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Abstract

reduced ROS levels by 11-33%.

for GBM.

Background: Glioblastoma (GBM) is the most malignant primary brain tumor in adults, with a median survival time
of one and a half years. Traditional treatments, including radiation, chemotherapy, and surgery, are not curative,
making it imperative to find more effective treatments for this lethal disease. y-Glutamy! transferase (GGT) is a family of
enzymes that was shown to control crucial redox-sensitive functions and to regulate the balance between proliferation
and apoptosis. GGT7 is a novel GGT family member that is highly expressed in brain and was previously shown to have
decreased expression in gliomas. Since other members of the GGT family were found to be altered in a variety of cancers,
we hypothesized that GGT7 could regulate GBM growth and formation.

Methods: To determine if GGT7 is involved in GBM tumorigenesis, we modulated GGT7 expression in two GBM cell lines
(U87-MG and U138) and monitored changes in tumorigenicity in vitro and in vivo.

Results: We demonstrated for the first time that GBM patients with low GGT7 expression had a worse prognosis
and that 87% (7/8) of primary GBM tissue samples showed a 2-fold decrease in GGT7 expression compared to
normal brain samples. Exogenous expression of GGT7 resulted in a 2- to 3-fold reduction in proliferation and
anchorage-independent growth under minimal growth conditions (1% serum). Decreasing GGT7 expression using
either short interfering RNA or short hairpin RNA consistently increased proliferation 1.5- to 2-fold. In addition, intracranial
injections of U87-MG cells with reduced GGT7 expression increased tumor growth in mice approximately 2-fold, and
decreased mouse survival. To elucidate the mechanism by which GGT7 regulates GBM growth, we analyzed reactive
oxygen species (ROS) levels in GBM cells with modulated GGT7 expression. We found that enhanced GGT7 expression

Conclusion: Our study demonstrates that GGT7 is a novel player in GBM growth and that GGT7 can play a critical role in
tumorigenesis by regulating anti-oxidative damage. Loss of GGT7 may increase the cellular ROS levels, inducing GBM
occurrence and growth. Our findings suggest that GGT7 can be a promising biomarker and a potential therapeutic target
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Background

Glioblastoma (GBM) is the most common and aggres-
sive malignant primary brain tumor in humans, com-
prising 60-75% of all astrocytomas and 17% of all
primary intracranial tumors [1]. Despite multimodal
treatment options, the prognosis for GBM patients is
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extremely poor, with a median survival time of ~16
months [2-4]. Because of the severity and lethality of this
disease, identifying novel pathways is paramount in
developing more effective therapies.

The GGT family is comprised of 13 enzymes that are
involved in glutathione metabolism and whose expres-
sions are altered in numerous human malignancies
including breast, uterine, and lung cancer and leukemia
[5,6]. The GGT family modulates crucial redox sensitive
functions such as anti-oxidant/anti-toxic defense and
cellular proliferative/apoptotic balance suggesting that it
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plays an important role in tumor progression, invasion,
and drug resistance [7]. Currently, there are no reports
linking GGT to GBM.

GGT7 (formerly GGTL3, GGTL5) is a novel member
of the GGT family that has not been widely studied.
GGT7 shares a 47% and 52% similar amino acid se-
quence to its more well characterized family members
GGT1 and GGT5, respectively [6]. While similar, GGT7
may have a novel function as a result of the high vari-
ation in its light chain, compared with GGT1 and
GGTS5, resulting in altered substrate binding. This dis-
crepancy was evident when only GGT7 was found to
interact with proteins associated with lung cancer, indi-
cating it could play a role in cancer progression [8].
GGT?7 also differs from the other GGT isoforms, since it
is the only isoform to have ~20-fold higher mRNA
expression in the brain compared with other normal
tissues [9] and has decreased expression in gliomas com-
pared with the normal brain [10]. These previous find-
ings suggest that GGT7 could play an important role in
GBM growth.

