
Yang et al. BMC Cancer  (2015) 15:67 
DOI 10.1186/s12885-015-1076-5
RESEARCH ARTICLE Open Access
Increased expression of colony stimulating
factor-1 is a predictor of poor prognosis in
patients with clear-cell renal cell carcinoma
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Abstract

Background: This study aims to evaluate the impact of colony stimulating factor-1 (CSF-1) expression on recurrence
and survival of patients with clear-cell renal cell carcinoma (ccRCC) following surgery.

Methods: We retrospectively enrolled 267 patients (195 in the training cohort and 72 in the validation cohort) with
ccRCC undergoing nephrectomy at a single institution. Clinicopathologic features, cancer-specific survival (CSS) and
recurrence-free survival (RFS) were recorded. CSF-1 levels were assessed by immunohistochemistry in tumor tissues.
Kaplan-Meier method was applied to compare survival curves. Cox regression models were used to analyze the impact
of prognostic factors on CSS and RFS. Concordance index (C-index) was calculated to assess predictive accuracy.

Results: In both cohorts, CSF-1 expression positively correlated with advanced Fuhrman grade and necrosis. High CSF-1
expression indicated poor survival and early recurrence of ccRCC patients after surgery, especially those with advanced
TNM stage disease. Multivariate Cox regression analysis showed CSF-1 expression was an independent unfavorable
prognostic factor for recurrence and survival. The predictive accuracy of the University of California Los Angeles
Integrated Staging System (UISS) was significantly improved when CSF-1 expression was incorporated.

Conclusions: High CSF-1 expression is a potential adverse prognostic biomarker for recurrence and survival of
ccRCC patients after nephrectomy.

Keywords: Clear-cell renal cell carcinoma, Colony stimulating factor-1, Prognostic biomarker, Recurrence-free survival,
Cancer-specific survival
Background
Renal cell carcinoma (RCC) accounts for approximately
3% of all adult malignancies, representing the seventh
most common cancer in men and the ninth most com-
mon cancer in women. Based on current guidelines,
surgery remains the only curative treatment option in
patients with localized renal cell carcinoma (RCC) [1-3].
However, despite the durable long-term disease control
in most patients, about 30% of patients with localized
disease experience local recurrence or distant metastasis
after adequately performed nephrectomy. Currently,
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several prognostic models have been proposed to iden-
tify patients at a high risk of disease progression after
nephrectomy. The two commonly used models are UISS
[4] and Mayo stage, size, grade, and necrosis score
(SSIGN) score [5]. The predictive accuracy of these
models may be further improved by the incorporation of
novel prognostic biomarkers.
Colony stimulating factor-1 (CSF-1), also known as

macrophage colony-stimulating factor (M-CSF), is the
primary cytokine that regulates the proliferation and dif-
ferentiation of monocytes and macrophages [6]. CSF-1 is
secreted by various types of cells like monocytes, fibro-
blasts, endothelial cells, and tumor cells. All the bio-
logical effects of CSF-1 are mediated through CSF-1
receptor (CSF-1R), a receptor belonging to type III re-
ceptor tyrosine kinase family. Many studies have demon-
strated that CSF-1 can polarize macrophages in the
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tumor microenvironment to an M2 phenotype, which
has anti-inflammatory function, favors angiogenesis, and
promotes tumor growth [7-9]. Moreover, recent evi-
dences have revealed that the infiltration of M2 macro-
phages is closely associated with unfavorable prognosis
in many types of cancer [10-18].
In this study, we analyzed CSF-1 expression by immu-

nohistochemistry in ccRCC tumor tissues and its associ-
ation with clinicopathologic characteristics and patient
outcome. We further evaluated whether this parameter
could add additional prognostic information to well-
established pathologic factors and prognostic models.

