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Abstract

Background: Systematic analysis of cancer gene-expression patterns using high-throughput transcriptional profiling
technologies has led to the discovery and publication of hundreds of gene-expression signatures. However, few
public signature values have been cross-validated over multiple studies for the prediction of cancer prognosis and
chemosensitivity in the neoadjuvant setting.

Methods: To analyze the prognostic and predictive values of publicly available signatures, we have implemented
a systematic method for high-throughput and efficient validation of a large number of datasets and gene-expression
signatures. Using this method, we performed a meta-analysis including 351 publicly available signatures, 37,000 random
signatures, and 31 breast cancer datasets. Survival analyses and pathologic responses were used to assess prediction of
prognosis, chemoresponsiveness, and chemo-drug sensitivity.

Results: Among 31 breast cancer datasets and 351 public signatures, we identified 22 validation datasets, two robust
prognostic signatures (BRmet50 and PMID18271932Sig33) in breast cancer and one signature (PMID20813035Sig137)
specific for prognosis prediction in patients with ER-negative tumors. The 22 validation datasets demonstrated
enhanced ability to distinguish cancer gene profiles from random gene profiles. Both prognostic signatures are
composed of genes associated with TP53 mutations and were able to stratify the good and poor prognostic
groups successfully in 82%and 68% of the 22 validation datasets, respectively. We then assessed the abilities of the two
signatures to predict treatment responses of breast cancer patients treated with commonly used chemotherapeutic
regimens. Both BRmet50 and PMID18271932Sig33 retrospectively identified those patients with an insensitive
response to neoadjuvant chemotherapy (mean positive predictive values 85%-88%). Among those patients predicted
to be treatment sensitive, distant relapse-free survival (DRFS) was improved (negative predictive values 87%-88%).
BRmet50 was further shown to prospectively predict taxane-anthracycline sensitivity in patients with HER2-negative
(HER2-) breast cancer.

Conclusions: We have developed and applied a high-throughput screening method for public cancer signature

validation. Using this method, we identified appropriate datasets for cross-validation and two robust signatures
that differentiate TP53 mutation status and have prognostic and predictive value for breast cancer patients.
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Background

Hundreds of transcriptional profiles have been identified
to report useful information in the field of predictive on-
cology such as the likelihood of cancer progression [1,2],
cancer subtying [3], treatment outcomes [4], and drug
sensitivities [5-7].

Beyond its clinical utility, a signature can also provide
candidate genes for gene function analysis [8] and serve
as a marker of specific mechanisms, pathways [9], muta-
tions (e.g., TP53 mutation) [10], and various biological
states such as wound healing [11,12], hypoxia [13,14],
and tumor stroma [15]. Utilizing a common translational
strategy, these studies often demonstrate that these sig-
natures have a significant association with clinical out-
come in cancer patients.

There are at least several hundred cancer signatures
and dozens of validation datasets that have been re-
ported in the scientific literature [7,16]. However, the
overproducing in signature discovery relative to signa-
ture validation presents an exceptional challenge to their
use. It is evident that the majority of transcriptional gene
signature studies published to date do not progress be-
yond the discovery phase. The validation phase of gene-
expression signatures is very time-consuming and costly
because it requires either multiple retrospective studies
with large sample sizes or prospective clinical trials. For
these reasons, there has been no systematic method for
assessing the prognostic and predictive value of these
publicly available signatures across multiple cancer pa-
tient populations.

Because there are no standard criteria to guide the se-
lection of test datasets, most studies focus on a few
well-known datasets (e.g., NKI295 [17]). In fact, few signa-
tures have been externally validated using more than five
datasets. Not surprisingly, this validation method has inev-
itable limitations in terms of statistical power and sample
selection bias. A common weakness of this approach is its
lack of consistency and reproducibility [18-22] resulting in
the false positive paradox whereby falsely significant gene-
expression signatures are identified more frequently than
truly significant ones [16].

The identification of robust predictive signatures
through meta-analysis of publicly available gene-expres-
sion signatures on a large scale still represents an underex-
ploited opportunity.

To avoid overtreatment — subjected to morbidity from
cytotoxic chemotherapy for negligible benefit, an im-
portant problem inherent to neoadjuvant (preoperative)
chemotherapy is the identification of those patients
likely to be sensitive to neoadjuvant chemotherapy from
those likely to be insensitive. One strategy for doing so
is the use of prognostic and predictive biomarkers. The
chemotherapeutic response to neoadjuvant chemother-
apy measured at the time of definitive surgery is usually
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dichotomized as pathologic complete response (pCR; e.g.,
absence of invasive breast cancer in both the primary
tumor bed and regional lymph nodes) and residual disease
(RD). It can also be categorized into a semi-quantitative,
four-tiered response score, (e.g., residual cancer burden
(RCB-0/1 to 1V)).

Patients with breast cancer that achieve pCR or RCB-
0/1 following neoadjuvant chemotherapy often have an
excellent probability of long-term survival (>3 vyears
relapse-free), while patients with RD often have a higher
probability of early relapse within 3 years [23-25]. Thus,
pCR or RD after neoadjuvant chemotherapy provides a
clinical model for validation of gene-expression signa-
ture prediction.

There are very few molecular tests developed specific-
ally to predict the probability of both short-term pCR/
RD/RCB following neoadjuvant chemotherapy and long-
term survival [26-28]. Very few studies in the discovery
phase have both gene-expression profiles and treatment
responses available that can be used to develop signa-
tures directly related to treatment responses. In the val-
idation phase, large and logistically challenging clinical
trials may take decades to accumulate sufficient events
for a useful analysis. An alternative and more rapid ap-
proach is to evaluate the predictive value of a prognostic
marker for chemosensitivity in the neoadjuvant setting
[4,29,30].

To analyze the prognostic and predictive value of pub-
licly available signatures, we performed a large-scale
meta-analysis of cancer signatures, including 351 pub-
licly available signatures and 31 validation datasets in
breast cancer.

Our three primary objectives were: (1) to systematic-
ally evaluate the performance of public signatures and
validation datasets in the prediction of breast cancer
prognosis, (2) to analyze the association between pre-
dicted and actual treatment responses (pCR/RD/DRES),
and (3) to assess the predictive value of a signature for
taxane-anthracycline sensitivity in patients with human
epidermal growth factor receptor 2 negative (HER2-)
breast cancer.

Methods

Publicly available signatures

In the past two decades, a large number of gene-
expression signatures have been reported and tested on an
individual basis. This abundance of signatures has pro-
vided us with the unique opportunity to perform a large-
scale meta-analysis of signatures for cancer prognosis.

We collected 351 gene-expression signatures from a
total of 206 studies (Additional file 1: Table S1). Each
study has one or more signatures generated using its au-
thors’ own study designs and sample phenotypes. 95%
(333) of the collected signatures are derived from cancer-
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related studies, with 73% (257) representing breast can-
cer signatures. The remaining 5% (18) are from other
(non-cancer) diseases. Most breast cancer signature
phenotypes are related to cancer relapse or poor prog-
nosis, including tumor size, nodal involvement, grade,
lymphovascular invasion, TP53 status, BRCA1 muta-
tion, BRCA2 mutation, estrogen receptor (ER) status,
and HER?2 status (Additional file 1: Table S1).

Validation datasets

In order to use survival analysis to validate the public
signatures across multiple test datasets, we collected 31
breast cancer datasets containing both clinical survival
data and gene-expression data. These datasets were de-
rived from published human cancer studies, the Gene
Expression Omnibus (GEO) provided by the National
Center for Biotechnology Information (NCBI) [31], and
The Cancer Genome Atlas (TCGA) (Additional file 1:
Table S2).