To determine if GGT7 is involved in GBM tumorigen-
esis, we modulated GGT7 expression in two GBM cell
lines, U87-MG and U138. We determined that transduc-
tion of GBM cells with GGT7 resulted in a 2-3-fold reduc-
tion in both proliferation and anchorage-independent
growth when the cells were cultured under low serum (1%)
conditions, demonstrating that GGT7 regulates GBM
growth. To confirm these findings, GGT7 expression was
reduced by introducing short interfering RNA (siRNA) or
short hairpin RNA (shRNA) specific to GGT7. Reducing
GGT7 expression using siRNA or shRNA increased GBM
cell proliferation in vitro. Consistently, intracranial injec-
tions of U87-MG cells stably transduced with shRNA to
GGT7 resulted in an increase in tumor size and a decrease
in mouse survival. To elucidate the mechanism by which
GGT7 regulates GBM tumorigenesis, we analyzed the abil-
ity of GGT7 to modulate crucial redox-sensitive cellular
functions. We demonstrated that enhanced expression of
GGT7 reduced the levels of reactive oxygen species (ROS)
by 11-33%, indicating that GGT7 can protect cells from
oxidative damage. Our study demonstrates for the first
time that GGT7 plays an important role in GBM prolif-
eration and could be a novel biomarker and therapeutic
target for GBM.

Methods

Cell lines and primary GBM tissue

Cell lines U87-MG and U138 (American Type Culture
Collection, Manassas, VA) were cultured in Dulbecco’s
modified Eagle medium (DMEM), supplemented with 10%
or 1% fetal bovine serum (FBS) and 2 mM L-glutamine. All
cells were maintained at 37°C in 5% CO, Primary GBM
and normal brain samples were provided by Samuel
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Cheshier, MD. The normal brain was harvested from the
temporal lobe of a patient undergoing anterior temporal
lobectomy for removal of mesial temporal sclerosis. The
tissue was immediately frozen in dry ice and later thawed
for harvesting of protein lysate. Human specimens were
obtained from adult patients who signed an informed con-
sent. The study protocol was approved by Stanford Univer-
sity Human Subjects Research and Institutional Review
Board (IRB-18672). Phoenix cells were kindly provided by
the Nolan lab (Stanford University) and cultured under
similar conditions as stated above.

Kaplan-Meier survival curve

The Kaplan-Meier survival curve was derived using the
National Cancer Institute REMBRANDT data source.
The GBM patients were separated into high or low
GGT7 expression and graphed according to patient sur-
vival. The survival curves were derived using the http://
genedesk.ucsd.edu/home/ website. Log-rank test was
used to determine the statistical significance.

Gene expression profiling from primary GBM samples

For two GBM tumor panels and one normal brain panel,
we used the Affymetrix U133 Plus 2.0 Microarray
(Affymetrix, Santa Clara, CA) to analyze mRNA expres-
sion in primary samples. An analysis by Murat et al. [11]
contained 84 GBM samples derived from primary
tumors and an analysis by Lee et al. [12] contained 101
primary GBM samples. The normal brain gene expres-
sion profile contained 173 samples for different regions
of the brain, including the hippocampus, entorhinal cor-
tex, superior frontal gyrus, and postcentral gyrus [13].
The expression data were normalized with the MAS5.0
algorithm within the Affymetrix GCOS program. All
data were analyzed using the R2 bioinformatic tool
(http://r2.amc.nl). The expression was transformed to
2log and graphed as a boxplot. The single factor analysis
of variance was used to compare the means of the differ-
ent groups and determine the statistical significance.

Western blot

For protein analysis, protein extracts from cells were
harvested and immunoblotted as previously described
[14]. The following antibodies were used for immuno-
blotting: GGT7 (ab129395; Abcam, Cambridge, MA)
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
(14C10; Cell Signaling Technology, Beverly, MA).
Enhanced Chemiluminescence Substrate (PerkinElmer,
Waltham, MA) and Gene GNOME (Syngene, Frederick,
MD) were used for visualization. Chemiluminescence sig-
nals were quantitated using NIH Image ] (National
Institutes of Health, Bethesda, MD). All experiments were
conducted in triplicate where a representative image was
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used to demonstrate the findings. The statistical signifi-
cance was determined using 2-sided ¢ tests.