Methods
Patients
A total of 267 patients diagnosed with clear-cell RCC
(ccRCC) at Zhongshan Hospital (Shanghai, China) were
retrospectively included in the study. We enrolled a
training cohort of 195 consecutive patients undergoing
nephrectomy between January 2003 and December
2004. For validation, we also enrolled 72 consecutive
patients who experienced surgery in 2001. This study
was approved by the Ethics Committee of Zhongshan
Hospital, Fudan University. Informed consent was ob-
tained from each patient. For each patient, the following
Table 1 Patient characteristics and associations with CSF-1 ex

Training cohort

Variable Patients CSF-1 expression

Number % Low (n = 99) High (n = 96)

Age (years)* 55.3 56.2 54.3

Gender

Male 137 70.3 70 67

Female 58 29.7 29 29

Tumor size (cm)* 4.7 4.4 4.9

TNM stage

I + II 134 68.7 74 60

III + IV 61 31.3 25 36

Fuhrman grade

1 + 2 122 62.6 74 48

3 + 4 73 37.4 25 48

Necrosis

Absent 150 76.9 84 66

Present 45 23.1 15 30

ECOG PS

0 160 82.1 80 80

≥1 35 17.9 19 16

CSF-1 = Colony Stimulating Factor 1.
ECOG-PS = Eastern Cooperative Oncology Group performance status.
*Student’s t test and χ2 test for all the other analyses.
The bold characters indicate that these P values are considered statistically significa
clinicopathologic information was collected: age, gender,
tumor size, TNM stage, Fuhrman grade, presence of
histologic tumor necrosis, and eastern cooperative oncol-
ogy group performance status (ECOG-PS). Patients
were staged using radiographic reports and postopera-
tive pathological data, and were reassigned according
to 2010 AJCC TNM classification. None of the pa-
tients received neoadjuvant treatment. Patients who
died within 30 days of surgery or before discharge were
excluded from the study. CSS was calculated from the
date of surgery to the date of death or last follow-up, and
RFS was calculated from the date of surgery to the date
of recurrence or last follow-up. Patients with metastatic
disease were not included in the analyses using RFS as
the endpoint.
Patients with localized RCC were treated with radical

or partial nephrectomy, and patients with metastatic
RCC were treated with cytoreductive nephrectomy
followed by interferon-α-based immunotherapy. After
surgery, patients were evaluated with physical examin-
ation, laboratory studies, chest imaging, and abdominal
ultrasound or CT scan every six months for the first two
years and annually thereafter. Survival status was updated
in October 2013. Median follow-up was 103 months
(range, 11–120 months) in the training cohort and
pression

Validation cohort

P Patients CSF-1 expression P

Number % Low (n = 43) High (n = 29)

0.245 59.8 61.5 59.1 0.421

0.987 0.982

51 70.8 31 20

21 29.3 12 9

0.194 5.2 4.8 5.8 0.106

0.091 0.077

56 77.8 37 19

16 22.2 6 10

0.001 0.007

49 68.1 35 14

23 31.9 8 15

0.013 0.039

55 76.4 37 18

17 23.6 6 11

0.785 59 81.9 36 23 0.869

13 18.1 7 6

nt.
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median follow-up was 72 months (range, 18–118 months)
in the validation cohort.

Tissue microarray (TMA) and immunohistochemistry
Tumor samples were reviewed histologically using
hematoxylin and eosin staining, and then we marked
representative areas more centrally on the paraffin
blocks away from hemorrhagic and necrotic areas. Du-
plicate 1.0-mm tissue cores from two different areas
were used to construct the TMA. Primary antibody
against human CSF-1 (Dilution, 1:200; ab52864; Abcam,
Cambridge, MA, USA) was used in the procedure. The
Figure 1 CSF-1 expression in ccRCC tissues and the result of “minimum
images of (A) low expression (score = 15) and (B) high expression (score = 24
result of “minimum P value” approach and 130 had the best discriminatory po
specificity of the antibody was confirmed by western blot
using RCC cell lines. Tissue samples processed similarly,
except for the omission of the primary antibody, were
used as negative controls in immunohistochemistry. The
immunostaining was evaluated by two pathologists
(L. Chen and Q. Fu) without the knowledge of patient out-
come. A semi-quantitative immunohistochemistry score
on a scale of 0–300 was calculated for each sample by
multiplying the staining intensity (0, no staining; 1, weak;
2, moderate; and 3, strong) and the percentage of cells
(0–100%) at each intensity level [19]. For each patient,
the mean score of duplicates was used for statistical
P value” approach. (A,B) Representative CSF-1 immunohistochemical
0), respectively. Scale bar, 50 μm (original magnification × 200). (C) The
wer.