Each test dataset includes gene-expression values inter-
rogated at the genome level by over 20,000 gene probes
(“Total probe number” in Additional file 1: Table S2) and
clinical endpoints (outcome events and survival time).
The primary clinical endpoints in the validation datasets
include disease-specific survival (DSS), disease-free sur-
vival (DFS), distant metastasis-free survival (DMFS), over-
all survival (OS), relapse-free survival (RFS), and distant
relapse-free survival (DRES). These publicly available data-
sets meet common criteria for survival analysis [32]. The
average follow-up length was 10 years across the 31
datasets.

Among the 31 test datasets, two datasets (GSE25055
and GSE25065) have special tumor samples from pa-
tients with HER2- breast cancer treated with neoadju-
vant chemotherapy (taxane-anthracycline) [6].

GSE25055 includes a cohort of 310 samples with an
average pathologic response rate of 25% (pCR), and
GSE25065 has a cohort of 198 patients with an average
pathologic response rate of 30% (pCR or RCB-I). Both
datasets have a median follow-up of 3 years, and an
overall 3-year DRFS of 79% [6].

Translational study design for drug sensitivity prediction
Sequential taxane and anthracycline-based drugs are
common regimens for newly diagnosed ERBB2 (HER2
or HER2/neu)-negative breast cancer patients. Data from
two studies, GSE25055 and GSE25065, in which patients
received this preoperative chemotherapy regimen and
the pathologic responses were recorded following sur-
gery were used to test the predictive ability of the gene-
expression signatures [6].

In order to construct a reference drug-sensitivity sig-
nature for individual prospective prediction, we used the
Sanger Genomics of Drug Sensitivity (GDS) dataset
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containing hundreds of annotated human cancer cell
lines [33]. These cancer cell lines have been character-
ized using gene-expression profiling, and their sensitiv-
ities to hundreds of anti-cancer drugs, including
taxane-anthracycline, have been assessed. Each cancer
cell line has two sets of data-chemosensitivity data and
transcriptional profiles from microarrays. By linking the
drug activity to the gene-expression profiles in cancer
cell lines, the Sanger GDS dataset has facilitated the iden-
tification of several genomic markers of drug sensitivity in
cancer cells [33]. The taxane-anthracycline drug sensitivity
in the breast cancer cell line model was measured as the
drug concentration leading to 50% growth inhibition of
cancer cells compared to controls (ICs).

We identified 13 HER2- breast cancer cell lines that are
sensitive to anthracycline and/or taxane treatment (log
(ICs0) < —-1). BRmet50 and PMID18271932Sig33 gene-
expression values were retrieved to build two taxane-
anthracycline-sensitive reference profiles called centroids
defined as the average of each predictor’s gene-expression
values across the 13 drug-sensitive cell lines [3]. Conse-
quently, taxane-anthracycline sensitivity prediction was
achieved by correlating the expression profile of each
patient sample with the centroid computed by the PAM
algorithm [3]. Briefly, we calculated the Spearman’s
rank correlation between each patient profile and the
centroids. A patient was predicted to have a sensitive
taxane-anthracycline response if the correlation coeffi-
cient was larger than 0.35. Otherwise, the patient was
considered to be insensitive or resistant to taxane-
anthracycline.

Two types of treatment responses were used in the
translational study including short-term pathological re-
sponses (pCR, RD, or RCB) and long-term DRFS. The
first objective of the study was the prediction of patho-
logic response. We examined whether actual pathologic
responses were associated with predicted responses (sen-
sitive and insensitive). The second objective was predic-
tion of long-term treatment outcomes by determining
whether patients predicted to be treatment-sensitive had
improved DREFS.

TCGA gene expression and TP53 mutational analysis
TP53 mutation status and Z-score normalized RNA-seq ex-
pression values (V2 RSEM) were obtained from cBioPortal
[34] for genes in the BRmet50 and PMID18271932Sig33
signatures. Unsupervised hierarchical clustering (Euclidean,
complete) was performed on samples containing both
RNA-seq expression values and TP53 mutation status was
visualized with R package ‘heatmap.2’ (version 3.1.0).

Statistical analysis
Our statistical approaches, as illustrated in Figure 1,
assessed the ability of 351 public signatures and 37,000
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Figure 1 Overview of meta-analysis of signatures in cancer. We have performed a large-scale meta-analysis of cancer signatures, including 351
publicly available cancer signatures (Additional file 1: Table S1) and 31 breast cancer test datasets (Additional file 1: Table S2). Based on the
predictive performance of each signature in 31 breast cancer test datasets and 9 ER-negative (ER-) subsets, we first identified our top 37 signature
candidates (Additional file 1: Table S3) for breast cancer prognosis prediction and one signature for prognosis prediction in ER- subsets
(Table 4). Using 37,000 random signature permutation tests and 22 verified test datasets, we narrowed down our top 37 candidates to our top three
signatures (Table 1). Next, the top three signatures were further evaluated by uni-/multi-variate hazard ratio tests (Table 2) and breast cancer subsets
(Table 3), and two of the three were confirmed as valid and independent prognostic signatures. Finally, we examined the ability of the top two
signatures to predict chemotherapy outcomes in breast cancer patients (Table 5) and taxane-anthracycline sensitivity in patients with HER2 - beast

cancer (Table 6).

random control signatures to serve as survival time
predictors (Additional file 1: Table S3, Table 1). First,
hierarchical clustering of each signature gene profile in
each test dataset was performed and visualized using
the open-source desktop program (version 1.5.0.Gbeta)
developed at Vanderbilt University. Spearman rank cor-
relation was used to measure the similarities in gene-
expression profiles among patient samples.

To evaluate various signatures with full datasets and
subsets, survival curves were calculated using the Kaplan—
Meier method and compared using the log-rank test. The
association between each gene signature and survival time
was also evaluated using univariate and multivariate Cox
proportional hazards models. Unsupervised hierarchical
clustering based on average linkage was performed to
group the patient samples. The group assignments for
the patient samples were determined for each dataset
based on the first bifurcation of the clustering sample
dendrogram [35]. Using disease outcomes, Kaplan-
Meier curves for the two groups were compared. For

Table 1 Top 3 signatures for prognosis prediction

graphical representation, Kaplan-Meier curves of sur-
vival probability were plotted (Figures 2 and 3). Log-
rank tests and c-index measurements were conducted
for the two groups’ survival difference. The Cox pro-
portional hazards model was applied to some datasets
for both univariate and multivariate survival analyses
(Tables 2, 3, and 4). P values reported are two-sided.
Various disease outcomes (e.g., relapse, distant metasta-
sis) were used as clinical endpoints (Tables 2 and 3).
The estimated hazard ratio (HR), its 95% confidence
interval (CI), and the P value allowed us to directly
compare the performances of different signatures. All
these analyses were carried out with the open-source R
software, version 2.14.1.