Retroviral and lentiviral infections

The retrovirus pMSCV-YPet was generated by subclon-
ing YPet from the pCEP4-YPet plasmid into the pMSCV
backbone. Retroviral infections were carried out as pre-
viously described [14]. Thirty-six hours after infection,
the infected cells were selected by culturing for 2 days in se-
lective medium containing 0.5 pg/mL puromycin. Lentiviral
infections were conducted using the pTRIPZ shGGT7 plas-
mid (RHS4696-200683561; Thermo Fisher Scientific,
Waltham, MA) in a manner similar to that described with
the retrovirus, except the packaging plasmids, psPAX2
and pMD2.G, and Mirus TransIT-LT1 (MIR2300;
Mirus Bio?, Madison, WI) were used. Thirty-six hours
after infection, the cells were selected using 0.5 pg/ml
puromycin for 3 days.

RNA interference

U87-MG and U138 cells were transfected with 25 nM
GGT7 (SI00427126; Qiagen, Valencia, CA) or non-
specific control siRNA (4390843; Ambion Inc., Austin
TX) for 24 h, using DharmaFECT transfection reagent 1
(T-2001-02; Thermo Fisher Scientific), according to the
manufacturer’s protocol. The lentiviral inducible shRNA
plasmid, pTRIPZ, was used to express shRNA to the
gene GGT7.

Cell growth analysis

U87-MG- and Ul38-infected cells were plated in six-
well plates (5x10° cells per well) and cultured in
DMEM supplemented with 10% or 1% FBS. The number
of live cells was counted daily for several days using the
trypan blue exclusion assay or cell titer blue assay. On
the last day, collected cells were subsequently harvested
and subjected to Western blot analysis to determine pro-
tein expression. Experiments were done in triplicate and
results are expressed as mean+ SD. The statistical
significance was determined using a 2-sided ¢ test.

Soft agar assay

U87-MG-infected cells were plated in six-well plates
(3x10° cells per well) and suspended in DMEM with
10% or 1% FBS as previously described [14]. The presence
of colonies was scored after 10 days using Genetools soft-
ware (Syngene) or counted manually with a compound
light microscope. Experiments were done in triplicate and
results are expressed as mean + SD. The statistical signifi-
cance was determined using a 2-sided ¢ test.

Detecting cellular ROS
U87-MG- and Ul138-infected cells were plated in a 96
well plate (3 x 10° cells per well) and were suspended in
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DMEM with 10% or 1% FBS. After 24 h, cells were
stained with DCFDA according to the manufacturer’s
protocol (ab113851; Abcam). TBHP was used to induce
ROS damage. ROS levels were normalized per cell count
using cell titer blue to stain cells for 3 h. Fluorescence was
read with a FLUOstar Omega plate reader at Ex 485 nm/
Em 520 nm for DCFDA, and at Ex 544 nm/Em 590 nm for
cell titer blue. Experiments were done in triplicate and
results are expressed as fold change + SD. The statistical
significance was determined using a 2-sided ¢ test.

Generation of intracranial xenografts

100,000 U87-MG shGGT7 cells were intracranially
transplanted into 6-8-week-old NSG mouse brains using a
stereotactic frame 2-mm posterior to the bregma, 2-mm
lateral to the midline, and 3—-4 mm deep with respect to
the skull. Mice were monitored daily until overt neuro-
logical defects were observed. The brains were then
harvested for analysis. 10 mice per treatment group
and the statistical significance were determined using a
log rank test.

Bioluminescent imaging

Bioluminescent imaging was performed 15 days after
U87 shGGT7 cells were injected on an IVIS Spectrum
(Caliper Life Science) and quantified using Living Image
4.0 software. D-Luciferin (firefly) potassium salt solution
(Biosynth, Itasca, IL) was prepared (16 mg/mL) and
injected intraperitoneally (0.139 g luciferin per
kilogram body weight). Total luminescence (photons
per second) was obtained by imaging mice until peak
radiance was achieved.

