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Abstract

Background: To date, there have been no reports characterizing the genome-wide somatic DNA chromosomal
copy-number alteration landscape in metastatic urothelial carcinoma. We sought to characterize the DNA copy-
number profile in a cohort of metastatic samples and compare them to a cohort of primary urothelial carcinoma
samples in order to identify changes that are associated with progression from primary to metastatic disease.

Methods: Using molecular inversion probe array analysis we compared genome-wide chromosomal copy-
number alterations between 30 metastatic and 29 primary UC samples. Whole transcriptome RNA-Seq analysis
was also performed in primary and matched metastatic samples which was available for 9 patients.

Results: Based on a focused analysis of 32 genes in which alterations may be clinically actionable, there were
significantly more amplifications/deletions in metastases (8.6% vs 4.5%, p < 0.001). In particular, there was a
higher frequency of E2F3 amplification in metastases (30% vs 7%, p = 0.046). Paired primary and metastatic
tissue was available for 11 patients and 3 of these had amplifications of potential clinical relevance in
metastases that were not in the primary tumor including ERBB2, CDK4, CCND1, E2F3, and AKT1. The
transcriptional activity of these amplifications was supported by RNA expression data.

Conclusions: The discordance in alterations between primary and metastatic tissue may be of clinical
relevance in the era of genomically directed precision cancer medicine.
Background
Bladder cancer is diagnosed in approximately 400,000
people and causes 150,000 deaths worldwide each year [1].
The majority of urinary tract cancers in the developed
world are of urothelial carcinoma (UC) histology [2]. Ex-
tensive data characterizing the genetic profile of primary
UC has been published and includes The Cancer Genome
Atlas (TCGA) project which comprehensively describes
the molecular features of primary muscle-invasive bladder
UC [3]. These studies have identified several recurrent and
therapeutically targetable genetic alterations but have fo-
cused on primary tumor characterization rather than the
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metastatic lesions that ultimately cause patient death. In
muscle-invasive UC, these alterations include somatic
point mutations in TP53 (35-50%), PIK3CA (15-20%) and
FGFR3 (10-15%) [3-5]. Inactivating mutations commonly
occur in chromatin remodeling genes, most frequently
MLL2, ARID1A and KDM6A, each of which occur in ap-
proximately 25% of cases [3,6]. Furthermore, oncogenic
somatic copy-number alterations (SCNAs) have been de-
scribed including deletion of RB1 in 14-15% and amplifi-
cation of ERBB2 in 5-7% of cases [3,5]. Copy number loss
in chromosome 9 and copy number gain in the q arm of
chromosome 8 are common, although their exact biologic
significance is uncertain [7,8]. Previous studies have shown
that FGFR3 and KDM6A mutations are associated with
lower grade and stage primary tumors, while RB1 deletion
and TP53 mutations are more common in high-grade
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tumors [4,6-8]. One study used next-generation sequen-
cing to examine alterations in 182 cancer-related genes in
a cohort of 35 locally advanced or metastatic UC patients
[9]. The majority of samples analyzed were from the pri-
mary tumor and results were broadly similar to what was
previously reported in muscle-invasive primary bladder
UC cohorts [9]. In this study, we sought to characterize
the genome-wide SCNA profile in a cohort of metastatic
UC samples. Furthermore, we compared these metastases
to primary tumors using SCNA and RNA expression ana-
lysis to understand the genetic and transcriptomic dif-
ferences between these two disease states and to identify
changes associated with progression from primary to
metastatic disease.

Methods
Details on the site of tumor tissue, normal tissue, age and
gender for the 46 individual cases analyzed are outlined
in Table 1 and Additional file 1: Table S1. 30 metastatic
UC samples were analyzed from lung, node and other
sites. These were compared with 29 primary UC samples
mostly of bladder origin. Paired primary and metastatic
tissue was available for the same patient in 11 cases. RNA
data was available in 9 of these 11 matched pairs.
Following pathologic examination, tumor DNA was ex-