Pathologic response to neoadjuvant chemotherapy was
defined as pCR/RD or RCB for evaluation of response
prediction. The primary prediction endpoint was DRFS
at 3 years (median follow-up for the validation cohort).
Predictive performance was assessed by the positive pre-
dictive value (PPV), defined as the probability of RD,

Signature Significant P value % Adjusted median P value Signature description

BRmet50 82% 0013 Meta-signature for cancer metastasis
PMID18271932Sig33 64% 0.014 Predictor gene set for TP53 status
PMID16505416Sig822 68% 0.015 Poor prognosis signatures for ER+ and PR+ breast cancer
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Figure 2 Kaplan-Meier estimates of distant relapse-free survival analyses of three predictors. 508 patients with HER2- breast cancer from two
independent datasets (GSE25055 and GSE25065) were stratified into two groups according to the gene-expression profiles of two genomic predictors
(BRmet50 and PMID18271932) and pathologic response (after treatment) such as pathologic complete response (pCR) and residual disease (RD). In
each survival plot, two types of distant relapse-free survival retrospectively determined the two genomic predictor group names (treatment-sensitive
and treatment insensitive) and were compared: pCR or treatment-sensitive group (solid red line) and RD or treatment-insensitive group (dashed black
line). The distant relapse-free time in years is displayed on the x-axis, and the y-axis shows the probability of distant relapse-free survival. The P values
indicate the statistical significance of survival time differences between the two groups.

distant relapse, or death for patients predicted to be
treatment-insensitive, and the negative predictive value
(NPV), defined as the patient’s probability of pCR/RCB-
0/1 or improved DRFS (>3 years) for patients predicted
to be treatment-sensitive [6].

Results

Study overview

To investigate the performance of public cancer signa-
tures, we performed a large-scale meta-analysis (Figure 1)
of cancer signatures, including 351 publicly available sig-
natures from 206 studies (Additional file 1: Table S1).
Based on the predictive performance of each signature in
31 breast cancer test datasets (Additional file 1: Table S2)
and nine estrogen receptor-negative (ER-) subsets, we
identified 37 significant signature candidates (Additional
file 1: Table S3) capable of robustly predicting breast can-
cer prognosis as a whole and one signature that predicts

prognosis in the ER- setting (Table 4). Using 37,000 ran-
dom signature permutation tests, we narrowed down our
37 candidate signatures to a top three (Table 1). The top
three signatures were further evaluated for their ability to
independently predict prognosis by uni-/multi-variate Cox
proportional hazards models (Table 2) as well as breast
cancer subsets (Table 3). Two of the three were confirmed
as valid prognostic signatures. Finally, we examined the
top two signatures’ ability to predict chemotherapy out-
comes in breast cancer patients (Table 5) and taxane-
anthracycline sensitivity in patients with HER2- breast
cancer (Table 6).

Evaluation of public signatures using 31 test datasets
identifies signatures with robust prognostic ability

To examine the 351 public signatures and rank their abil-
ity to predict breast cancer prognosis, we retrospectively
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Figure 3 Kaplan-Meier estimates of distant relapse-free survival analyses of two predictors of taxane-anthracycline sensitivity. 508 patients
with HER2- breast cancer from two independent datasets (GSE25055 and GSE25065) were stratified into two groups according to the taxane-anthracycline
centroid correlation. In each survival plot, two types of distant relapse-free survival were prospectively determined before taxane-anthracycline treatment:
drug-sensitive (solid red line) and drug-insensitive (dashed black line). The distant relapse-free time in years is displayed on the x-axis, and the y-axis shows
the probability of distant relapse-free survival. The P values indicate the statistical significance of survival time differences between the two groups.

screened them (Additional file 1: Table S1) using 31 test
datasets (Additional file 1: Table S2).

To identify gene-expression signatures with robust
predictive capacity, we performed 10,881 log-rank tests
(351 signatures multiplied by 31 breast cancer test data-
sets). Signatures that provide true prognostic value
should demonstrate statistical significance across mul-
tiple datasets. Therefore, we ranked the 351 public sig-
natures by percentage of significant P values in the 31
breast cancer datasets. Those signatures capable of pre-
dicting prognosis successfully (P <0.05) in more than
half of the test datasets (i.e., significant P value rate > 50%)
were selected for further signature analysis (Additional
file 1: Table S3) [32] and dataset validation.

We identified 37 signatures with robust predictive
ability. Among these were such signatures as Oncotype
DX (PMID18360352Sig21, ranked number 3) [2] and

MammaPrint (PMID11823860Sig70, ranked number 35)
[36], which had the ability to predict prognosis in 65%
and 52% of breast cancer test datasets, respectively
(Additional file 1: Table S3). The signature with the most
robust predictive ability was BRmet50, as it was able to
predict prognosis successfully in 23 out of 31 breast can-
cer datasets (74%) [32].

Although phenotypes and study designs are heteroge-
neous among the 37 signatures, they share the same
functional space in predicting breast cancer prognosis.
These results support the notion that breast cancer clin-
ical outcomes are associated with various mechanisms
and tumor phenotypes.

Among the top 37 signatures (Additional file 1:
Table S3), a few signatures are the result of direct de-
sign, in which a prognostic signature is derived from a
direct comparison of two groups with opposite
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Table 2 Comparison of top 3 signatures by hazard ratio model

BR1042 BR1095 BR1128 BR1141 BRGSE7390

Signatures Clinical RFS DFS DFS RFS RFS
BRmet50 c-index 0657 0.605 0637 0.607 0633

P value 0.002 <0.001 <0.001 <0.001 0.001
Log-rank test P value 0.002 <0.001 <0.001 <0.001 0.001
Univariate HR 2.8(14-5.5) 22(14-33) 2.8(1.5-4.9) 22(15-33) 23(14-38)

P value 0.002 <0.001 <0.001 <0.001 0.001
Multivariate HR 32(14-7.5) 1.8(1.1-2.9) 2.0(1.0-39) 23(14-36) 3.0(1.6-5.9)

P value 0.006 0.021 0.035 0.001 0.001
PMID c-index 0616 0.622 0.665 0.636 0.608
18271932
Sig33

P value 0.030 <0.001 <0.001 <0.001 0.010
Log-rank test P value 0.030 <0.001 <0.001 <0.001 0.010
Univariate HR 20(1.1-38) 25(1.6-39) 3.5(2.0-64) 24(1.6-36) 1.9(1.2-33)

P value 0.030 <0.001 <0.001 <0.001 0.010
Multivariate HR 1.9(0.8-4.5) 2.0(1.2-3.3) 2.9(1.5-5.6) 2.3(15-3.7) 2.7(14-5.3)

P value 0.171 0.006 0.002 <0.001 0.004
PMID c-index 0517 0.586 0.638 0.549 0.634
16505416
Sig822

P value 0.698 0.002 <0.001 0.156 0.001
Log-rank test P value 0.698 0.002 <0.001 0.156 0.001
Univariate HR 1.1(04-17) 1.9(1.3-3.0) 2.8(1.6-4.8) 14(09-2.1) 23(14-39)

P value 0.698 0.002 0.000 0.155 0.001
Multivariate HR 1.3(06-2.7) 1.5(0.9-2.7) 2.3(1.2-44) 1.5(1.0-24) 2.8(1.4-54)

P value 0.544 0.138 0014 0.053 0.003

Multivariate HR adjusted by age, grade, continuous tumor size, LN, ER, NPI1.

prognosis outcomes (e.g., signature PMID18231641Sig73
with phenotype relapse vs. non-relapse in Additional file 1:
Table S3) [37]. However, the majority of the signatures are
the result of indirect design, comparing phenotypes such
as low or high proliferation (signature PMID18662380
Sig355) [38] and TP53 status (signature PMID18271932
Sig33) [39]. Regardless of study design, all 37 signatures
were found to be associated with patient prognosis. Inter-
estingly enough, the performances of the signatures de-
rived via direct design are not necessarily better than those
derived via indirect design.

Random signature simulation identifies appropriate test
datasets

The predictive ability of each of the 351 public cancer
signatures varied across the 31 breast cancer test data-
sets. Assuming that the majority of the 351 public signa-
tures are, in fact, associated with cancer prognosis, we
can use them to identify those test datasets prone to

producing false negative results, as these will be the
datasets in which most of the public signatures will fail
to appropriately stratify patients into their prognostic
groups. Such instances in which signatures failed to
stratify patients were recorded as “N/A” in the survival
analyses. The percentages of failure rates (“N/A rates”)
from the 351 signature log-rank tests are listed for each
dataset in Additional file 1: Table S2.