Figure 2 The descriptive statistics of immunohistochemistry score data in two independent cohorts. (A,B) The descriptive statistics of
immunohistochemistry score of all patients and low/high-CSF-1 expression subgroups in the training cohort. (C,D) The descriptive statistics of
immunohistochemistry score of all patients and low/high-CSF-1 expression subgroups in the validation cohort.
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analyses [20]. The score agreement between two spots
was evaluated by the kappa value, which was excellent
(0.82) for CSF-1 expression. The “minimum P value”
approach was used to obtain the cutoff providing the
most optimal separation between the groups of patients
in the training cohort related to their CSS by X-tile soft-
ware. The validation cohort was separated into CSF-1-low
patients and CSF-1-high patients with the same cutoff
value.

Statistical analyses
MedCalc 12.7.0. and Stata 12.0. were used to perform
statistical analyses. Correlations between immunohisto-
chemical variables and clinicopathologic characteristics
were analyzed with χ2 and t tests. Kaplan-Meier method
with log-rank test was applied to compare survival
curves. All statistical tests were two sided and performed
at a significance level of 0.05. Cox regression models
were used to analyze the impact of prognostic factors on
RFS and CSS. The predictive accuracy of various Cox re-
gression models was quantified by Harrell's concordance
Figure 3 Kaplan-Meier analyses for CSS and RFS of all patients with c
according to CSF-1 expression in all patients (A) CSS (left, training cohort
(left, training cohort, n = 186, P = 0.005; right, validation cohort, n = 64, P =
index (C-index), which ranges from 0.5 (no predictive
power) to 1 (perfect prediction).

Results
Patient characteristics and associations with CSF-1
expression
We analyzed a total of 267 patients with ccRCC, 195 in
the training cohort and 72 in the validation cohort
(Table 1). By comparison, the validation cohort had
more patients with early-stage (TNM stage I/II) disease.
The two cohorts were well matched for other patho-
logical characteristics. Nine (4.6%) patients had recur-
rence in the training cohort; fifty four (27.7%) patients
died from ccRCC during the follow-up period. In the
validation cohort, eight (11.1%) patients had recurrence;
twenty four (33.3%) patients died from ccRCC at the
time of last follow-up.
CSF-1 positive staining mainly appeared in the cyto-

plasm of tumor cells. Representative CSF-1 immuno-
histochemical images of low expression (score = 15)
and high expression (score = 240) have been shown in
cRCC. (A,B) Kaplan-Meier analyses for CSS and RFS of ccRCC patients
, n = 195, P = 0.003; right, validation cohort, n = 72, P = 0.002), (B) RFS
0.016).
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Figure 1A and B, respectively. According to the result
from the “minimum P value” approach (Figure 1C), 130
was determined as the cutoff immunohistochemistry score
with the best discriminatory power, which separated the
training cohort into low CSF-1 group (99 patients) and
high CSF-1 group (96 patients). The validation cohort was
separated into low CSF-1 group (43 patients) and high
CSF-1 group (29 patients) with the same cutoff value. The
descriptive statistics of immunohistochemistry score of all
patients and low/high-CSF-1 expression subgroups in the
training cohort have been presented in Figure 2A and B,
and that of validation cohort was shown in Figure 2C and
D. Correlations between CSF-1 expression and clinico-
pathologic features are summarized in Table 1. CSF-1 ex-
pression was positively correlated with Fuhrman grade
(P = 0.001 in the training cohort and P = 0.007 in the
validation cohort) and tumor necrosis (P = 0.013 in the
training cohort and P = 0.039 in the validation cohort).

