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Abstract

Background: Colorectal cancer is one of the major causes of cancer mortality world-wide. Prevention would
improve if at-risk subjects could be identified. The aim of this study was to characterise plasma protein biomarkers
associated with the risk of colorectal cancer in samples collected prospectively, before the disease diagnosis.

Methods: After an exploratory study on the comprehensive plasma proteome analysis by liquid chromatography-
tandem mass spectrometry from ten colorectal cancer cases enrolled at diagnosis, and ten matched controls
(Phase 1), a similar preliminary study was performed on prospective plasma samples from ten colorectal cancer
cases, enrolled years before disease development, and ten matched controls identified in a nested case-control
study within the Florence cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC) study
(Phase 2); in Phase 3 the validation of the candidate biomarkers by targeted proteomics on 48 colorectal cancer
cases and 48 matched controls from the Florence-EPIC cohort, and the evaluation of the disease risk were performed.

Results: Systems biology tools indicated that both in the Phase 1 and Phase 2 studies circulating protein levels
differing in cases more than 1.5 times from controls, were involved in inflammation and/or immune response.

Eight proteins including apolipoprotein C-ll, complement C4-B, complement component C9, clusterin, alpha-2-HS-
glycoprotein, mannan-binding lectin serine-protease, mannose-binding protein C, and N-acetylmuramoyl-L-alanine
amidase were selected as promising candidate biomarkers. Targeted proteomics of the selected proteins in the EPIC
samples showed significantly higher clusterin levels in cases than controls, but only in men (mean + SD, 1.98 + 046 and
161+ 043 nmol/mL respectively, Mann-Whitney U, two-tailed P = 0.0173). The remaining proteins were unchanged.
Using multivariate logistic models a significant positive association emerged for clusterin, with an 80% increase in the
colorectal cancer risk with protein’s unit increase, but only in men.

Conclusions: The results show that plasma proteins can be altered years before colorectal cancer detection. The high

circulating clusterin in pre-diagnostic samples suggests this biomarker can improve the identification of people at risk
of colorectal cancer and might help in designing preventive interventions.
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Background

Colorectal cancer (CRC) is one of the main causes of
death from cancer world-wide, with higher incidence and
mortality rates in developed countries; it is more frequent
in men than women [1].

Most sporadic CRCs develop from a normal epithelium
which, after a number of genetic and epigenetic molecular
alterations, can turn into adenoma, a benign precursor le-
sion that can proceed to a malignant tumour [2]. Though
no specific CRC etiologic agents have been identified,
epidemiological evidence suggests a number of different
risk factors, including diet and lifestyle habits, that can
be easily modified, so this cancer is potentially preven-
table [3]. Typically, the progress from adenoma to can-
cer takes several years, providing a wide time window
for preventive intervention.

Diet and lifestyle changes may be effective for primary
prevention and screening programs have reduced cancer
mortality, but CRC continues to account for more than
9% of all new cancers [1,3]. Preventing CRC therefore
requires the identification of suitable biomarkers that
must be non-invasive, highly sensitive and specific. The
biomarkers currently in use, for instance faecal haemo-
globin, and serum tumour markers (CEA and CA 19.9)
do not fulfil these requirements, since they are not suffi-
ciently reliable for early detection of CRC and lack spe-
cificity and sensitivity [4].

Mass spectrometry-based proteomics offers a means
of discovering robust disease biomarkers and this ap-
proach is increasingly used in cancer research. Several
CRC proteomic studies have analysed samples from ex-
perimental models or from human surgical specimens
to identify differences in the protein profile induced by
cancer [5] and references herein. However, in clinical
practice, biomarkers should be easy to measure and
this can be achieved mainly by using blood, urine, and
faeces [5].

So far, serum or plasma protein biomarkers have been
sought mostly in CRC case—control studies, using sam-
ples collected at the diagnosis, when the tumour was
already developed, but this limits the predictive value of
the biomarker [6-9]. By contrast, the prospective study
design, which involves people free of disease, could iden-
tify biomarkers predictive of disease development.