The N/A rates in most test datasets were very low (<5%,
Additional file 1: Table S2). However, four datasets includ-
ing GSE10510, BR17663798, GSE2607GPL1390, and
BR907 had unacceptably high N/A rates (>5%). These four
datasets that performed poorly with most test signatures
and resulted in predictions with high false-negative rates
were subsequently removed before performing further
survival analyses. Thus, we filtered the datasets with high
N/A rates before performing other survival analyses.

To control false positive results from the log-rank tests
using top 37 signatures and the 31 test datasets, we
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Table 3 Hazard ratio risks and log-rank tests in BR1141
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BRmet50

PMID18271932Sig33 PMID16505416Sig822

HR(95% CI) HR P HR (95% ClI) HRP HR (95% ClI) HR P
Tumor size
T1 26(1.3-5.5) 0.009 24(1.1-5.0) 0.019 1.0(0.5-2.1) 0.943
T2 1.7(1.0-2.8) 0.044 2.0(1.3-33) 0.008 0.7(04-1.2) 0.209
Lymph node involvement
No 2.3(14-39) 0.001 2.2(13-3.3) 0.003 0.8(0.5-1.4) 0511
Yes 2.0(1.0-4.1) 0.053 2.8(14-5.0) 0.004 0.6(0.3-1.4) 0.245
Tamoxifen treatment
No 2.6(14-5.0) 0.004 2.5(1.3-5.0) 0.007 1.1(0.5-2.0) 0.869
Yes 22(1.2-39) 0.007 26(1.4-5.0) 0.001 0.6(0.3-1.0) 0.041
Differentiation
Good 23(0.6-84) 0.196 2.5(0.8-10) 0.131 1.3(04-3.8) 0.682
Intermediate 2.5(1.5-4.3) 0.001 3.3(2.0-5.0) <0.001 0.7(04-1.2) 0.194
Poor 14(0.6-34) 0442 13(06-33) 0.554 0.5(0.2-1.1) 0.086
ER status
Negative 14(0.5-4.0) 0495 1.7(0.6-5.0) 0.329 09(0.3-24) 0.782
Positive 2.5(1.6-4.0) <0.001 25(1.7-5.0) <0.001 0.7(04-1.1) 0.102

Note: T1 denotes tumor size less than or equal to 2.0 cm, and T2 denotes tumor size larger than 2.0 cm.

HR: Hazard ratio value.
HR P: Hazard ratio P value.

compared the predictive ability of each of the top 37 sig-
natures to 1,000 random signatures of identical length
(ranging from 12 to 1,019 genes).

For a given test dataset, we summarized the mean per-
centage of significant P values from the top 37 pubic
cancer signatures and the mean percentage of significant
P values from the 37,000 random signatures (Additional
file 1: Table S3).

We then computed the differential index, which is de-
fined as the difference between the mean percentage of
significant P values from the top 37 signatures and the
mean percentage of significant P values from the 37,000
random P values.

A high-performance breast cancer test dataset has a
large differential index (29%), indicating a low percent-
age of significant P values from the 37,000 random

Table 4 A prognostic signature for patients with ER- breast cancer

ER negative dataset (sample size) Clinical end points

Log-rank test

Univariate HR Multivariate HR

P value HR (95% Cl low-high) P value HR (95% ClI low-high) P value

BR1141(40) RFS 0.828 1.1(04-3.0) 0.828 NA* NA
BR2411(69) RFS 0.590 1.3(0.5-2.9) 0.591 NA NA
BRGSE20624(115) RFS 0442 1.3(0.5-3.0) 0602 NA NA
BR25055(131) DRFS 0.406 1.3(0.7-2.5) 0.406 NA NA
BR1405(77) RFS 0.015 2.5(1.2-54) 0.015 NA NA
BRGSE21653(113) DFS 0.022 2.1(1.1-39) 0.022 25(1.1-54) 0.023
BRMetabric DSS 0.001 2.2(14-37) 0.001 24(1.1-5.2) 0.022
D22522925(196)

BRMetabric DSS 0.015 16(1.1 -2.5) 0.015 1.7(1.0-2.9) 0.036
V22522925(244)

BRTCGA(118) (o) 0.003 13.8(1.4-34.6) 0.003 3.2(15-5.2) 0.025

Note: Multivariate HR adjusted factors in each test dataset are as follows: BRGSE21653 (grade, PR, HER2 status, ki67), BRMetabricD22522925 and
BRMetabricV22522925 (age, menopausal status, grade, size, stage, lymph node positivity, NPI, HER2 status, PAM50 subtype, treatment), BRTCGA (PR, HER2 status,

T stage).
#: No adjusted clinical covariates; no mulitvariate HR analysis was performed.
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Table 5 Chemotherapy outcome prediction using prognostic signatures

Response prediction (n = sample size) BRmet50 PMID18271932Sig33 pCR RCB
pCR/RD(n = 993)*

Mean PPV(SD) 88(6) 88(5) NA NA
Mean NPV(SD) 35(4) 35(6) NA NA
RCB(n=417)**

Mean PPV(SD) 85(1) 86(3) NA NA
Mean NPV(SD) 42(1) 41(0.3) NA NA
DRFS(n = 508)**

Mean PPV(SD) 32(0.3) 31(2) 26(04) 49(2)
Mean NPV(SD) 88(6) 87(4) 92(0.8) 83(4)

*Five data sets with neoadjuvant chemotherapy records include GSE25055 (anthracycline-taxane ), GSE25065 (anthracycline-taxane ), GDS4057(5-fluorouracil,
doxorubicin, and cyclophosphamide), GSE32646 (5-fluorouracil-epirubicin, and cyclophosphamide), GSE41998 (doxorubicin and cyclophosphamide followed by

ixabepilone or paclitaxel).

**DRFS: Distant relapse free-survival, 508 samples from two data sets including GSE25055 and GSE25065.

signature simulations and a high percentage of signifi-
cant P values among the top 37 signatures. Similarly, a
poorly-performing dataset has a small differential index
(<9%) because it has a high percentage of significant P
values from the 37,000 random signature simulations.

Based on the differential index, nine datasets demon-
strated poor performance given their small differential in-
dices (<9%), which included the four datasets identified as
having high N/A rates (Additional file 1: Table S2). There-
fore, the 22 remaining breast cancer datasets were consid-
ered to be datasets with good test performance on the
basis of a large differential index (>9%).

Meta-validation of top 37 prognostic signatures in breast
cancer
To further narrow down the top signature candidates,
we re-evaluated the top 37 cancer signatures’ perfor-
mances in the 22 verified test datasets with adjusted P
values from the 22,000 random signature simulations.
Specifically, we adjusted the P values of the top 37 signa-
ture candidates in each test dataset using 1,000 ran-
domly generated P values.

For a given test dataset and test signature, we expected
that 5% or fewer of these 1,000 random signature P values

would be smaller than the P value of the corresponding
top 37 test signature.

Thus, an adjusted P value is determined dynamically by
adjusting the P value from one of the top 37 signatures
using the P values from 1,000 random signatures of equal
length in the same test dataset. We counted the number
of random signatures that had smaller P values than
the P value of their corresponding top 37 signature and
divided it by 1,000. We were thus able to obtain a new
permutation-adjusted P value for each top signature.

