89,3.22) 0.105

MDFCI (OS) 67 4.56 (1.29,16.19) 0.0188 67 0.93 (0.28,3.04) 0.899

REGS classifier (adjusted for IPI)

IDRC (PFS) 424 2.52 (1.64,3.87) 2.65E-05 424 1.46 (0.99,2.16) 0.0562

LLMPP (PFS) 180 2.52 (1.13,5.64) 0.0237 180 1.37 (0.68,2.74) 0.375

MDFCI (OS) 63 4.05 (1.13,14.51) 0.0318 63 0.84 (0.25,2.76) 0.769

REGS predictor (univariate)

IDRC (PFS) 470 1.11 (1.04,1.17) 0.000572 470 1.07 (1.01,1.13) 0.0131

LLMPP (PFS) 220 1.10 (1.00,1.20) 0.0438 220 1.09 (0.99,1.19) 0.0794

MDFCI (OS) 67 1.32 (1.14,1.54) 0.000318 67 0.96 (0.83,1.12) 0.63

REGS predictor (adjusted for IPI)

IDRC (PFS) 424 1.09 (1.03,1.16) 0.00595 424 1.05 (1.00,1.11) 0.0733

LLMPP (PFS) 180 1.11 (1.00,1.23) 0.0433 180 1.04 (0.94,1.15) 0.467

MDFCI (OS) 63 1.34 (1.15,1.57) 0.000237 63 0.95 (0.83,1.07) 0.387

In the multivariate analysis the Cox proportional hazards regression is adjusted for IPI. The estimated HR’s compare patients classified as resistant to patients
classified as sensitive.
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for C was not associated with prognosis. In Additional
file 2: Table S5 the results of these analyses are listed for
the individual datasets. Figure 3B and E show the esti-
mated log relative hazards and associated survival curves
for the resistance indices modelled by an RCS and ad-
justed for IPI with PFS as endpoint for the merged IDRC
and LLMPP cohort. For MDFCI a similar plot is shown
in Additional file 2: Figure S5 with OS as endpoint.
In order to determine which of the REGS for predic-

tion of resistance to the combination therapy CHO per-
forms best, the AUC of the ROC curves were calculated
for the merged IDRC and LLMPP cohort. In terms of
two year PFS the AUC of the REGS classifier was 0.61
(CI: 0.56, 0.66) and 0.57 (CI: 0.52, 0.62) for the REGS
predictor. The performance of the REGS classifier was
significantly better than that of the predictor with a dif-
ference in AUC of 0.045 (CI: 0.01, 0.08). For both the
REGS classifier and REGS predictor the AUC is plotted
against time in Figure 3C and the corresponding dif-
ference is shown in Figure 3E. For MDFCI a similar
plot is shown in Additional file 2: Figure S5 with OS as
endpoint.

Negative control
The University of Arkansas for Medical Sciences (UAMS)
cohort of multiple myeloma patients [37] was used as a
negative control. The resistance levels estimated by the
REGS classifier for CHO are shown in Additional file 2:
Figure S6A. Patients were categorised as sensitive, in-
termediate, or resistant according to tertiles of these
probabilities, and Kaplan-Meier survival curves for the
resulting categorisations are shown in Figure S6D.
Figure S6B and E show the estimated log relative hazards
and associated survival curves for the resistance indices
established by the REGS predictors modelled by an RCS
with OS as endpoint. The performance of the REGS
classifier and predictor is compared in Figure S6C and F
by analyses of ROC curves. In summary, none of the
REGSs were found capable of predicting OS in this inde-
pendent cohort.

Differential expression and GO enrichment in clinical data
First differentially expressed genes between clinical tu-
mours were classified as sensitive or resistant according
to the REGS classifier for CHO. Next, the GO terms that
were overrepresented in these differentially expressed
genes were identified. Finally, the coupling of differen-
tially expressed genes with their GO terms allowed iden-
tification of biological differences (Additional file 3). As
indicated by the high ranking of GO terms associated
with activated immune response (listed from left to right
in Additional file 3) the tumours classified as CHO-
sensitive had a distinct profile of immune response acti-
vation as compared to the resistant ones. Hence, T-cell
receptor signalling (LCP2, FYB, FYN, LAT, TRBC1),
T-cell cytotoxicity (RAB27A, IL7R, CTSC, IL12RB1,