tracted from formalin fixed paraffin embedded (FFPE) tis-
sue using the QIAamp DNA FFPE Tissue Kit (Qiagen,
Valencia, CA) as previously described [10]. Where available,
normal DNA for comparison was extracted from adjacent
histopathologically normal lymph nodes, renal parenchyma,
seminal vesicle, prostate or lung tissue. Using the same
samples, total RNA was extracted when possible using the
automated Beckman Coulter Biomek FxP platform and the
Agencourt Formapure Kit.
Copy number analysis for normal, primary tumor

and metastatic DNA was performed using MIP array
technology (Affymetrix OncoScan FFPE Express 2.0) with
334,183 sequence tag site probes which were used to
measure DNA copy number at different loci across the
Table 1 Sites of primary tumour and metastases analysed

n %

Primary tumors (n=29)

Bladder 24 83%

Upper tract 5 17%

Metastases (n=30)

Lung 10 33%

Peritoneum 6 20%

Lymph node 6 20%

Brain 3 10%

Other 5 17%

Details of individual cases are outlined in Additional file 1: Table S1.
human genome [11]. Probes were spaced at a median of
9 kb between each locus but were distributed closer to-
gether at known oncogenes and tumor suppressor genes.
Copy number data were processed and normalized by
Affymetrix as previously described [11]. Copy numbers
were estimated with the NEXUS software and only sam-
ples that passed Affymetrix quality control metrics (me-
dian absolute pairwise difference [MAPD] value of ≤ 0.6)
were considered [12].
Two micrograms of total RNA from each sample was

utilized for sequencing library construction. Complemen-
tary DNA (cDNA) synthesis and bar-coded sequencing li-
brary preparation was performed as previously described
[13,14] with the following modifications: Double-stranded
cDNA synthesis was performed using random hexamers
and cDNA was purified using QiagenTM mini-elute col-
umns. Samples were mixed (six samples per lane of Illu-
mina V3 HiSeq sequencing) and 101 base pair paired-
end sequencing was performed. The resultant data was
aligned to the human reference genome (hg19) and
exon-exon junctions (ensembl v64) with the PRADA
pipeline [15]. Non-human sequences were taxonomic-
ally characterized using PathSeq, as previously described
[16]. Gene-level expression values [in reads per kilobase
per million mapped reads (RPKM)] were generated by
RNA-Seq for transcriptomic analysis [17].
The frequency of SCNA across the whole genome was

assessed to compare alteration frequencies between pri-
mary tumors and metastases. A focused analysis was also
performed to look for amplifications/deletions in genes in-
volved in proliferation and cell-cycle control known to
commonly harbor oncogenic alterations in UC and for
which targeted therapies are currently under investigation
[3,5]. This focused analysis also examined the frequency of
amplifications/deletions in regions found to have statisti-
cally significant focal SCNAs using the Genomic Identifica-
tion of Significant Targets in Cancer version 2.0 algorithm
(GISTIC2.0) in the TCGA analysis [3].
There are no standardised log2 ratio cut-offs to define

low-amplitude copy number gain/loss and high amplitude
amplification/deletion. Based on the available published
literature, we used a log2 ratio cut-off of +/− 0.25 to de-
fine copy number gain/loss and a log2 ratio cut-off of +/−
0.8 to define amplification and deletion [7,18,19].
Normalized copy number data was segmented using

GLAD with default parameters available in GenePat-
tern version 3.3.3 [20]. GISTIC 2.0 (v2.0.12) was then
used to identify regions of the genome that were sig-
nificantly gained or deleted across a set of samples
using a Q-value cutoff <0.25 [21]. This algorithm is de-
signed to identify significant driver SCNAs in human
cancers by taking into account the frequency and amp-
litude of the SCNA and comparing it to the background
rate of SCNAs across the genome. The algorithm



Table 2 Frequency of amplifications and deletions in a focused analysis of 32 genomic regions which were either
previously known to be of interest in urothelial cancer or which were identified by TCGA as having statistically
significant focal copy number changes

Pathway Gene % alterations in primaries (n = 29) % alterations in metastasis (n = 30)