High CSF-1 expression is associated with poor prognosis
As shown in Figure 3A and B, Kaplan-Meier survival
analyses indicated that high CSF-1 expression was asso-
ciated with shorter CSS and RFS in the training cohort
(P = 0.003 and P = 0.005, respectively). We next evalu-
ated the independent prognostic value of CSF-1 expres-
sion using Cox regression analysis (Table 2). With
Table 2 Univariate and multivariate cox regression analyses i

Characteristic Training cohort

Univariate P Multivariate

HR (95% CI)

Cancer-specific survival

Age (years) 0.276

Gender (male vs female) 0.929

Tumor size (cm) <0.001 1.071(0.973-1.180)

TNM stage (III + IV vs I + II) <0.001 3.847(2.195-6.743)

Fuhrman grade (3 + 4 vs 1 + 2) 0.001 2.308(1.342-3.970)

Necrosis (present vs absent) 0.015 1.183(0.657-2.127)

ECOG PS (≥1 vs 0) <0.001 2.750(1.496-5.056)

CSF-1 (high vs low) 0.004 2.609(1.432-4.755)

Recurrence-free survival

Age (years) 0.113

Gender (male vs female) 0.972

Tumor size (cm) 0.001 1.081(0.981-1.191)

TNM stage (III + IV vs I + II) <0.001 3.095(1.779-5.383)

Fuhrman grade (3 + 4 vs 1 + 2) 0.002 2.196(1.282-3.760)

Necrosis (present vs absent) 0.012 1.180(0.649-2.145)

ECOG PS (≥1 vs 0) 0.001 2.049(1.082-3.878)

CSF-1 (high vs low) 0.006 2.075(1.168-3.687)

HR = Hazard Ratio; 95% CI, 95% confidence interval.
adjustment for other known pathologic predictors of pa-
tient outcome, CSF-1 expression was proven to be inde-
pendently predictive of CSS (HR 2.609, 95% CI 1.432-
4.755, P = 0.002 for the training cohort; HR 4.435, 95%
CI 1.478-13.308, P = 0.008 for the validation cohort) and
RFS (HR 2.075, 95% CI 1.168-3.687, P = 0.013 for the
training cohort; HR 3.460, 95% CI 1.328-9.012, P = 0.012
for the validation cohort) for patients with ccRCC after
surgery in both cohorts. We further performed a sub-
group analysis by TNM stage. The prognostic value of
CSF-1 expression was restricted to patients with TNM
stage III/IV disease (Figures 4C and D). In contrast, the
patients with TNM stage I/II could not be stratified by
CSF-1 expression (Figure 4A and B). These results were
replicated in our validation cohort (Figure 4).

Extension of established prognostic models with CSF-1
expression
In addition to TNM stage, the UISS and SSIGN scores
are often used to determine prognosis and treatment.
Then we investigated whether incorporation of CSF-1
expression into these two models would improve their
predictive accuracy. Decision curve analysis (DCA) was
first performed to compare predictive accuracy of the
prognostic models. For RFS (Figure 5A and B), both
UISS and SSIGN had a higher net benefit when CSF-1
n the two independent cohorts