Figure 3 The association between PFS and the predicted level of sensitivity for the combined REGS for CHO in the merged IDRC and
LLMPP cohort. In panel A the probability of being sensitive (one minus the probability of being resistant) according to the REGS classifier is
plotted for each patient. Based on the probabilities the patients are categorised into tertiles with those deemed sensitive, intermediate, and
resistant indicated by green, blue, and red. Kaplan-Meier curves for PFS are shown in panel D. Panel B shows estimated log HR versus predicted
resistance index modelled by an RCS-model with four knots for the REGS predictor for CHO adjusted for IPI. Panel E shows the corresponding
survival curves generated by the fitted Cox proportional hazards regression. The survival curves are generated for the values marked by arrows in
Panel B. Panels C and F illustrate an analysis of ROC curves for prediction of the combination therapy CHO where all curves are shown with
95% CI. Panel C shows AUC under the ROC curves plotted against time for the CHO REGS classifier (green) and predictor (blue). Panel (F) shows
the difference in AUC plotted against time.

Table 2 Cox proportional hazards analyses of the association between PFS and the predicted level of resistance to the
considered drugs in the merged IDRC and LLMPP cohort

Univariate (N = 690) Multivariate (N = 604)

HR (95% CI) P-value HR (95% CI) P-value

REGS classifier

CHO 2.33 (1.64,3.30) 2.05e-06 2.30 (1.57,3.37) 1.78e-05

Cyclophosphamide (C) 0.95 (0.70,1.30) 0.764 0.99 (0.71,1.37) 0.949

Doxorubicin (H) 2.52 (1.77,3.59) 2.81e-07 2.55 (1.74,3.72) 1.29e-06

Vincristine (O) 2.07 (1.48,2.88) 2.04e-05 1.69 (1.19,2.40) 0.003

REGS predictor

CHO 1.22 (1.09,1.36) 0.000353 1.22 (1.09,1.37) 0.0009

Cyclophosphamide (C) 0.97 (0.92,1.02) 0.184 0.98 (0.93,1.03) 0.438

Doxorubicin (H) 1.10 (1.05,1.16) 5.53e-05 1.10 (1.04,1.16) 0.0005

Vincristine (O) 1.67 (1.38,2.01) 9.3e-08 1.59 (1.30,1.93) 4.79e-06

In the multivariate analysis the Cox proportional hazards regression is adjusted for IPI. The estimated HR’s for the REGS classifiers compare patients classified as
resistant to patients classified as sensitive. In contrast, the estimated HR’s for the REGS predictors are based on an increase of 10 in the predicted AUC0.
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CTSH), target cell apoptosis by cytotoxic T-cells and
natural killer cells (GZMB, GZMA, LYZ) and immune
surveillance (CD58 and genes of the MHCII class; e.g.
HLA-DPA1, HLA-DRB1, HLA-DRA, HLA-DQB1, HLA-
DQA1) were up-regulated in the CHO-sensitive tumours.
Of these genes the LCP2, CD58, and GZMA were also
part of the in vitro generated CHO-classifier. Markers of
leukocyte migration within or between different tissues
and organs of the body were more highly expressed in
the CHO-sensitive tumours than in the resistant (CCL2,
CCL5, ICAM1, VCAM1, ITGAM, ITGB2) just as mem-
bers of the Chemokine (C-X-C Motif) Ligand family indu-
cing chemotaxis of T-cells (CXCL9, CXCL10) or B-cells
(CXCL13) were up-regulated. This illustrated that the lo-
cation of tumour cells and their response to chemotherapy
is important and affects sensitivity. Genes involved in
DNA damage response were differentially up-regulated in
the sensitive tumours (FBXO6, RFC5, SOD2) suggesting
that preparedness for keeping DNA undamaged promotes
sensitivity when encountering a drug that causes DNA
damage (CHO) [51-53]. Thus, FBXO6 promotes ubiquiti-
nation and degradation of activated CHEK1 [54] that con-
trols cell cycle checkpoints, cell cycle arrest, DNA repair,
and cell death to prevent damaged cells from progressing
through the cell cycle. Increased levels of CHEK1 in
tumour cells may therefore provide them with a survival
advantage due to the ability to tolerate a higher level of
DNA damage and the tumour cells thereby become
chemotherapy resistant [55]. Here we did not observe dif-
ferences in CHEK1 expression levels among resistant and
sensitive tumours. However, the increased expression in
sensitive tumours of FBXO6, RFC5 that mediates elong-
ation of primed DNA templates by DNA polymerase [56]
and SOD2 that prevents DNA oxidation damage by
destroying superoxide anion radicals [57] support that the
degree of undamaged DNA associates with better chemo-
therapy sensitivity.