MAP kinase pathway ERBB2^ 2/29-7% 4/30-13%

FGFR3^ 0/29-0% 1/30-3%

FGFR1^ 2/29-7% 4/30-13%

EGFR^ 0/29-0% 0/30-0%

MET^ 0/29-0% 0/30-0%

KRAS^ 0/29-0% 0/30-0%

NF1^ 0/29-0% 1/30-3%

BRAF^ 0/29-0% 0/30-0%

RAF1^ 1/29-3% 3/30-10%

MYC^ 0/29-0% 2/30-7%

MYCL1^ 5/29-17% 3/30-10%

P53 pathway MDM2^ 1/29-3% 3/30-10%

TP53∨ 2/29-7% 2/30-7%

RB pathway* CDKN2A∨ 8/29-28% 10/30-33%

CDK4^ 1/29-3% 2/30-7%

CCND1^ 2/29-7% 6/30-20%

CCNE1^ 2/29-7% 4/30-13%

RB1∨ 0/29-0% 2/30-7%

E2F3^ *(p = 0.04) 2/29-7% 9/30-30%

PI3K pathway PTEN∨ 1/29-3% 1/30-3%

PIK3CA^ 0/29-0% 0/30-0%

AKT1^ 0/29-0% 1/30-3%

TSC1∨ 1/29-3% 1/30-3%

MTOR^ 0/29-0% 0/30-0%

Others BCL2L1^ 1/29-3% 1/30-3%

PPARG^ 1/29-3% 5/30-17%

CREBBP∨ 0/29-0% 1/30-3%

PVRL4^ 2/29-7% 7/30-23%

YWHAZ^ 5/29-17% 4/30-13%

NCOR1∨ 2/29-7% 1/30-3%

YAP1^ 0/29-0% 1/30-3%

ZNF703^ 1/29-3% 3/30-10%

n = 928 n = 960

% total loci with amplification/deletion* (p < 0.001) 42/928-4.5% 83/960-8.6%

*p <0.05 Fishers exact test, ^=amplification, ∨ = deletion.
The data are represented using a threshold of log2 copy number ratio >0.8 for amplification and log2 copy number ratio < −0.8 for deletion. Data are shown in
tabular format with frequency of amplifications and deletions of genes outlined. ^denotes amplifications and ˇdenotes deletions.
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compensates for the different background frequencies
of SCNAs of varying length and quantifies the likeli-
hood of copy-number alterations being biologically
relevant in the form of a q-value. The software esti-
mated false discovery rates (q-values), as well as poten-
tial targets (drivers) within the copy number aberrant
regions. Threshold for copy number gain and loss was
set at +/− 0.25 so that approximately 99% of all seg-
ments in normal samples were below this threshold.
We defined broad alterations as those spanning >50%
of a chromosome arm.
To infer the relative similarity between the DNA

and RNA profiles of normal, primary and metastatic
samples, unsupervised hierarchical clustering was



Figure 1 E2F3 amplification in primary tumors vs. metastases. Analysis of E2F3 gene copy number data using IGV with each row representing
a single tumor sample. Primary tumor samples are arrayed above the black line and metastases below it. On the left side of the diagram, the light
blue boxes represent primary tumor samples and the dark blue boxes represent metastases. Red bars represent amplification (log2 copy number
ratio >0.8).
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performed as follows: for the DNA data, hierarchical
clustering was performed using the pvclust R package
with 1000 bootstrap iterations, Ward’s clustering
method and otherwise default parameters. The boot
strapping procedure estimates how strongly the clusters
Figure 2 DNA copy number and RNA expression data from patient #2
the genome - each chromosome is highlighted in a different colour sta
log-2 copy number value at each point across the genome.Red arrows
corresponding RNASeq expression readouts are displayed in blue boxe
ratio 0.10) and amplification of E2F3 in the metastasis (log2 copy numb
copy number ratio 0.60) and amplification of CCND1 in the metastasis (
are supported by data. Bootstrap values are reported
as percentages and indicate how often a cluster was
observed in the bootstrapping. They are obtained by
multiscale [22,23] and by normal resampling, i.e. sam-
pling with replacement.
5. Copy number plot with the x-axis denoting each point across
rting with chromosome 1 on the left side. Y-axis enumerates the
indicate gene amplifications highlighted in this manuscript and
s. Normal E2F3 copy number in primary tumour (log2 copy number
er ratio 0.85). Normal CCND1 copy number in primary tumour (log2
log2 copy number ratio 3.29).
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For RNA data, unsupervised hierarchical clustering
was performed and RNA-Seq RPKM values were log2 +
1 transformed. Invariantly expressed genes were re-
moved using the genefilter R package. Using the default
settings of this package, we removed 50% of the genes
with lowest interquartile range (IQR). Clustering was
then performed with the same parameters we used for
the DNA data.
To further test for the clonality of matched primary tu-