Results

GBM patients with decreased GGT7 expression have
worse prognoses

To determine if GGT7 is involved in GBM proliferation, we
conducted a preliminary prognosis analysis of GGT7 ex-
pression in GBM patients using the Repository of Molecular
Brain Neoplasia Data (REMBRANDT). After sorting the
GBM patients into high or low GGT7 expression, our find-
ings suggest that GBM patients with high GGT7 expression
had a better prognosis compared with their low-expressing
counterparts (P=0.02) (Figure 1A). This initial finding
suggests that loss of GGT7 may contribute to the growth of
GBM.

GBM primary samples have reduced expression of GGT7

Since GGT7 is the only GGT family member highly
expressed in the brain to any extent, we compared its
expression between primary GBM tissue and normal
brain [9]. The analysis was done using the R2 microarray
analysis and visualization platform (http://r2.amc.nl).
The platform analyzed previously conducted microarray
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expression data and normalized expression levels with the
MAS5.0 algorithm within the Affymetrix GCOS program.
The expression was then transformed to 2log and graphed
as a boxplot. The single factor analysis of variance was used
to compare the means of the different groups and deter-
mine the statistical significance. We discovered that, com-
pared with an expression data set containing 172 normal
brain sections, GGT7 expressionwas significantly increased
when compared with a dataset derived from 84 primary
GBM patient samples (P = 3.7 x 10"°) (Figure 1B). We also
analyzed a data set that contained 101 GBM cell samples
that were derived from GBM patients [12]. We consistently
saw a reduction in GGT7 expression that was statistically
significant (P=1.3x10®) when compared with normal
brain. To determine if the decrease was specific to GGT7,
we also analyzed GGT1 and GGT5 expression. We discov-
ered that GGT1 had a modest reduction in the immortal-
ized GBM cell data set, but no significant change in the
primary GBM samples (Additional file 1: Figure S1). GGT5

had no significant change in either data set compared with
the normal brain samples (Additional file 1: Figure S1). The
microarray findings were confirmed by analyzing GGT7
protein expression in eight primary GBM samples. We
demonstrated that 87.5% (7/8) of the GBM samples had a
~2- to ~25-fold decrease in GGT7 protein expression
compared with two normal brain samples (Figure 1C). The
two normal brain samples had a similar GGT7 expression
with only a 1.08-fold difference (Data not shown). Our find-
ings suggest that loss of GGT7 correlates with enhanced
GBM growth.

Overexpression of GGT7 decreased GBM tumorigenic
phenotypes

To determine if GGT7 plays an important role in GBM
tumorigenesis, we generated two immortalized GBM cell
lines (U87-MG and U138) that were stably transduced
with GGT7. Western blot analysis confirmed that U87-
MG cells expressed exogenous GGT7 (U87-pMSCV
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GGT7) compared with the control vector-infected cells
(U87-pMSCV) (Figure 2A). We also observed a 3-fold
increase in GGT7 expression in the U138 infected cells
(U138-GGT7) compared with the control cells (U138-
pMSCV) (Figure 3A). Enhanced expression of GGT7
had no significant effect on the proliferation of U87-
GGT7 cells compared with the control cell line when
the cells were cultured under normal serum conditions
(10% serum) (Figure 3B). When the cells were cultured
with 1% serum, however, we observed a 2-fold decrease
in cell growth, suggesting that GGT7 can regulate GBM
growth when the cells are metabolically stressed. We
observed a similar trend when the U138-GGT7 cells
were cultured under normal serum conditions and
serum-starved conditions (Figure 3C). To expand on
these initial findings, we also studied the ability of U87-
GGT7 cells to grow under anchorage-independent con-
ditions. We discovered that these cells grown with 1%
serum had a 3-fold decrease in the number of colonies
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compared with the control cells (Figure 3D). A 3-fold
reduction in the number of colonies was also observed
when the U87-GGT7 cells were grown under normal
conditions (Figure 3D). Our data suggest that when
GBM cells are metabolically stressed, enhanced expres-
sion of GGT7 decreases GBM tumorigenesis.