We used a mass spectrometry-based proteomic ap-
proach to identify early biomarkers of CRC in human
plasma, dividing the investigation into three phases:
first, in an exploratory study with a case—control design
we compared the comprehensive plasma proteome from
ten CRC cases enrolled at diagnosis, and ten age- and sex-
matched controls, and identified differential circulating
proteins (disease biomarkers) by liquid chromatography-
electrospray ionization-tandem mass spectrometry (LC-
ESI-MS/MS); second, we did a similar preliminary study
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with a nested case—control design to identify candidate
predictive biomarkers in plasma from ten CRC cases, en-
rolled years before the disease developed, and ten age-
and sex-matched controls identified in the frame of a
nested case—control study on CRC carried out in the
Florence cohort of the European Prospective Investiga-
tion into Cancer and Nutrition (EPIC) study; in the
third phase, we validated the identified candidate bio-
markers by liquid chromatography-selected reaction
monitoring-mass spectrometry (LC-SRM-MS) on each
individual sample of a series of 48 CRC cases and 48
matched controls from the Florence-EPIC cohort, and
used these data to estimate the disease risk.

Methods

Study populations

Phase 1: Exploratory study. In this phase we examined
ten newly diagnosed CRC cases and ten age- and sex-
matched controls, identified in a hospital-based case—
control study on CRC ongoing in the metropolitan area
of Florence in the period 2006—2009. All cases were re-
cruited when admitted to the Surgery Departments of
the main hospitals in the area. All cases had histologi-
cally confirmed adenocarcinoma of the colon-rectum.
The controls were randomly selected from a series of
healthy adults residing in the study area. The controls
were matched to CRC cases by sex and age. The demo-
graphic characteristics of Phase 1 subjects are shown in
Table 1. The study was approved by the Local Ethical
Committee, Area Vasta Centro Regione Toscana. All par-
ticipants provided a signed informed consent form to
use their blood samples and individual data for scien-
tific purposes.

Phase 2 and Phase 3: Nested case—control study in
EPIC-Florence. The rationale and methods of the EPIC
study have been described elsewhere [10]. Briefly, EPIC
is a multicentre prospective cohort study carried out in
23 centres across ten European countries and coordinated
by the International Agency for Research on Cancer
(IARC, Lyon, France), aimed at investigating the relation
between diet, lifestyle and environmental factors, and the
incidence of different cancers. EPIC-Florence is one of the
five Italian centres [11]. In the period 1993-1998, EPIC-
Florence completed the recruitment of 13,597 volunteers
aged 35-65 years. Detailed information was recorded for
each individual volunteer about diet and life-style habits,
anthropometric measurements and a blood sample was
collected. Standardized procedures were used to identify
newly diagnosed cases of cancer at all sites, including
colon-rectum, in the follow-up of the cohort.

Table 1 shows the demographic characteristics of the
Phase 2 and 3 subjects. They were participants of EPIC-
Florence study, being from the Florence metropolitan
area. The study was approved by the local Florence Ethical
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Table 1 Demographic characteristics of the study subjects
(CRC cases and controls) by phase
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Table 1 Demographic characteristics of the study subjects
(CRC cases and controls) by phase (Continued)