mors and metastases, the Clonality testing R package tool
developed at Memorial Sloan Kettering Cancer Center was
used to analyze the DNA copy number data [22-24]. This
is an R package for testing whether two tumors from the
same patient are clonal (metastasis) or independent (syn-
chronous primaries) based on their genome wide copy
number profiles.
For the RNA data, heatmaps and tables of differentially

expressed genes in normal bladder vs. primary and metasta-
ses and in primary vs. metastases are presented (Additional
file 2: Figure S1 and Additional file 3: Figure S2).
All samples were collected under protocols approved

by the Institutional Review Board (IRB) at Dana Farber
Cancer Institute, de-identified and approved for use by
the DFCI IRB.
Figure 3 DNA copy number and RNA expression data from patient #1
genome - each chromosome is highlighted in a different colour starting with
value at each point across the genome. Red arrows indicate gene amplificatio
readouts are displayed in blue boxes. Normal E2F3 copy number in primary tu
metastasis (log2 copy number ratio 1.17). Normal CDK4 copy number in prima
metastasis (log2 copy number ratio 1.53). Normal AKT1 copy number in prima
metastasis (log2 copy number ratio 1.12).
Results
Focused analysis of 32 selected genes by Iyer et al. de-
scribed the prevalence and co-occurrence of potentially
actionable alterations in a group of 21 genes from sig-
naling pathways known to be relevant in primary UC
bladder [5]. We compared the frequency of amplifica-
tions and deletions between primary tumors and me-
tastases in these 21 genes as well as another 11 regions
found to have statistically significant focal SCNAs in
the TCGA analysis (Table 2) [3-7,9]. A log2 ratio cut-
off of +/− 0.8 was used to stringently define gene amp-
lification and deletion, respectively, based on prior
published studies as described in the methods section
[7,18,19]. Overall, there were more amplifications/de-
letions in these genes in metastases compared with pri-
mary tumors (8.6% loci altered vs. 4.5%, p < 0.001
Fishers exact, Table 2). In an individual gene-wise com-
parison, there were more E2F3 amplifications in me-
tastases compared with primary tumours (30% vs. 7%,
p = 0.041 Fishers exact, Table 2 and Figure 1). In 2 of
the 11 patients with matched primary and metastatic
tissue, E2F3 amplifications were present in the metas-
tasis but not in the matched primary tumor. In these
cases, there was associated increased E2F3 RNA
60. Copy number plot with the x-axis denoting each point across the
chromosome 1 on the left side. Y-axis enumerates the log-2 copy number
ns highlighted in this manuscript and corresponding RNASeq expression
mour (log2 copy number ratio 0.07) and amplification of E2F3 in the
ry tumour (log2 copy number ratio 0.20) and amplification of CDK4 in the
ry tumour (log2 copy number ratio 0.16) and amplification of AKT1 in the
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expression in the metastasis compared with the matched
primary (patients 25 and 169, Figures 2 and 3). The SOX4
locus is located close to E2F3, is co-amplified in many of
these cases, and was identified by TCGA investigators as
another potentially biologically relevant gene in this
amplicon [3]. Indeed in these two patients (25 and 169)
there was a 2-fold increased RNA expression of SOX4 be-
tween the primary and metastasis specimens that paral-
leled the gene amplification.