We ranked the top 37 signatures by their adjusted
median P values over the 22 validated breast cancer
datasets (Table 1). BRmet50, PMID16505416Sig822,
and PMID18271932Sig33 were the only signatures that
could distinguish a good prognostic group from a poor
prognostic group successfully in 82%, 68%, and 64% of
the 22 test datasets, respectively, with adjusted median
P values <0.05. The 34 other prognostic signatures
were unable to discriminate prognosis groups in the
majority of test datasets when compared with random
signatures of equal length (median P values > 0.05).

BRmet50 was deduced from data similarity-based meta-
analysis and demonstrated robust prognostic prediction in
multiple cancer types [32]. PMID16505416Sig822 was de-
rived from estrogen-responsive genes identified by treating

Table 6 Prediction of taxane-anthracycline sensitivity in patients with HER2-negative(HER2-) breast cancer

PCR prediction(n = 488)

Prediction evaluation* PPV (SD) NPV (SD) Sensitivity (SD) Specificity (SD)
Unsupervised clustering

BRmet50 93(14) 34(3) 58(3) 83(0.6)
PMID18271932Sig33 92(3) 32(5) 53(6) 83(6)
Anthracycline-taxane Centroid

BRmet50 89(6) 27(0.6) 40(5) 83(6)
PMID18271932Sig33 77(4) 20(3) 29(1) 67(0.5)
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MCF7 cells with 17beta-estradiol and previously has
been shown to add significant prognostic information
independent of standard clinical predictors [40].
PMID18271932Sig33 was obtained by identifying gene
transcripts differing between patients with or without
TP53 mutations identified by DNA sequencing and was
shown to be a significant prognostic factor for recur-
rence and survival in two external datasets [39].

For PMID18271932Sig33, the 22 validated datasets are
fully-independent test datasets.

There is one out of the 22 datasets served as a training
set [40] for PMID16505416Sig822. Among the 22 data-
sets, nine were used as training sets for BRmet50
[10,17,36,41-45], and remaining 13 are independent test
datasets [3,6,40,46-53]. To avoid over-fitting of the nine
training datasets, we had used a ‘leave-one-out’ cross-
validation strategy to deduce nine BRmet50 control sig-
natures for the corresponding nine training datasets
[32]. In each leave-one-out trial, the included signatures
remained clustered and shared the core set of the 50
genes. We had tested these control meta-signatures in
corresponding training datasets and found that their
prognostic performances were as good as BRmet50 [32].

Multivariate comparison of the top three signatures
identifies signatures with additional prognostic value in
addition to standard clinicopathologic features

To further evaluate the performance of the top three sig-
natures, we examined five datasets (BR1042, BR1095,
BR1128, BR1141, and GSE7390) sharing a common set
of clinicopathologic characteristics including tumor size,
grade, lymph node status, and Nottingham Prognostic
Index (NPI) [54,55]. We performed C-indices, log-rank
tests, and univariate Cox proportional hazards model to
compare the performance of the top three signatures. In
addition, we performed multivariate Cox proportional
hazards models to compare with other prognostic fac-
tors, namely, age, tumor size, grade, lymph node status,
and NPIL The unadjusted and adjusted hazard ratios of
these factors and the top three signatures were then de-
termined (Table 2).

Univariate Cox proportional hazards analysis demon-
strated that PMID16505416Sig822 could not successfully
predict cancer prognoses in two out of the five datasets.
However, BRmet50 and PMID18271932Sig33 were able
to significantly differentiate tumor samples into two
prognostic groups in all five validation datasets. The
hazard ratios for BRmet50 and PMID18271932Sig33
were consistently greater than those of PMID16505416
Sig822 as evidenced by the fact that optimal unadjusted
hazard ratios (HR) (high risk vs. low risk) in BR1042
were 2.8 (95% CI: 1.4-5.5, P =0.002) for BRmet50, 2.0
(95% CI: 1.1-3.8, P =0.03) for PMID18271932Sig33, and
1.1 (95% CI: 0.4-1.7, P = 0.69) for PMID16505416Sig822,
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respectively (Table 2). These data suggest that the
BRmet50 and PMID18271932Sig33 signatures more ef-
ficient at predicting relapse-free survival in BR1042,
BR1141, and GSE7390 and disease-free survival in
BR1095 and BR1128 than PMID16505416Sig822.

As another means of assessing performance, we calcu-
lated the c-index, which is a generalization of the area
under the receiver operating characteristic (ROC) curve
[56], for the cancer signatures in the 5 validation datasets
(Table 2). The prognostic value (c-index) for BRmet50,
PMID18271932Sig33, and PMID16505416Sig822 were
compared. For any given test dataset, BRmet50 c-indices
were similar to those of PMID18271932Sig33 but signifi-
cantly higher than those of PMID16505416Sig822, sug-
gesting that the prognostic information provided by the
BRmet50 and PMID18271932Sig33 signatures were com-
parable but better than that of PMID16505416Sig822.

To determine if BRmet50, PMID18271932Sig33, and
PMID16505416Sig822 added independent prognostic in-
formation to other standard clinicopathologic features,
we performed multivariate Cox proportional hazards
analysis. In this multivariate Cox proportional-hazards
analysis (Table 2), significant associations (P < 0.05) were
observed in all five test datasets between BRmet50 and
patient relapse-free or disease-free survival time after ad-
justment for standard clinical covariates. Thus, BRmet50
contributed new and important prognostic information
beyond that provided by established clinical predictors.
Except for one analysis using BR1042, PMID18271932
Sig33 also demonstrated significant association after ad-
justment for standard clinical covariates in the other
four test datasets. On the other hand, PMID16505416
Sig822 showed no significant associations in three test
datasets after adjustment for standard clinical covariates.

Together the data suggested that BRmet50 and
PMID18271932Sig33 had comparable predictive power
while PMID16505416Sig822 showed poor performance
in c-index and uni- and multi-variate Cox proportional
hazards analyses.

Prognostic signatures have predictive value in breast
cancer subsets

To determine the performance of the top three signa-
tures in different subsets of breast cancer, we evaluated
their predictive power using a well-characterized dataset
(BR1141) containing commonly used covariates.

The 269 patients from BR1141 were stratified accord-
ing to tumor size, lymph node status, tamoxifen treat-
ment, histologic grade, and ER status. A univariate Cox
proportional hazards model was used to evaluate the as-
sociation of individual signatures with the clinical out-
come in each category (Table 3).

BRmet50 and PMID18271932Sig33 performed equally
well in the ER+ and intermediate -grade subsets of
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BR1141. The association between the top two signatures
and the risk of relapse was significant regardless of
tumor size, lymph node status, and tamoxifen treatment
(P <0.05).

However, while the top two signatures were signifi-
cantly associated with outcome in patients with ER+ tu-
mors (hazard ratio=2.5, P <0.0001) this was not the
case for those that were ER- (log-rank P =0.495 and
0.329, HR = 1.4 and 1.7, 95% CI: 0.5-5.0). Both BRmet50
and PMID18271932Sig33 were incapable of stratifying
tumors with high (grade 3) or low (grade 1) differenti-
ation (P > 0.05).

PMID16505416Sig822 had no apparent predictive value
for almost all subsets of the BR1141 dataset (P > 0.05),
with the exception of the tamoxifen-treated patient subset,
which is expected given its derivation from estrogen re-
sponsive cells [40].

Identification of a prognostic signature for ER- breast
cancer

Like most breast cancer signatures, BRmet50 and
PMID18271932Sig33 are derived from datasets in which
ER-positive (ER+) tumors predominant and perform well
in the prediction of prognosis in ER+ tumors but poorly
in ER- tumors (Table 4).