Validation cohort

Univariate P Multivariate

P HR (95% CI) P

0.136

0.138

0.163 0.001 1.008(0.850-1.195) 0.932

<0.001 <0.001 18.197(6.053-54.701) <0.001

0.003 <0.001 3.648(1.314-10.126) 0.014

0.578 0.014 1.270(0.505-3.197) 0.614

0.001 <0.001 7.059(2.233-22.311) 0.001

0.002 0.004 4.435(1.478-13.308) 0.008

0.661

0.726

0.118 0.001 1.154(0.964-1.381) 0.121

<0.001 <0.001 10.053(3.198-31.602) <0.001

0.004 <0.001 2.957(1.197-7.306) 0.019

0.590 0.010 1.156(0.447-2.990) 1.156

0.028 0.037 5.103(1.494-17.428) 0.010

0.013 0.021 3.460(1.328-9.012) 0.012



Figure 4 (See legend on next page.)
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Figure 4 Kaplan-Meier analyses for CSS and RFS of patients with ccRCC in TNM subgroups. (A,B) Kaplan-Meier analyses for CSS and RFS of
ccRCC patients according to CSF-1 expression in TNM I + II (A) CSS (left, training cohort, n = 134, P = 0.155; right, validation cohort, n = 56,
P = 0.109) (B) RFS (left, training cohort, n = 134, P = 0.139; right, validation cohort, n = 56, P = 0.085). (C,D) Kaplan-Meier analyses for CSS and RFS of
ccRCC patients according to CSF-1 expression in patients of TNM III + IV (C) CSS (left, training cohort, n = 61, P = 0.017; right, validation cohort, n
= 16, P = 0.007) (D) RFS (left, training cohort, n = 52, P = 0.032; right, validation cohort, n = 8, P = 0.027).

Yang et al. BMC Cancer  (2015) 15:67 Page 8 of 11
expression was added. Similar results were found for CSS,
the net benefit of UISS and SSIGN was improved after the
incorporation of CSF-1 expression (Figure 5C and D).
Then the C-indices of prognostic models with or with-

out CSF-1 expression were calculated (Table 3). For RFS,
the C-index of the UISS was improved from 0.638 to
0.678 when CSF-1 expression was added, which was sta-
tistically significant (P = 0.004). However, the C-index of
the SSIGN was slightly increased from 0.710 to 0.718
after the addition of CSF-1, which failed to reach
statistical significance (P = 0.393). Similarly for CSS,
the C-index of the UISS was improved from 0.708 to
0.742 (P = 0.001) when CSF-1 expression was supple-
mented, whereas the C-index of the SSIGN was merely
increased from 0.753 to 0.764 (P = 0.231) after the
Figure 5 Comparison of the predictive accuracies of prognostic mode
(DCA). (A,B) DCA of the predictive accuracies of (A) UISS and (B) SSIGN fo
and (D) SSIGN for predicting CSS.
incorporation of CSF-1. We further calculated the C-
indices with respect to predictive models within
TNM stage I/II and III/IV disease, respectively, and the
predictive accuracy of the UISS and SSIGN were signifi-
cantly improved when CSF-1 expression was added only
for CSS in TNM stage III/IV subgroup (Table 3).

Discussion
In this study, we demonstrated that high CSF-1 expres-
sion is a predictor of poor prognosis for surgically
treated ccRCC patients. Moreover, the prognostic value
of CSF-1 was restricted to patients with stage III/IV dis-
ease. When incorporated into well-established prognos-
tic models, CSF-1 expression could significantly improve
the predictive accuracy of UISS.
ls with or without CSF-1 expression by decision curve analysis
r predicting RFS; (C,D) DCA of the predictive accuracies of (C) UISS