Instances of discordant genetic alterations between
paired primary and metastatic samples
In 3 of 11 patients for whom primary and metastatic tissue
was available, potentially clinically actionable amplifications
were observed in metastases but not in the matched pri-
mary tumours (Figures 2, 3 and 4). In the first case (patient
25), E2F3 and CCND1 amplifications were detected in a
soft tissue renal metastasis and were not present in the
corresponding bladder primary (Figure 2). RNA expression
data was concordant with these findings with 7.0-fold and
10.6-fold increased expression levels of E2F3 and
CCND1 respectively. The second case (patient 160) had
Figure 4 DNA copy number data from patient #63. Copy number plot
chromosome is highlighted in a different colour starting with chromosome
each point across the genome. Red arrow indicates gene amplification hig
tumour (log2 copy number ratio 0.34) and amplification of E2F3 in the met
amplifications of E2F3, CDK4 and AKT1 in a lung me-
tastasis which were not present in the bladder primary
(Figure 3). RNA expression data confirmed increased
E2F3 and AKT1 expression but not increased CDK4 ex-
pression. The third case (patient 63) had ERBB2 ampli
fication in a lymph node metastasis that was not present
in the corresponding bladder primary (Figure 4). RNA ex-
pression data was not available for this patient. When
examining these 32 genes, we did not find any instance
of amplification or deletion in the primary tumor that
was not present in a matched metastasis.

Frequency of low-amplitude copy number alterations
The frequency of low-amplitude SCNAs across the whole
genome was compared between primary and metastatic tu-
mors. A log2 ratio cut-off of +/− 0.25 was used to define
low-amplitude SCNAs as described in the methods section.
Of note, the limited sample size meant our power to detect
significant differences after correcting for multiple testing
was only 0.4. On a genome-wide basis, the overall fraction
of altered loci was not significantly different between pri-
mary tumors and metastases. There was a trend towards
with the x-axis denoting each point across the genome - each
1 on the left side. Y-axis enumerates the log-2 copy number value at

hlighted in this manuscript. Normal ERRB2 copy number in primary
astasis (log2 copy number ratio 1.19).
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more chromosome 4 CNLs in metastases compared with
primary tumors (Figure 5), although the difference was not
statistically significant after correction for multiple testing
(p = 0.01 for chromosome 4q and p = 0.03 for chromosome
4p - paired t-test; FDR = 0.31).The trend to more frequent
chromosome 4 CNL events in metastases was also ob-
served when the analysis was restricted to paired primary
and metastatic tissue specimens from the same patients
(p = 0.04 for Chr 4q and p = 0.09 for 4p - paired t-test) ,
suggesting that a proportion of tumors may lose genetic
material from chromosome 4 when progressing from pri-
mary to metastatic disease (Additional file 4: Figure S3).
Whether this loss represents a driver or passenger event
is unclear.

GISTIC 2.0
GISTIC 2.0 analysis of the primary and metastatic cohorts
(designed to identify significant driver SCNAs) demon-
strated multiple regions of significant SCNA as previously
described in other cohorts of UC patients [3,5,7,8,21].
These include regions of amplification at E2F3, ERBB2
and PPARG and deletion at CDKN2A in both primary
(Figure 6a) and metastatic (Figure 6b) cohorts. A recent
study, using primary tumour tissue for analysis, reported
Figure 5 Low amplitude copy number alterations in primary vs meta
of copy number gain (CNG) and copy number loss (CNL) at different point
CNL, respectively. The x axis represents the different chromosomes and the
gain greater than the +/− 0.25 log2 ratio cut-off.
that amplification at the 1q23.3 locus was associated with
worse prognosis in metastatic UC [25]. In GISTIC 2.0 ana-
lysis of our dataset, 1q23.3 was found to be significantly
amplified in both primary and metastatic samples.

Hierarchical clustering analysis
Hierarchical cluster analysis using DNA copy number data
confirmed that the paired primary and metastatic samples
from the same patients cluster together in all cases suggest-
ing clonality (i.e. that they had initially arisen from a single
cell of origin) (Figure 7a). These findings were further cor-
roborated using the MSKCC clonality tool which suggested
a high likelihood that 10 of the 11 paired primary and meta-
static tumors had arisen from the same cell of origin rather
than from different primary tumors. For one patient (patient
169), there was a weak and statistically non-significant trend
towards independence. (Additional file 5: Figure S4); how-
ever, the primary and metastasis samples from this patient
clustered together on hierarchical clustering analysis, sug-
gesting clonality (Figure 7a).
Hierarchical clustering analysis using the RNA ex-