In order to identify signatures that could provide prog-
nostic value in multiple ER- subsets, we created a subset
of our 22 datasets consisting of nine ER- datasets. We
tested 351 public cancer signatures with the nine ER-
datasets using log-rank tests, and univariate and multi-
variate HR analyses. From our results, we identified one
signature, PMID20813035Sig137 with good predictive
value, which is enriched in adhesion/EMT genes and de-
rived from ER- and claudin-low breast tumors [57].
PMID20813035Sig137 was able to predict prognosis suc-
cessfully in 56% (five out of nine) of ER- datasets (Table 4)
while BRmet50 and PMID18271932Sig33 were able to
predict prognosis successfully in 11%. PMID20813035-
Sigl37 produced statistically significant unadjusted HR
values (P < 0.05) in five of the ER- datasets and significant
adjusted HR values in four ER- datasets.

Among the 1,000 random signatures of lengths iden-
tical to PMID20813035Sig137 (137 genes), only
PMID20813035Sigl137 was able to predict prognosis in
more than four out of nine ER- subsets. Therefore, the
ability of PMID20813035Sig137 to predict prognosis
in ER- subsets reached statistical significance.

Prognostic signatures have predictive value for
neo-adjuvant chemotherapy

Chemotherapy response is determined by primary tumor
biology. Consequently, the initial development of a pre-
dictive signature for chemotherapy response does not
necessary have to make use of treatment response and
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survival data, but can instead rely on indirect markers.
For example, BRmet50 is actually derived from primary
tumor samples with various phenotypes known to be as-
sociated with prognosis and treatment sensitivity (e.g.,
grade, size, proliferative rates, nodal status, and mo-
lecular markers). Since PMID16505416Sig822 was gen-
erated as an ER-responsive signature and only provided
additional prognostic value in the tamoxifen-treated
setting, we decided to evaluate the predictive value of
the remaining two prognostic signatures to predict
chemotherapy outcomes and drug sensitivity in breast
cancer patients.

To prospectively assess the predictive value of the top
two prognostic markers, we collected the five test data-
sets (GDS4057, GSE32646, GSE41998, GSE25055 and
GSE25065) [6,58-60] containing neoadjuvant chemo-
therapy responses and gene-expression profiles. The
chemotherapy regimens included anthracycline/taxane
(GSE25055 and GSE25065), 5-fluorouracil/doxorubicin/
cyclophosphamide (GDS4057), 5-fluorouracil/epirubi-
cin/cyclophosphamide (GSE32646), and doxorubicin/
cyclophosphamide/ixabepilone/paclitaxel ~(GSE41998).
We evaluated the predictive performance of the top
two signature profiles by using the surrogates of both
conventional short-term treatment response and long-
term survival time. The short-term outcome measure-
ments in all five test datasets (993 patients) include actual
pCR/RD and RCB. The long-term survival measurement
in two datasets (GSE25055 and GSE25065, 508 patients)
is DRFS. The derived positive predictive value (PPV), the
negative predictive value (NPV), sensitivity, and specificity
are compared accordingly (Table 5).

Both BRmet50 and PMID18271932Sig33 can predict
PCR/RD or RCB in five independent cohorts with those
patients predicted to belong to the insensitive response
group having high RD rates after neoadjuvant chemo-
therapy (mean PPV = 85%-88%) (Table 5). Those patients
predicted to have a good response had significantly lon-
ger DRES (i.e, no relapse within three years, NPV =
87%-88%) than those predicted to have early relapse and
shorter DRFS (i.e., relapse within three years, PPV =
31%-32%). The NPV values of these two genomic predic-
tors (BRmet50 and PMID18271932Sig33) were compar-
able to those of traditional predictive methods (pCR and
RCB, 92% and 83%, respectively).

These results suggest that BRmet50 and PMID18271932-
Sig33 have similar predictive value in terms of predicting
chemotherapeutic response. They can both accurately pre-
dict the clinical responses of breast cancer patients treated
with commonly used chemotherapeutic drugs, especially
for those patients who will go on to fail chemotherapy as
assessed by residual disease (RD or RCB-II/III) upon sur-
gery or 3-year DRFS. This predictive power is of significant
clinical importance because it has the ability to identify
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those patients most likely to fail chemotherapy and would
likely experience chemotherapy toxicity without the benefit
of halting or slowing disease progression.

To determine if the predictive power of these signatures
translates into prognostic value, we compared DRES for
the top two signatures using Kaplan—Meier survival ana-
lysis (Figure 2). The distant relapse-free survival time for
the groups predicted to be treatment-sensitive was signifi-
cantly longer than that of the groups predicted to be
treatment-insensitive (P <0.01) and followed a similar
curve as the actual pathologic response assessed by pCR.
For example, the 5-year disease-free survival rates were
82%-85% for the BRmet50 and PMID18271932Sig33-
predicted responders while the relapse-free rates were
61%-65% for the BRmet50 and PMID18271932Sig33-
predicted insensitive groups.

These results demonstrate that these signatures have
predictive power for neoadjuvant chemotherapy in
addition to their long-term prognostic value.

The predictive value of the prognostic signatures in
HER2-negative patients treated with chemotherapy

Since ERBB2 (HER2 or HER2/neu) positive patients re-
ceive targeted therapy there exists a need to determine
if newly diagnosed HER2-negative patients would bene-
fit from the use of neoadjuvant taxane-anthracycline
chemotherapy, as assessed by short-term treatment re-
sponse (pCR and RCB0/I) and, more importantly, long-
term (DRES) prognosis [6].

Given our finding that the top two prognostic signa-
tures can retrospectively predict some common chemo-
therapeutic outcomes in breast cancer patients (Table 5),
we designed an algorithm using the BRmet50 and
PMID18271932Sig33 predictors for prospective predic-
tion of taxane-anthracycline sensitivity in individual pa-
tients with HER2- breast cancer.

In order to build a model for taxane/antracycline
chemotherapy we extracted the drug sensitivities for 13
HER2-negative breast cancer cell lines from the publically
available Genomics of Drug Sensitivity (GDS) dataset [33].
Using these cell lines we created a taxane-anthracycline-
sensitive reference profile for sensitive/resistant cell lines
(log(IC50) < -1) and compiled gene expression centroids
for each. Using these centroids, we generated treatment
sensitive and insensitive signatures for BRmet50 and
PMID18271932Sig33 [3]. These signatures were then cor-
related to gene expression from HER2-negative patients in
GSE25055 and GSE25065 who were subsequently treated
with chemotherapy containing sequential taxane and
anthracycline-based regimens.

To evaluate the ability of the two signatures to predict
drug sensitivity, the groups predicted to be either drug-
sensitive or drug-insensitive were compared to their ac-
tual short-term drug responses (pCR/RD) and long-term
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DRFS outcomes. We then computed performance values
(PPV, NPV, sensitivity, and specificity) and performed
Kaplan-Meier analyses.

We have presented two prediction models for drug re-
sponses in breast cancer patients: (1) an unsupervised
clustering-based retrospective prediction and (2) a drug-
sensitive centroid-based prospective prediction (Table 6).
We found that BRmet50 was capable of predicting drug
sensitivity in both models.

When drug sensitivity prediction results were assessed
by actual treatment response (pCR/RCB) in HER2- breast
cancer patients, we found that the prospective individual
predictions using the centroid model showed comparable
results to those obtained using the unsupervised
clustering-based prediction. Both had high PPV (85%-93%
vs. 74%-89%, respectively) and specificity (71%-83% vs.
67%-83%, respectively) (Table 6). The BRmet50 predic-
tions had higher PPVs and NPVs than did the
PMID18271932Sig33 predictions. For example, the aver-
age PPVs of BRmet50 predictions were 82%-89% while the
average PPVs of PMID18271932Sig33 were 74%-77%.