Reduced GGT7 expression increased GBM cell
proliferation

To confirm the importance of GGT7 in GBM growth,
we reduced GGT7 expression using siRNA specific to
GGT7 (siGGT7). Introduction of siGGT7 into U138
reduced expression of endogenous GGT7 by 2-fold com-
pared with the scramble control (siScram) resulting in a
1.5-fold increase in cell growth under low serum condi-
tions (1%), and a minimal change when the cells were
grown under 10% serum conditions (Figure 2A-C). We
verified this finding by reducing exogenous GGT7
expression in the U138-GGT7 cells. We demonstrated
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Figure 2 Reducing GGT7 expression increases GBM cell growth in vitro. (A) siRNA to GGT7 (siGGT7) reduced endogenous GGT7 protein
expression compared with the siScram. GAPDH was used as a protein load control. Fold difference is represented below each blot. (B) Growth of U138 cells
with reduced GGT7 expression under normal (10% serum) conditions. (C) Cell growth under low nutrient (1% serum) conditions. (D) Anchorage-independent
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that reducing exogenous GGT7 expression 5-fold
restored cell proliferation to a similar level as the unin-
fected U138 cells (Additional file 2: Figure S2A and B).
Since siRNAs can have off-target effects, we generated a
shRNA inducible to GGT7 in U87-MG and U138 cells
(shGGT7) to confirm our siGGT7 finings. Upon doxy-
cycline (Dox) induction (shGGT7 + Dox), GGT7 protein
expression was reduced ~3- and ~6-fold in U87-MG
and U138 shGGT7 cells, respectively, compared with the
uninduced control (shGGT7 -Dox) cells (Figure 4A).
The U87 shGGT7 + Dox cells had a small increase in
growth under normal growth conditions (10% serum)
(1.4-fold), while a more significant increase was observed
under 1% serum conditions (2.1-fold) (Figure 4B). We
observed similar findings in U138 shGGT7 cells. Prolif-
eration of these cells was increased by 1.5-fold when the
cells were cultured with 10% serum and 2.5-fold with 1%
serum (Figure 4C).

Decreased expression of GGT7 increased tumor growth
and reduced mouse survival

To determine if GGT7 plays a functional role in GBM
tumorigenesis, we conducted in vivo tumor growth

assays in NOD SCIDy (NSG) mice. To monitor GBM
growth in vivo, we stably transduced U87 shGGT7 cells
with green fluorescent protein-luciferase. We pretreated
the U87 shGGT?7 cells with Dox and performed intracra-
nial injections into the NSG mice. After injection of the
cells the mice were not given additional Dox. The mice
were injected with 100,000 U87 shGGT7 + Dox or U87
shGGT7 -Dox cells. Tumor growth after implantation
was monitored using the IVIS (Caliper Life Sciences,
Alameda, CA) in vivo live imaging system as measured
by luminescence levels. Fifteen days after injection, mice
with U87 shGGT7 + Dox cells presented a 2-fold in-
crease in luminescence compared with the shGGT7
-Dox controls. Although the findings were not statisti-
cally significant (P = 0.08), our data strongly suggest that
decreased expression of GGT7 increases GBM tumor
growth in vivo (Figure 4D,E). To expand on this finding,
we also monitored post-injection survival. The mice
injected with U87 shGGT7 + Dox cells had a lower sur-
vival compared with the mice injected with U87
shGGT7 -Dox cells, with the median survival time after
tumor implantation increasing from 25 days to 33 days
(P =0.02) (Figure 4F).