pression data from normal and tumor tissue found that
the normal tissue specimens clustered together and in-
dependent of primary and metastatic tumor samples
static tumors. Copy number frequency plots displaying the frequency
s across the genome using a cut-off log2 ratio +/− 0.25 for CNG and
y-axis quantifies the percentage of samples with copy number loss or
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Figure 6 GISTIC 2.0 analysis of primary (a) and metastatic (b) cohorts. Copy number data was analysed using GISTIC 2.0 as described in the
methods section. The y-axis represents the chromosomal location and the x-axis quantifies the q-value at that point in the genome. The green
line denotes cut-off q-value of 0.25 which was used to determine significant events. Red peaks refer to amplifications and blue peaks to deletions.
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(Figure 7b). 7 of 9 matched primary and metastatic pairs
clustered together and for those that did not (patients
160 and 206) the bootstrap values were poor, suggesting
that the high confidence pairings (i.e. those with boot-
strap values closer to 100%) are indeed clonal and that
RNA expression profiles globally are maintained be-
tween the paired primary and metastatic tumors.

Discussion
These data provide the first comprehensive assessment
of SCNAs in metastatic UC. Amplification or deletion of
genes involved in the RB signalling pathway were seen in
60% (18 of 30) of metastases, which is of interest given
the significant activity of CDK4 inhibitors in other cancers
[26,27]. The data also show a higher frequency of E2F3 am-
plifications in metastases compared with primary UC and
concordant increased E2F3 RNA expression in patients
with E2F3 amplifications. Prior data from primary UC and
other cancers has suggested E2F3 amplification is associ-
ated with higher grade and stage primary tumours [7,28].
Whether E2F3 activity is a functional driver of metastatic
progression or simply a marker for more aggressive disease
is not yet clear. Iyer et al. recently showed E2F3 amplifica-
tion is associated with increased expression of several
downstream targets in UC suggesting that, when present,
this amplification event results in biologic alterations in
this disease [5]. The SOX4 locus, which is located close
to E2F3, may also be a biologically relevant gene within
this amplicon as it is co-amplified in many of these cases
as well as having associated increased RNA expression.
Overall, there were more amplifications/deletions in me-

tastases compared with primary tumours. This is in



Figure 7 Hierarchical clustering analysis. Hierarchical clustering analysis using both DNA (a) and RNA (b) datasets. The bootstrapping procedure
estimates how strongly the clusters are supported by data. Bootstrap values are estimated using multi-scale bootstrap resampling (shown in red numbers)
and normal resampling (shown in green numbers), and are reported as percentages, indicating how often a cluster was observed in the bootstrapping
[34]. P = primary tumor, M=metastasis, N-normal tissue. For the RNA clustering plot, P = primary tumor, M =metastasis, N = normal tissue. Note: for
patient 231 two separate brain metastases were analyzed and both clustered together as shown.
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keeping with the longstanding model of cumulative genetic
change leading to cancer evolution and progression as ori-
ginally described by Nowell et al. almost 30 years ago [29].
More recently Li et al. demonstrated the clonal evolution
of primary bladder UC as illustrated by single cell exome
analysis from multiple parts of the same tumor [30]. Of
note, there were some instances of amplification in primary
tumours that were not present in metastases (e.g. the AHR
gene on chromosome 7 in patient 160, Figure 3b) suggest-
ing a divergent rather than longitudinal pattern of evolution
whereby different clones can form a branched evolutionary
tree despite all arising from a common ancestral cell. This
is also in keeping with prior data in this disease [31].
In 3 of 11 patients for whom primary and metastatic tis-