Daily

Phase 1 Consumption (g)
Characteristic Cases N Controls N  Total N P-value® Characteristic Cases Controls Total P-value®
Sex Fruit intake 2583 (114.8) 3804 (1926) 3194 (153.7) 0.0003
M 7 9 16 0.58 Vegetables 1609 (753) 2324 (117.6) 196.7 (96.5)  0.0006
F 3 1 4 Red meat 743 (494) 671 (450) 707 (472) 046
Smoker Alcohol 228 (22.3) 152 (16.5) 19.0 (19.4) 0.06
Current 2 1 3 ?P-values from chi-square or Mann-Whitney test, as appropriate.
0.20 Some data are missing.
Former 5 2 / “CRC location according to ICD-O classification: Cecum, n =4; Ascending colon,
Never 3 7 10 n = 6; Hepatic flexure colon, n = 1; Transverse colon, n=0; Splenic flexure
colon, n=1; Descending colon, n =4; Sigmoid colon, n=15; Colon NOS, n=5;
Total 10 10 20 Rectosigmoid junction, n = 5; Rectum, n=7.
Age (yrs) mean (SD) 616 (11.1) 602 (109 609 (108 089
Phase 2 Committee (Azienda U.S.L. 10 Firenze). All participants
Characteristic Cases N Controls N Total N P-value® pr0v1ded a 51gned ‘1nf?r.med consent fo.rm‘to use their
Sex blood samples and individual data for scientific purposes.
The 48 CRC cases of the present study (and their matched
M 4 4 8 10 .
controls) were randomly selected from a series of case-
F 6 6 12 sets identified in a nested case—control study on CRC
Smoker carried out in EPIC [12]. Controls had originally been
Current 4 0 4 selected by incidence density sampling from all cohort
Former 1 P 3 008 members alive and free of cancer at the time of diagno-
Never 5 8 13 sis of the cases and were matched by age, sex, time of
Total 0 0 - day at blood collection, and fasting status at the time of
blood collection. Women were matched by menopausal
Age (yrs) mean (SD) 53.3 (7.8) 533 (7.6) 533 (7.5) 091
status.
Phase 3
Characteristic Cases N° Controls N Total N P-value® . .
Sex Proteomic analysis
Sample preparation, protein separation, identification of
M 20 20 40 100 proteins with different circulating levels by global prote-
F 28 28 26 ome analysis, and relative quantitation of candidate bio-
Smoker markers by targeted proteomics, are fully described in
Current 16 10 26 Supplementary Methods (Additional file 1). A summary
Former 15 13 28 022 flow diagram of the experimental section is shown in
Never 17 25 42 F1gure L
Waistline®
< OMS cut-off 35 39 74 067 Functional and Pathway analysis
> OMS cutoff g ; 5 MetaCore version §.12 (QeneGo, St Joseph, MI, USA) Was
b used to map the differentially expressed proteins into bio-
BMI . . . .
logical networks and for functional interpretation of the
Normal 17 2 41 013 protein data. Functional and Pathway analyses are de-
Overweight 26 17 43 scribed in Supplementary Methods (Additional file 1).
Obesity 3 6 9
School Statistical analysis
Primary 16 7 23 ol Phase 1 and Phase 2. Changes in circulating levels of
Secondary 23 32 55 ‘ proteins, separated by one-dimensional gel electrophor-
High 9 9 18 esis (IDE) were based on the average normalised spec-
Total 48 48 % tral counts (3 rephcate‘runs) of jthe proteins identified by
LC-ESI-MS/MS. Proteins showing at least a 1.5-fold up
Age (yrs) mean (SD) 55.1 (6.2) 552 (6.2) 55.1 (6.1) 0.98

or down change (FC, fold change, ratio of the averaged
spectral counts in CRC samples to the averaged spectral
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EXPERIMENTAL DESIGN

Phase 1 Phase 2
Exploratory study EPIC study
10 controls 10 controls
10 CRC cases 10 CRC cases
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EPIC study

48 controls
48 CRC cases
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Figure 1 Flow diagram of the experimental design.
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counts in control samples) were considered to have dif-
ferent levels.

Partial Least Squares-Discriminating Analysis (PLS-DA)
was applied to Phase 1 and Phase 2 protein spectral counts,
to find proteins discriminating CRC cases form controls.
We used Simca-P v13 (MKS Umetrics AB, Sweden) for
data analysis after Pareto normalization.

Phase 3. Between-groups comparisons of the selected
protein relative amounts obtained after LC-SRM-MS were
computed on the mean of three analytical replicates using
the non-parametric Mann—Whitney U test, two-tailed;
biomarker validation was done by Receiver Operating
Characteristic (ROC) curve analysis. We used the Prism
software v6 (GraphPad Software Inc. La Jolla, CA, USA),
setting the significance at P <0.05.