Bui et al. BMC Cancer (2015) 15:225 Page 7 of 9

>
w
(@)

shGGT7 s ,
~ K % 10% S -Di #%10% Si D
u87-MG _U138 § , | "i%SewmDo a1 Senmsbor §,,  sismmDor i Senm-dor
Q Q &
% 5 x 5 : :
o] Do [] 8 2151 g 2
5 N
Qz + D. + - 215
H 2 1 7
-GGT7  Zos g
2 5
w 7 = 05 -
0 . T . =
1.00 0.28 1.00 0.16 1 2 3 g, ‘
— Days 1 2 3
— i e e -CAPDH pays

O
m

1.1>40% 4
3 L -
=
Dox Neg | 3 3
N~ ) ; S B 3.4x10°7 o °
= L ‘ 0 u
© { g2 °
(©) ] £ o
S | poxpos ‘ ! E S 1.040%
‘ e o . . <)
3 X ) <
‘ £
[ ]
3.3x10% T T
F Dox Neg Dox Pos
150+
-+-- Dox Neg
= —— Dox Pos
2
S 100 -
3 i
0 i
i
o 504 i
@ v
o ity
!
i
0n. :
0 T T y 1
0 10 20 30 40

Days elapsed

Figure 4 Reducing GGT7 expression increases GBM cell growth in vivo. (A) GBM cells with a Dox-inducible shRNA to GGT7 (shGGT7)

reduced endogenous GGT7. GAPDH was used as a protein load control. Fold difference is represented below each blot. Cell growth of U87 (B) and U138
(C) shGGT7 cells induced with Dox under normal nutrient (10% serum) and low nutrient (1% serum) growth conditions. (D) NSG mice were injected with
U87 shGGT7 cells transduced with green fluorescent protein-luciferase. Luminescent mouse images were obtained 15 days after injection. (E)
Luminescence levels were shown using a box-whisker plot showing quantitated luminescence (photons/sec) levels. (F) Survival curve of mice

injected with U87 shGGT7 cells treated with Dox (Dox pos) or vehicle control (Dox neg).

GGT7 protected cells from ROS activity

Previous research has shown that the GGT family can
regulate the cell’s ability to handle oxidative stress [15].
To determine whether GGT7 functions as an anti-
oxidant, we monitored ROS activity using a fluorescent
assay. The GBM cells transduced with GGT7 were
treated with tert-butyl hydroperoxidase (TBHP), a
known ROS inducer, and ROS levels were measured using
2,7’-dichlorofluorescin diacetate (DCFDA). We discovered
that under normal growth conditions (10% serum), U87-
GGT7 cells had a 15% reduction in ROS activity compared
with the control cells treated with TBHP, while U138-
GGT7 cells demonstrated a 33% reduction when com-
pared with the control cells (Figure 5A). When we ana-
lyzed our cells under 1% serum conditions we discovered
that ROS levels were ~3-fold higher than the levels under

10% serum conditions in all the cell lines. This finding
was consistent with previous reports demonstrating that
serum deprivation conditions increase ROS activity [16].
Surprisingly we observed a similar decrease in ROS activity
under low serum conditions, culminating in a 15% reduc-
tion in U87-GGT7 cells and a 20% decrease in U138-GGT7
cells (Figure 5B). Our findings indicate that GGT7 could
play an important role in the anti-oxidative defense of cells.

Discussion

Little is known about the function of GGT7 or whether it
plays a role in tumorigenesis. We demonstrated for the first
time that GBM patients with low GGT7 expression had a
worse prognosis and that 87% of the primary GBM samples
tested had reduced GGT7 expression (Figure 1A). By
modulating GGT7, we demonstrated that the loss of this
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enzyme increased cellular proliferation and in vivo tumor
growth and decreased survival in mice injected intracrani-
ally with U87-MG cells (Figure 4). Cells transduced with
GGT7 consistently had decreased levels of growth
(Figure 3). These growth changes were more evident when
the cells were cultured under low serum conditions
(Figure 3). To elucidate the mechanism by which GGT7
could be regulating GBM tumorigenesis, we studied ROS
levels in our cells with modulated GGT7 expression. We
found that enhanced GGT7 expression reduced ROS levels,
indicating that GGT7 might behave as a regulator of oxida-
tive damage (Figure 5). Our study demonstrates for the first
time that GGT7 is a novel player in GBM growth and that
GGT7 plays a critical role in tumorigenesis by regulating
the anti-oxidative damage occurring within the tumor cells.