sue was available, there were amplifications in metastases
that were not present in the primary tumors, including at
the ERBB2, AKT1, CDK4, CCND1 and E2F3 loci. Accom-
panying total RNA sequencing was available in 2 patients
and showed corresponding increased expression levels in
several of these genes. This discordance between paired
primary and metastatic tissue may have clinical relevance
in the era of genomic medicine since the genetic informa-
tion gleaned from analysing primary tumors may not
represent the relevant drivers in metastatic disease. For
example, if genomic information from the primary tumour
was used to inform therapeutic decision-making for
patients 63 and 160 (Figures 3 and 4), the AKT1 and
ERBB2 amplifications would not have been evident and
these patients would not have been considered for HER2
or AKT-mTOR pathway directed therapies. Studies in
colon and lung cancer have found similar instances of
discordant SCNAs in cancer-related genes when comparing
paired primary and metastatic tissue from the same
patients [32,33]. On the other hand, these studies reported
high rates of concordance (>90%) when examining clinically
actionable somatic point mutations (including mutations
in EGFR and KRAS). The discordance in potentially action-
able alterations noted in the data presented here suggest
that rates of discordance may differ on a gene-by-gene
basis and that discordance in SCNAs may be more
common than in somatic point mutations.
One important limitation of the data is the relatively

small number of samples analysed which limited the
power of the study.

Conclusions
These data can be used to provide an overview of the
SCNA landscape in metastatic UC. The intrapatient
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genomic discrepancies found between primary and
metastatic tumours highlights the potential limitations
in using archival primary tumour tissue to guide tar-
geted therapy for metastatic disease. Increased fre-
quency of E2F3 amplification in metastases points to
the relevance of the RB pathway in UC with potential
therapeutic implications given the ongoing develop-
ment of multiple CDK inhibitors.
Additional files

Additional file 1: Table S1. Sites of tumour and normal tissue used
for both DNA and RNA extraction. For each of the 46 patients analysed,
the age, gender, tissue site for primary, metastatic and normal control
samples are outlined. Data not entered denotes that no specimen was
available for that patient. All patients had tumor DNA analysis
performed. *denotes patients for which tumor RNA analysis was also
performed.

Additional file 2: Figure S1. Comparative marker analysis of
differentially expressed genes between normal and tumor tissue. The
results of a comparative marker analysis of differentially expressed genes
represented as a heat map. Each column denotes a single sample, and
each differentially expressed gene is represented in an individual row.
Only genes that are differentially expressed in normal bladder (sample
number indicated followed by the letter “N”) compared to primaries (“P”)
and metastases (“M”) are displayed. This analysis was performed with
1000 permutations. Red shading indicates higher relative expression and
blue shading indicates lower relative expression. In addition to the gene
name, a relative rank of the comparative over- or under-expression as
well as a p-value and False Discovery Rate (FDR)-corrected and
Bonferroni-correct p-value are given. The relative fold-change between
the aggregate expression in the normal samples versus tumors (primary
and metastases) is also presented.

Additional file 3: Figure S2. Comparative marker analysis of
differentially expressed genes between primary and metastatic tumor
tissue. The results of a comparative marker analysis of differentially
expressed genes are presented as a heat map. Each sample is represented
in a column and each differentially expressed gene is represented in an
individual row. Only genes that are differentially expressed in primaries (“P”)
compared to metastases (“M”) are shown. This analysis was performed with
1000 permutations. Red shading indicates higher relative expression and
blue shading indicates lower relative expression. In addition to the gene
name, a relative rank of the comparative over- or under-expression as well
as a p-value and False Discovery Rate (FDR)-corrected and Bonferroni-
correct p-value are given. The relative fold-change between the aggregate
expression in the primary tumors and metastases is also displayed.

Additional file 4: Figure S3. Low amplitude copy number alterations in
matched pairs of primary vs metastatic tumors. Copy number frequency
plots for the 11 patients with available matched primary and metastatic
tissue. The plots display the frequency of copy number gain (CNG) and
copy number loss (CNL) at different points across the genome using a cut-
off log2 ratio +/− 0.25 for CNG and CNL, respectively. The x axis represents
the different chromosomes and the y-axis quantifies the percentage of
samples with copy number loss or gain greater than the +/− 0.25 log2 ratio
cut-off.

Additional file 5: Figure S4. MSKCC clonality tool analysis. Genomic
copy-number profiles for all 11 primary tumor/metastasis pairs. These
plot visualize copy numbers (log base 2 ratios, y-axis) for all segments
along the genome (x-axis). Shown odds ratios are calculated using
the Clonality R package. This package provides implementations of
statistical tests to determine whether two samples from the same
patient are independent or clonal.
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