The taxane-anthracycline sensitivity predictions based
on the BRmet50 and PMID18271932Sig33 centroids were
evaluated by long-term drug response (i.e., distant relapse-
free survival) using Kaplan-Meier analyses (Figure 3). The
results demonstrated that there was a significant differ-
ence in distant relapse-free survival between the patients
who were predicted to be drug-sensitive and those who
were predicted to be drug-insensitive by the BRmet50
centroid (P < 0.05, Figure 3) while PMID18271932Sig33
centroids failed to achieve statistically significance (P >
0.05). Thus, the BRmet50 centroid model can predict sig-
nificantly improved DRES for patients with taxane-
anthracycline sensitivity. The ability of BRmet50 to predict
drug sensitivity is better than that of PMID18271932Sig33,
which is consistent with the PPV and NPV data in
Table 6.

The data suggests that a combination of a prognostic
signature and chemosentivity data from pre-clinical
breast cancer cell lines can prospectively predict chemo-
therapy sensitivity in individual patients with HER2-
breast cancer.

Gene signature annotation analyses of the top two
prognostic signatures pathways associated with TP53
mutations
Since BRmet50 and PMID18271932Sig33 have similar
prognostic patterns, we anticipated that there may be a
large number of overlapping genes and gene functions
between the two signatures that shed light on a funda-
mental mechanism of cancer prognosis prediction.

We previously examined the 50 genes in BRmet50
with regard to their functions and relevance to cancer
(Additional file 1: Table S4) [32]. Some of the genes in
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the signature are known to be involved in tumor pro-
gression [61-67]. Of the 50 genes in BRmet50, 39 were
up-regulated and 11 were down-regulated in aggressive
tumors. More than half of the BRmet50 gene-expression
directions and functions have been confirmed in publicly
accessible data (29/50), but the other 21 have not yet
been confirmed and represent potential functional genes
involved in cancer progression and metastasis.

Among the 32 genes in the PMID18271932Sig33 signa-
ture, there are 20-upregulated genes and four down-regu-
lated genes in samples with TP53 mutations (Additional
file 1: Table S5). The remaining eight gene-expression di-
rections are unknown. Of the 20 upregulated genes, 14
genes have molecular functions related to the cell cycle
and/or cell division.

Only seven genes in BRmet50 overlap with PMID1827
1932Sig33, suggesting that BRmet50 and PMID182719
32Sig33 are two distinct signatures. However, most
genes from both signatures are involved in cancer
tumorigenesis and tumor progression. Using Ingenuity
pathway analysis, we found that the BRmet50-identified
genes are involved in 45 different pathways, and that the
PMID18271932Sig33-identified genes are involved in 24
distinct pathways. Between the two lists, we identified 10
common canonical pathways (Table 7).

Both signatures are heavily enriched for genes involved
in cycle checkpoint regulation and DNA damage re-
sponse, (Table 7). Since cell cycle control is directly or in-
directly disrupted by TP53 mutations in tumor cells, the
overlapping functions in BRmet50 and PMID18271932-
Sig33 may represent gene-expression alterations resulting
from the loss of TP53 [39].

To determine if both signatures identify tumors with
TP53 mutations, we examined the TCGA breast cohort
and extracted the gene expression data (RNA-seq) for
each gene comprising the signature as well as TP53 muta-
tion status. Of the 958 tumors with both gene expression
data and TP53 mutation status, 30.3% (290) of the tumors
exhibited TP53 mutations (Additional file 1: Table S6).
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Unsupervised hierarchical clustering performed on the
gene expression for each signature showed a substantial
enrichment in TP53 mutations for tumors with ele-
vated gene-expression of both PMID18271932Sig33
(56.3% vs. 13.1%, P <0.0001) and BRmet50 (48.7% vs.
8.5%, p <0.0001) (Figure 4). While enriched for TNBC
tumors, known to carry a high frequency of TP53 muta-
tions, the clustering appears to be subtype-independent
with numerous ER+ and HER+ tumors clustering with
TNBC tumors. The tumors enriched by both signatures
were highly correlated (82.2%), suggesting that both signa-
tures may be a functional gene expression readout loss of
TP53 function states.

Discussion

Hundreds of transcriptional gene signature studies pub-
lished to date have not progressed beyond the discovery
phase because the validation phase of gene-expression
signatures is very time-consuming and costly. Addition-
ally, many prognostic signatures often fail to reproduce
in independent datasets. Therefore, we developed a
high-throughput in silico validation method capable of
identifying signatures with robust prognostic value
through systematical evaluation of the performance of
351 public cancer signatures across 31 breast cancer val-
idation datasets.

Because almost all public cancer signatures have only
been validated using a few test datasets, a practical ques-
tion is how to select additional valid datasets for signature
validation. Therefore, we developed a differential index
system using 37,000 random signatures. We identified
nine datasets that were considered to be poorly-perform-
ing datasets and 22 breast cancer datasets that were con-
sidered to exhibit good performance. For the first time,
our study proposes a criterion for validation of public
datasets by providing 22 validation datasets from 31
available breast cancer datasets for survival analysis.
The results suggest that the differential index should be

Table 7 Major pathways of BRmet50 and PMID18271932Sig33

Pathways BRmet50 PMID18271932Sig33
Cell cycle: mitotic roles of polo-like kinase KIF23,PRCT,CCNB2 KIF23,PTTG1,PRCT,CCNB2,PKMYT1,PLK1
Cell cycle: G2/M checkpoint regulation CCNB2 CCNB2,PKMYT1,PLK1
Cell cycle: control of chromosomal replication CDC45,CDT1 CDC45

Cell cycle: regulation CCNB2 CCNB2

Cell cycle: checkpoint control RFC4 PLK1

DNA damage: 14-3-30 signaling CCNB2 CCNB2

DNA damage repair: ATM signaling RAD51,CCNB2 CCNB2

DNA damage response: BRCA1 pathway RAD51,RFC4 PLK1

DNA damage response: salvage pathways of pyrimidine ribonucleotides NEK2 PLK1

Protein ubiquitination UBE2S,UBE2C UBE2C
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Figure 4 BRmet50 and PMID18271932Sig33 enrich for breast cancer tumors with mutated TP53. Heat maps display unsupervised hierarchical
clustering for genes in (A) BRmet50 and (B) PMID18271932Sig33 in the breast cancer TCGA cohort. TP53 mutation (red) and breast cancer subtypes
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implemented as an additional inclusion/exclusion cri-
terion for the selection of validation datasets.

While it is true that many other studies have previ-
ously shown that signatures related to cell cycle or pro-
liferation [68,69] or p53 pathway [10,70] can predict
outcome in one or a few tumor datasets, this is not the
case when evaluated in a large sample size (Additional
file 1: Table S1). Based on the rank order of 351 prog-
nostic signatures’ performance in 10,881 log-rank tests,
we identified two prognostic signatures (BRmet50 and

PMID18271932Sig33) in breast cancer and one signature
(PMID20813035Sig137) specific for prognosis prediction
in patients with ER-negative tumors. However, many
other signatures are unable to predict prognosis in more
than 50% of breast cancer datasets (Table 1).

We also computed Q values based on multiple hy-
pothesis testing of 10,881 P values from the log-rank
tests [71]. The percentages of significant Q values (false
discovery rate < 8%) were then ranked accordingly, and a
similar ranking pattern as the significant P value rates
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has been observed (data not shown). Most of top37 signa-
tures (33/37) had significant Q values in more than 50% of
test datasets except the three signatures (PMID12714683-
Sig29, PMID19014521Sig72, PMID21501481Sig224) hav-
ing the significant Q values in 48% test datasets.