The association between each protein and cancer sta-
tus was evaluated in the whole series by separate mul-
tivariate logistic models stratified by case-set, i.e. pair of
cases and controls matched for sex and age, and adjus-
ted for potential confounders. Each protein was used as
continuous or dichotomous (above/below the median

value) variable. We ran four different logistic models,
the first three using each protein as continuous variable,
and the last using each protein as dichotomous variable.
The logistic models were adjusted by smoking, waistline
and education (model 1); by smoking, BMI, and education
(model 2); by smoking, waistline, education and daily in-
take of fruit, vegetables, red meat, and alcohol (model 3);
by smoking, waistline, and education (model 4). Smoking
status was included as dummy variable (current-, former-
vs. never-smoker), BMI as dummy variable (obesity, over-
weight vs. normal), waistline as dichotomous variable
according to the WHO cut-off (88 cm for women, 102 cm
for men), education as dummy variable (high school, sec-
ondary school vs. primary school), and daily intake of fruit,
vegetables, red meat, and alcohol as continuous variables
(g/day). We also applied multivariate logistic models sep-
arately for men and women; in these analyses the models
were also adjusted by age.

All logistic analyses were done using SAS (SAS/STAT
version 9.1) statistical program. A P-value <0.05 was con-
sidered significant.
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Results

Phase 1. Exploratory study: global proteome analysis by
1DE/LC-ESI-MS/MS

Mass spectrometric analysis after 1DE separation led to
the identification of 138 proteins common to CRC cases
and controls. Of these, only 94, listed in Additional file 2:
Table S1 together with their relative quantitation by spec-
tral count, met the restriction criteria reported in Supple-
mentary Methods (Additional file 1). Plasma levels of 13
proteins, based on spectral counts, were higher in CRC
patients than controls (FC 21.5). Eight proteins had lower
levels in cases than controls, with FC < -1.5 (Additional
file 2: Table S1).

The quantitative data trend was explored by PLS-DA
analysis on protein spectral counts. The score scatter
plot showed good separation of CRC cases and controls
with cumulative statistical parameters R*(X) = 0.699;
R*(Y) = 0.996; Q* = 0.922 (Additional file 3: Figure S1).
The PLS-DA Variable Importance in the Projection
(VIP) values are listed in the Additional file 2: Table S1.
Proteins with VIP > 1 significantly contributed to the sep-
aration of the two groups.

Phase 2. EPIC-Florence study: global proteome analysis
by 1DE/LC-ESI-MS/MS

Protein separation of the two plasma pools by 1DE fol-
lowed by LC-ESI-MS/MS analysis identified 178 proteins,
104 meeting the restriction criteria reported in Supple-
mentary Methods (Additional file 1). The identified pro-
teins and their relative quantitation by spectral counts are
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listed in Additional file 2: Table S2. Twelve proteins had
FC >1.5 and four proteins had FC < -1.5.

As shown in Additional file 3: Figure S2, the PLS-DA
score scatter plot of the 104 identified proteins showed
significant separation of EPIC-CRC cases and controls
with cumulative R*(X) = 0.604; R*(Y) = 0.985; Q* = 0.685.
A number of proteins showed a good discriminatory
ability between the two groups. These proteins had VIP
values >1 (Additional file 2: Table S2) and were consi-
dered significant.

Comparison of the two global proteome studies indi-
cated that 83 out of 114 total proteins were common to
the Phase 1 exploratory and Phase 2 EPIC studies, 20
were present only in EPIC samples, and 11 were identi-
fied only in the exploratory study. MetaCore Enrichment
Analysis only on proteins with FC >1.5 (31 proteins
whose levels were higher or lower in cases than in con-
trols) showed that most of them were involved in the
complement systems (classical, lectin, and alternative
complement systems). Figure 2 shows the ten top most
significant biological process maps. The enrichment net-
work of Additional file 3: Figure S3, using the protein
lists from exploratory and EPIC studies, indicated that
nine proteins were brought together into the Comple-
ment system network.