Discussion
The aim of the article was to establish a workflow
for generating REGSs capable of predicting the clinical
outcome of cancer patients. The workflow consists of
in vitro drug screens and microarray data of drug naïve
carefully selected cancer cell lines combined with regu-
larised multivariate regression. To exemplify the work-
flow, REGS were developed for patients suffering from
the haematological malignancy DLBCL treated with
R-CHOP first line therapy. To do this, gene expression
data were established for the HBCCL panel and each cell
line were tested successively for resistance toward C, H,
and O at least in triplicates.
REGS for H developed using HBCCL was initially

compared to REGS developed using CGP [15]. The
REGS classifiers for H based on HBCCL and CGP
contained 118 and 88 genes, respectively, of which the 7
genes: CDKN2A, KCTD12, DPYD, MEST, TIMP2, VIM,
and RIMS3 were in common. The REGS predictors for
H based on HBCCL and CGP utilised 52 and 141 genes,
respectively, of which the following six were in common:
CDKN2A, DPYD, GLUL, NRN1, TIMP2, and VIM.
The performance of the REGSs was compared using
the clinical cohorts IDRC (n = 470), LLMPP (n = 233),
and MDFCI (n = 67) consisting of patients treated with
R-CHOP first line therapy. In none of the performed
analyses did the REGS based on CGP perform better
than those established using HBCCL. Consequently, it
seems that REGSs developed using carefully selected
origin specific cell lines analysed to the requirements of
[19] can be superior in prognostic value as compared to
those developed using large-scale studies covering many
different cancer forms [15-18].
In order to generate REGS for the combination therapy

CHO, the individual drugs C and O were also screened
using the HBCCL panel. The regularised logistic regres-
sion resulted in REGS classifiers utilising 73 genes for C
and 32 for O and regularised linear regression resulted in
REGS predictors utilising 27 genes for C and 21 for O.
The REGS classifiers for C, H, and O were combined
using Graham’s formula whereas the REGS predictors
were combined by the geometric mean, as these do not
generate probabilities. The REGSs were evaluated for pre-
dictive power in clinical cohorts with PFS and OS used as
surrogate endpoints for the efficacy of R-CHOP. The
classifier and predictor based REGSs for CHO, H, and O
were able to predict patient outcome, whereas predictions
based on C alone were not. Thus, despite the fact that the
roles of the antibody rituximab and the steroid prednisol-
one have not been taken into account, the REGS for CHO
generated predictions significantly associated with prog-
nosis. By use of time dependent ROC curves the per-
formance of the REGS classifier for CHO were found
significantly better than that of the REGS predictor.
Finally, neither of the established REGSs were able to
predict outcome in multiple myeloma patients (UAMS
cohort) suggesting that the established REGSs were
treatment-specific.
Lack of successful REGS-cyclophosphamide (C) clas-

sification could depend on absence of stromal cells in
our in vitro screening model since it has recently been
observed that the cytotoxic mechanism of cyclophos-
phamide might be through release of stress-related
cytokines from the malignant cells, thereby attracting
macrophages into the microenvironment of the tumour
and potentiating antibody-specific killing [58]; properties
that were not included in our in vitro dose response ex-
periments and perhaps explain why our REGS classifier
for C of clinical de novo DLBCL cases did not possess
prognostic impact.
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Methodological considerations
Despite of the controversy associated with the develop-
ment of in vitro REGSs for prediction of resistance to
chemotherapeutics [8], we were still encouraged to ex-
plore the possibility of establishing cell line derived
REGSs for prediction of the efficacy of C, H, and O in
DLBCL. Contrary to earlier undertakings of the chal-
lenge the dose response curves in our study were estab-
lished using a method that accounts for the individual
cell lines’ growth rate and AUC0 was used as summary
statistic. This may have aided generation of the success-
ful REGSs with prognostic potential.
The Affymetrix Genechip HG-U133 Plus 2.0 typically

contains several probe sets probing the same gene.
Handling these redundant probe sets requires careful
consideration. However, as studied by Bourgon et al.
[59] independent filtering can increase detection power
in high-throughput experiments. Similar to [4,60] we
chose the most variable probe set for each gene as a rep-
resentative in this article.
Due to the high dimensionality of the Affymetrix Gen-

echip HG-U133 Plus 2.0 array, genes that contribute
only noise to the clinical predictions are unavoidable. To
minimise the influence of such genes the elastic net pen-
alty was used to generate sparse REGSs with the number
of contributing genes chosen by leave-one-out cross
validation.
In our study, the generated REGSs did not have pre-

dictive power for C. Hence, these REGSs may require
use of other toxicity measures than AUC0 reflecting
other biological mechanisms. As drug screen assays used
for the dose response experiments depends on inhibition
of cell proliferation, other biological functions such as
apoptosis and DNA repair are likely to be involved in
the efficacy of the drugs. Optimally this should be taken
into account when developing REGSs based on other
mechanisms of out-read parameters.
The established REGS classifier and predictor for