A signature can be designed directly from clinical
outcome comparisons or indirectly by making compari-
sons between various molecular mechanisms and dis-
ease phenotypes as opposed to survival data. After the
first round of validations, only two (PMID15721472-
Sig76 and PMID17076897Sig52) found in the top 37
signature list were directly designed signatures derived
from DRFS comparisons. The top two prognostic signa-
tures were indirectly designed. BRmet50 was derived from
our previously implemented meta-analysis of breast can-
cer gene-expression profiles [7], and PMID18271932Sig33
is derived from TP53 mutation status, which is the most
common and fundamental genomic alteration in cancer
[39,72]. Not only can the two signatures (BRmet50 and
PMID18271932Sig33) predict the clinical responses of
breast cancer patients to commonly used chemotherapies,
but also both signatures can retrospectively predict cancer
treatment response (pCR/RD) and survival (DRFS) to
neoadjuvant chemotherapy. Furthermore, BRmet50 can
prospectively predict taxane-anthracycline sensitivity in
patients with HER2-negative (HER2-) breast cancer
(Table 6). Since cancer prognosis correlates with many
aspects of cancer biology and clinical phenotypes, our
results (Additional file 1: Table S3 and Table 1) suggest
that indirectly-designed signatures are robust for the
prediction of cancer prognosis. However, not all indirectly-
designed signatures can be used for prediction of short-
term treatment response. For instance, the prognosis
signature PMID11823860Sig70 (MammaPrint) can pre-
dict prognosis in patients with breast cancer but was
unable to reliably predict pCR in breast cancer patients
predicted to have a good long-term, prognosis [29].

We realized that many well-known predictive signa-
tures in Additional file 1: Tables S1 and S3 were not in-
cluded in the top signatures (Table 1). For example,
PMID11823860Sig70 (MammaPrint) was designed spe-
cifically to predict distant metastasis in early-stage
breast cancer patients with lymph node-negative status
[36,41]. The 21-gene Recurrence Score assay from
PMID18360352Sig21 (Oncotype DX Breast Cancer Assay)
is prognostic for women treated with tamoxifen with
lymph node-negative and ER+ breast cancer [2,30]. One
explanation is that we did not compare those well-known
signatures within their own individual predictive condi-
tions as described in the original studies.

The source datasets we analyzed in this study are all
from microarray platform. The common limitation with
microarray is high background noise interference intro-
duced at different experimental and analysis stages. This
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problem often affects the data quality for meta-analysis.
We expect that RNA-seq technology based gene-
expression profiles will improve data quality and has a
revolutionary impact on the meta-analysis of gene-
expression research.

One obvious limitation of the BRmet50 and PMID18
271932Sig33 is that they cannot predict prognosis in pa-
tients with ER- tumors. Almost all public cancer signa-
tures including BRmet50 and PMID18271932Sig33 are
derived from whole tumor samples. Intertumor and
intratumor heterogeneity of whole tumors is evident in
their histology, gene expression, genotype, and meta-
static and proliferative potential [73,74]. The major sub-
type of whole primary tumors is ER-positive (ER+)
(~60%). Thus, our top two signatures, various multi-
gene assays such as the 70-gene MammaPrint signature
(designated here as BRsig70) [36], the 76-gene signature
(BRsig76) [41], and many others [1,75-78], which have
been developed for clinical prognosis prediction in
classifying ER+ patients into low- or high-risk groups for
recurrence, are considerably less informative for ER- pa-
tients [79-86].

In order to identify prognostic signatures for patients
with ER- breast cancer, we examined public signatures
in the setting of ER- breast cancer and identified
PMID20813035Sig137 as a good predictor of prognosis
in patients with ER- tumors. The PMID20813035Sig137
signature is derived from breast tumors of the claudin-low
tumor subtype. Claudin-low tumors are characterized by
low to absent expression of luminal differentiation
markers, and high enrichment for epithelial-to-mesen-
chymal transition markers, immune response genes,
and cancer stem cell-like features. Clinically, the majority
of claudin-low tumors carry a poor prognosis and are ER-,
progesterone receptor (PR)-negative, and HER2- (triple
negative) invasive ductal carcinomas [57]. Our data sug-
gest that the predictor of prognosis in ER- tumors should
be identified independently from ER- subset samples
rather than from whole tumor samples, and a unique
predictive model is required for those patients with ER-
breast cancer.

PMID18271932Sig33 is comparable to BRmet50 in
terms of predicting prognosis (Tables 1, 2, and 3), treat-
ment response, and DRFS in breast cancer patients fol-
lowing neoadjuvant chemotherapy. PMID18271932Sig33
is derived from a set of genes that were differentially
expressed between mutant TP53 and wild type TP53 tu-
mors [39]. When BRmet50 and PMID18271932Sig33
genes are analyzed by an overlapping analysis, there are
a limited number of common genes. Seven genes are
common between BRmet50 (14%) and PMID18271932-
Sig33 (22%). Despite this small amount of overlap in
gene composition, like many other prognostic signatures
(Additional file 1: Table S1), the major functions of both
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signatures are essentially equivalent in prognostic per-
formance in breast cancer [87]. The gene functions of
the two signatures are common and highly correlated
with cell cycle controls and cell proliferation (Additional
file 1: Tables S4 and S5) [7,38,81], which stands in con-
trast to the gene composition and functions of the ER-
predictor (PMID20813035Sig137). The 10 pathways
shared by the top two signatures are essential for cancer
prognosis and drug sensitivity. Most genes in the 10
common pathways are related to cell cycle and DNA
damage response (Table 7, Additional file 1: Tables S4
and S5). Taxane and anthracycline are known for their
ability to bind DNA in several different ways and inhibit
cancer cell division and duplication of DNA for mitosis
and DNA replication [88].

TP53 mutations are the most common genetic alter-
ations in many types of cancer. specifically ranging from
20% to 50% in breast cancer [39]. In high-grade ovarian
adenocarcinomas, TP53 is mutated in almost all tumors
(96%) [72]. However, TP53 is an unpredictable tool for
individual risk evaluation, metastasis, and overall sur-
vival. It is not easy to correctly evaluate TP53 status and
its correlated clinical outcomes by standard DNA se-
quencing analysis [89], and there is no significant associ-
ation with recurrence-free survival (RFS) between the
two different TP53 statuses [39].

Our results suggest that the TP53 mutation-driven
gene-expression signature (PMID18271932Sig33) is a
good biomarker for prognosis prediction in breast cancer.
PMID18271932Sig33 represents the functional conse-
quences of TP53 mutations that are relevant to the TP53
characterization of molecular pathways in tumorigenesis,
drug sensitivity, and the prognosis of several cancers.

Conclusions

Our study provides a high-throughput validation method
for assessing the prognostic value of all available public
gene-expression signatures in breast cancer patients and
22 breast cancer datasets that are useful for survival ana-
lyses. Using this method, we identified two prognostic and
TP53 mutation-driven signatures (BRmet50 and PMID18
271932Sig33) in breast cancer and one signature (PMID
20813035Sig137) specific for prognosis prediction in
patients with ER-negative tumors. Moreover, our results
suggest that indirectly designed prognostic signatures can
retrospectively predict patient response to chemotherapy
and prospectively predict taxane-anthracycline sensitivity
for individual patients with HER2- breast cancer.

Additional file

Additional file 1: Table S1. Overview of meta-analysis of signatures in
cancer. Table S2. List of validation datasets in breast cancer. Table S3.
Identification of prognostic signature candidates in breast cancer. Table S4.
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Annotation of genes in BRmet50. Table S5. Annotation of genes in
PMID18271932Sig33. Table S6. TP53, ER, PR, and HER2 statuses in TCGA
tumor samples.
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