Phase 3. Relative quantitation of candidate biomarkers by
LC-SRM-MS

The global plasma proteome data of the Phase 2 EPIC
samples showed only a few changes in circulating protein
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levels, so these results alone did not allow the selection of
candidate biomarkers. However, our data as a whole sug-
gested there were proteins deserving further analysis. So
we took account of all the possible suggestions given by
Phase 2 data. We considered at least one of the following
inclusion criteria: (i) proteins with normalised spectral
count coefficient of variance <35% and FC >1.5 or < -1.5;
(ii) proteins giving VIP > 1 after PLS-DA. More stringent
criteria were not applied, so as to have a more inclusive
list of candidate biomarkers. After preliminary LC-SRM-
MS analyses (not shown), proteins giving unreliable re-
sults were discarded. We ended up with the eight proteins
listed in Table 2 together with the amino acid sequence of
the peptides selected for quantitation, their molecular
weight, precursor and product ion mass/charge ratio, and
collision energy.

Additional file 3: Figure S4 illustrates typical SRM
transition traces showing the separation of the eight se-
lected peptides plus the internal standard peptide and
starting/ending points of the time segments (see Supple-
mentary Methods, Additional file 1). The LC-SRM-MS
method was suitable for the relative quantitation of the
proteins, as shown by the linear response obtained with
increasing amounts of plasma (R between 0.88 and 0.99,
Additional file 3: Figure S5.

Bars in Figure 3, panel A show the relative amounts of
the selected proteins in the whole EPIC-Florence cohort.
There was no significant difference between CRC cases
and controls though clusterin (CLU) reached a border-
line significance (Mann—Whitney U, two-tailed P = 0.057).
When the comparison was done separately on women
and men, no difference was seen in women (Figure 3,
panel B), but a significant difference emerged in men
for CLU (Figure 3, panel C, Mann—Whitney U, two-tailed
P =0.0167).

As shown in Additional file 2: Table S3 the results did
not change when the 20 samples from Phase 2 were not
included in the statistical analyses, suggesting that their
inclusion did not bias the results.

To establish whether the CLU levels found in this
study were in agreement with previously reported data,
we developed a method for absolute quantitative ana-
lysis. The method showed a linear response between
0.2 and 3.2 pmol CLU/sample (R =0.999). The abso-
lute plasma CLU concentration in the EPIC samples
was 1.83 £ 0.5 nmol/mL. Plasma CLU was respectively
1.92+0.57 and 1.75 + 0.40 nmol/mL in CRC cases and
controls (Mann—Whitney U, two-tailed P =0.057). In
the males, EPIC CRC cases had significantly higher
CLU than controls (1.98 + 0.46 and 1.61 + 0.43 nmol/mL
respectively, Mann—Whitney U, two-tailed P = 0.0173).
No difference was seen in women (1.88 +0.64 and
1.85+0.36 nmol/mL respectively in CRC cases and
controls).
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Validation of candidate biomarkers analysed in phase 3
Tables 3, 4, and 5 report the P-values from separate
multivariate logistic models for each protein considered
as continuous (models 1-3) or dichotomous variable
(above/below the median value, model 4) in the whole
series (96 samples) in women (56 samples) and in men
(40 samples), respectively.

No significant association emerged for the whole
series or the females (Tables 3 and 4 respectively). In
men, however (Table 5), there was a significant positive
association for CLU using models 1 and 2, with an 80%
increase in the risk of CRC with protein’s unit increase
(OR: 1.83; 95% CI: 1.12-3.00, and OR: 1.80; 95% CI:
1.14-2.85, respectively). The interval between sample
collection and disease diagnosis (mean time before CRC
diagnosis 3.0 years, SD: 2.0 years; range 0.3-8.2 years)
did not affect CLU levels in the whole case series (P =
0.82), or after stratification by sex (men P = 0.30; women
P =0.53).