Table 3 Comparison of the predictive accuracies of
prognostic models

Model CSS RFS

C-index* P† C-index* P†

All patients

CSF-1 0.620 0.607

UISS 0.708 0.638

UISS combined with CSF-1 0.742 0.001 0.678 0.004

SSIGN 0.753 0.710

SSIGN combined with CSF-1 0.764 0.231 0.718 0.393

TNM stage I/II

CSF-1 0.581 0.578

UISS 0.615 0.619

UISS combined with CSF-1 0.640 0.188 0.642 0.224

SSIGN 0.647 0.665

SSIGN combined with CSF-1 0.656 0.821 0.669 0.652

TNM stage III/IV

CSF-1 0.631 0.623

UISS 0.633 0.524

UISS combined with CSF-1 0.721 0.004 0.625 0.079

SSIGN 0.695 0.624

SSIGN combined with CSF-1 0.754 0.012 0.693 0.060

*A larger C-index represents a better discriminatory power.
†Compared with the original model without CSF-1 expression.
The bold characters indicate that these P values are considered
statistically significant.
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CSF-1 is a secreted cytokine impacting the differenti-
ation of hematopoietic stem cells into macrophages. The
pleiotrophic actions of CSF-1 are transduced by its sole
receptor CSF-1R [21]. As the most abundant tumor-
infiltrating immune cells, tumor associated macrophages
(TAM) are significant for fostering tumor progression.
TAM display diversely polarized programs comprising
proinflammatory M1 macrophages and immunosuppres-
sive M2 macrophages. CSF-1 has been demonstrated as
a mediator polarizing macrophages into an M2 pheno-
type which can promote tumor-induced immunosup-
pression in established tumors [7,8]. Previous studies
have revealed that both high CSF-1 expression and high
macrophages density were associated with disease pro-
gression and poor survival in several malignancies, such
as liver and prostate cancers, which suggests that high
CSF-1 expression might be associated with more inflam-
matory cell infiltration [20,22-27]. Additionally, Menke
et al. further stated that CSF-1 and CSF-1R expression
were associated with infiltrating macrophages in RCC
and adjacent TEC, indicating that the magnitude of
CSF-1 and CSF-1R is an index of the extent of macro-
phages [28]. Inflammatory infiltration might be different
between high and low CSF-1 expression subjects, which
merits further investigation in our next research to
reveal the specific roles of CSF-1 in malignant trans-
formation of ccRCC. In RCC, apart from polarizing mac-
rophages into an M2 phenotype, CSF-1 could also lead
to the activation of signal transducer and activator of
transcription-3 (Stat3) which promotes cell survival and
proliferation as well as immune responses associated
with tumor progression [17]. Similar results were ob-
tained in breast, ovarian and lung cancers where a CSF-1
dependent autocrine loop contributes to tumor invasive-
ness and metastasis [28-31].
The natural history of RCC is complex and influenced

by factors other than pathologic stage. Therefore, inte-
grated prognostic algorithms are needed to better pre-
dict patient outcomes. Currently, UISS and SSIGN
scores are widely used predictive models to identify
patients at a greater risk of disease progression after sur-
gery. However, these models only focus on the charac-
teristics of tumor cells, but ignore the components of
tumor microenvironment which also plays an important
role in tumor development and progression. Therefore,
it is reasonable that incorporation of CSF-1 expression
into established predictive models would improve prog-
nostic stratification. The predictive accuracy of the UISS
was improved when CSF-1 expression was added, which
was statistically significant for RFS and CSS. However,
the predictive accuracy of the SSIGN was slightly in-
creased after the addition of CSF-1, which failed to reach
statistical significance for RFS and CSS. Collectively,
these results indicated that incorporation of CSF-1 ex-
pression could significantly improve the predictive ac-
curacy of UISS, but not SSIGN. According to Parkers, it
is better to utilize tumor-based prognostic biomarkers in
a sequential or stepwise manner [32]. In other words, in-
stead of immutably integrating CSF-1 expression into an
existing prognostic model, we support its use on an as-
needed basis. Oncologists or urologists could first deter-
mine prognosis for a RCC patient using conventional
pathologic factors or prognostic models. After that,
prognostic information maybe further refined by bio-
marker testing if physicians and patients think it is ne-
cessary. This information is useful in selecting patients
for additional treatment and customizing postsurgical
surveillance.
There are several limitations of our study that warrant

further discussion. Firstly, our findings need to be repli-
cated and externally validated in an independent cohort.
Secondly, the immunohistochemistry analysis is always
somewhat subjective. To minimize this impact in our
study, duplicate tissue cores from the same tumor were
used to construct the tissue microarray, highly standard-
ized IHC protocols were applied, and two experienced
urologic pathologists blinded to the clinical data evalu-
ated immunostained slides. Thirdly, to facilitate graphical
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presentation (Kaplan-Meier curves) and potential clinical
use, CSF-1 expression measured as a continuous variable
was dichotomized into low and high groups at the cost of
great information loss. Furthermore, determination of
cases with CSF-1 expression near cutoff value could be dif-
ficult because a difference of 20–40 in the semiquantitative
immunohistochemistry assessment could be quite subject-
ive, especially in the clinical setting. Fourthly, functional
studies are needed to elucidate the biological mechanisms
involved in this association.

Conclusion
In conclusion, the present study demonstrated that CSF-
1 expression is an independent adverse prognostic bio-
marker for recurrence and survival of patients with
ccRCC after nephrectomy. Incorporating CSF-1 expres-
sion into the UISS prognostic model could significantly
improve its predictive accuracy.
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