There is growing awareness that oxidative stress can play
a major role in cancer [17]. ROS can cause oxidative dam-
age to tumor suppressor genes and enhance expression of
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proto-oncogenes. Moreover, oxidative stress has been
shown to induce malignant transformation of cells in
culture [18,19]. ROS are potential carcinogens because they
facilitate mutagenesis, tumor promotion and progression.
In addition, increased levels of ROS were found to have
growth-promoting effects through redox-responsive cell
signaling cascades. Normal and tumor cells were shown to
have increased proliferation and expression of growth-
related genes if exposed to elevated ROS levels [20]. Our
findings suggest that GGT7 could play an integral role in
GBM tumorigenesis by regulating the oxidative damage
that occurs within glial cells. Loss of GGT7 could increase
the levels of ROS damage, thereby increasing the occur-
rence or growth of GBM, resulting in the worse prognosis
we observed (Figure 5).

The role of GGT in oxidative stress is well studied and
provides some interesting questions. Previous studies sug-
gest that the GGT family could exert both pro- and anti-
oxidant effects [15]. GGT was shown to play a key role in
glutathione homeostasis by breaking down extracellular
glutathione and providing cysteine, the rate-limiting sub-
strate for intracellular synthesis of glutathione [21]. Gluta-
thione is a well-established anti-oxidant, and levels of
intracellular glutathione increased by GGT were found to
decrease ROS levels [22]. However, GGT was shown to also
produce cysteinyl-glycine through cleavage of extracellular
glutathione. Cysteinyl-glycine can reduce ferric iron (Fe**)
to ferrous iron (Fe**), resulting in an iron redox cycle that
produces ROS [23]. The contradictory functions of GGT
may be attributable to each GGT family member having a
different enzymatic function. Structurally, GGT is com-
posed of a heavy chain, which anchors the enzyme to the
cell membrane, and a light chain, which regulates GGT en-
zymatic activity through glutathione binding. The difference
between GGT7 and GGT1/5 occurs in the light chain, indi-
cating that GGT7 might be able to bind extracellular gluta-
thione with greater affinity, allowing for more reuptake of
glutathione, thereby generating more intracellular glutathi-
one and thus, greater antioxidant activity [6].

In addition, GGT7 may play a role in regulating GBM
tumorigenesis beyond monitoring cellular thiol metabol-
ism. Previous research has shown that modulating
GGT1/5 expression will alter growth capacity, but these
effects were not attributed to changes in cysteine or
glutathione levels [24]. Instead GGT7 may protect GBM
cells by inactivating other harmful metabolites that accu-
mulate during cellular growth or by regulating as of yet
unknown oncogenic protein. Additional studies are
needed to determine if GGT7 can play a protective role
outside of regulating cellular ROS levels.

Conclusions
Through our study, we demonstrate that GGT7 can play
a key role in regulating GBM growth and survival
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in vitro and in vivo. In addition, we have elucidated the
mechanism by which GGT7 can prevent tumorigenesis by
regulating ROS levels within GBM cells. Loss of GGT7
would lead to increased ROS activity, and in turn, stimulate
tumorigenic phenotypes. Our findings are novel because
they show for the first time that GGT7 can be used as a
biomarker for GBM prognosis, and as a potential thera-
peutic target by reducing oxidative damage within cells.

Additional files

Additional file 1: Figure S1. Expression of GGT1 and GGT5 in primary
GBM samples. Expression of GGT1 (A) and GGT5 (B) using the R2
microarray analysis and visualization platform (http://r2.amc.nl). Normal
brain samples consisted of 173 tissue samples, GBM cells samples
consisted of 84 cell lines derived from GBM patients, and the primary
GBM samples consisted of 101 primary GBM tissue samples. *-denotes a
sample that resided outside the 95% confidence interval.

Additional file 2: Figure S2. Reducing exogenous GGT7 expression
increases GBM cell growth in vitro. (A) siRNA to GGT7 (siGGT7) reduced
exogenous GGT7 expression compared with scrambled control (siScr).
GAPDH was used as a protein load control. Fold difference is represented
below each blot. (B) Cell growth of U138-GGT7 with reduced expression
of GGT7 under low nutrient growth conditions.
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