CHO were generated using equal weights for the three
individual drugs since dose response screens were per-
formed for individual drugs only and not in combi-
nation. Most likely, the performance could be optimised
taking into account experimental based weighting
schemes where the impact of C, H, and O were ranked
individually and where the effects of drug combinations
were determined.
The REGS predictors were combined by the geometric

mean of the resistance indices. The geometric mean was
used, as opposed to the arithmetic mean, because the re-
sistance indices for the three drugs differed in scale. The
REGS classifiers were combined using Graham’s formula
under the assumption of independence. Other methods for
combining probabilities of resistance have previously been
considered. Also under the assumption of independent
drug effects, Havaleshko et al. [11] suggested combining
the probabilities as PA PB where PA and PB are the prob-
abilities of being resistant towards two drugs: A and B.
However, as noted by the authors, the resulting proba-
bilities are optimistic. Say the probability of being resistant
to drugs A and B is 0.5, then the combined probability of
resistance is 0.25. Liedtke et al. [12] suggested to evaluate
each drug independently and summarise the result by
counting the number of drugs a patient was resistant to-
wards. However, this method disregards the numeric value
of the probability, i.e. a probability of 0.51 is given the same
weight as 0.99.
The use of logistic regression resulted in REGS classi-

fiers capable of estimating the probability of a patient be-
ing sensitive or resistant to each of the three drugs. This
can be done for multiple drugs making it possible to find
those towards which the patient is most likely to be sensi-
tive. However, to use logistic regression the cell lines were
categorised into three groups and only the most sensitive
and resistant were used to develop the classifier. Further-
more, the numeric value of the summary statistic AUC0

was discarded in favour of a dichotomous sensitivity score.
As described by Royston et al. [61] such an approach may
be suboptimal as not all information is utilised, which
supported our strategy to also include REGS predictors
exploiting the continuum of dose response data. REGS
predictors based on linear regression utilises all of the
available cell lines without categorising them into groups.
However, assignments made from such REGSs do not re-
sult in estimates of the probability of patients being sensi-
tive or resistant. Instead the REGSs are used to generate
an index for which high numbers are associated with re-
sistance and low numbers with sensitivity. This problema-
tises comparison of individual patients’ resistance levels
toward multiple drugs and thereby finding those most
likely to be beneficial. Nevertheless, for whole cohorts of
patients it is possible to find the drugs where the indi-
vidual patient is predicted to be within the group of most
sensitive. Thus, for cohorts of patients, the REGS predic-
tors also point to the drugs that most likely will be benefi-
cial for the given patient.
Both logistic and linear regressions are thus associated

with strengths and weaknesses. Hence, both regression
methods were used and compared in this paper. The pre-
dictions based on the two approaches were investigated
using time dependent ROC curves for cumulative PFS.
Logistic regression performed significantly better than
linear regression prompting us to encourage the use of
regularised logistic regression for developing REGS be-
cause of increased performance and interpretation.

Conclusion
REGSs were developed for the purpose of predicting re-
sponse to C, H, O, and CHO using a focused B-cell cell
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line panel and regularised multivariate regression tech-
niques. By applying these REGSs to clinical cohorts with
known outcomes, we found that REGSs developed for
CHO, H and O, but not C, were capable of predicting a
higher risk of disease progression and death. The clinical
perspectives of the present study are encouraging. Al-
though the REGS method is far from implication in clin-
ical practice the possibility of predicting treatment
response before first cycle of chemotherapy would re-
present a paradigm shift. The advantages are obvious:
1) currently used clinical risk stratification in DLBCL
(IPI) predicts outcome of groups of patients and not for
individual patients, 2) early PET/CT assessed chemosen-
sitivity and tumour cell kill after few cycles of chemo-
therapy is not optimal as patients receive two to three
cycles of toxic therapy before awareness of refractori-
ness. REGSs could potentially enable effective treatment
for the individual patient from the beginning.

Additional files

Additional file 1: Text S1. KnitR document containing the analysis
conducted in R.

Additional file 2: Contains supplementary figures and tables.

Additional file 3: A table containing all genes differentially
expressed between CHO resistant and sensitive patients with a log
2 fold change exceeding 1. The table also contains GO terms where
the genes are significantly overrepresented. These GO terms are arranged
from left to right according to descending significance.
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