We further validated CLU as a very early biomarker to
distinguish CRC cases from controls by ROC analysis.
The results showed a significant AUC of 0.7225 (95% CI:
0.56-0.88; P =0.0161) only in men. The most convenient
cut-off generated a sensitivity of 95% and a specificity of
75%. The ROC curve is shown in Figure 4. Individual
ROC curves of the remaining candidate biomarkers
showed AUC slightly >0.5. Various AUC combinations
(CLU plus the other candidate biomarkers) did not im-
prove sensitivity and specificity. Additional file 2: Table S4
reports candidate biomarker combinations with signifi-
cant AUC.

Discussion

Global proteomics has a key role in the identification of
potential cancer biomarkers and this approach has been
extensively used to discover CRC biomarkers [5]. The
separation of protein mixtures by 1DE followed by sep-
aration of tryptic peptides by LC coupled to ESI-MS/MS
with high mass resolution and accuracy served to iden-
tify proteins with high confidence and for label-free
semi-quantitation by spectral counting [13].

To have predictive value, an ideal biomarker should be
easy to measure and should detect the disease at a very
early stage. Prospective studies are extremely important,
since biomarkers can be discovered on samples collected
years before the disease onset. Proteomics has seldom
been employed to search for candidate biomarkers in
plasma samples collected before CRC was diagnosed,
and this sort of investigation has been reported only in
women [14]. To the best of our knowledge, this is the
first mass spectrometry-based proteomic study on a pro-
spective investigation representative of the general popu-
lation with the aim of discovering CRC biomarkers in
blood. We focused on a CRC case—control study nested



Table 2 Candidate biomarkers selected for LC-SRM-MS analysis

Protein name UniProt Entry FC® VIP®  Protein function® Proteotypic Peptide Transitions CE (V)h
name peptided mo_lecular Precursor ion  Product ion
weight
m/z? m/z°
Apoliprotein C-Il APOC2 244 094  Lipid transport TYLPAVDEK 1034.5 5183 7714 25
5183 658.34 25
Clusterin CLU 1.32 163 Complement pathway, innate immunity TLLSNLEEAK 11188 5594 7904 20
559.4 903.5 20
Complement C4-B CO4-B 1.08 157  Complement pathway, innate immunity VGDTLNLNLR 1113.8 5579 6294 15
557.9 7425 15
Complement Component C9 Co9 1.31 165  Complement activation, classical pathway VWEESELAR 10305 51627 704.35 25
516.27 8334 25
Alpha-2-HS-glycoprotein (Fetuin A) FETUA —1.14 146  Acute-phase response HTLNQIDEDK 1196.6 598.9 8454 20
598.9 958.2 20
Mannan-binding lectin serine-protease ~ MASP2 1.72 050  Lectin complement pathway, innate immunity — AGYVLHR® 8144 408.23 4258 15
408.23 3129 15
Mannose-binding protein C MBL2 330 062  Lectin complement pathway, innate immunity ~ SPDGDSSLAASER 1290.8 646.9 5333 25
646.9 733.38 25
N-acetylmuramoyl-L-alanine amidase ~ PGRP2 1.62 103 Petidoglycan digestion, innate immunity TFTLLDPK 9335 466.67 686.4 25
466.67 585.4 20
Bovine Fetuin FETUA-B Internal Standard TPIVGQPSIPGGPVR 14748 7379 5823 25
7379 879.5 25

®FC, fold change of protein plasma level in the global proteome study of the EPIC population.

bVIP, variable importance in the projection, PLS-DA analysis (global proteome study of the EPIC population).

‘Deduced from UniProt database.

4Amino acid sequence of the peptide selected for quantitation by LC-SRM-MS.

€Although this peptide has only seven amino acid residues, it was selected for SRM analysis because it gave the best response.

The transition used for quantitation is shown in bold type; the other transition was used to maximise the specificity of the method.
9m/z, mass to charge ratio of the selected peptide.

NCE, collision energy.
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Figure 3 Bar chart showing the relative amounts of proteins
analysed by targeted proteomics (LC-SRM-MS) in the whole
EPIC population (Panel A), in women only (Panel B) and in men
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of the analyte peak area to that of the internal standard. The asterisk
indicates a significant difference between EPIC CRC male cases and
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within the Florence cohort of the EPIC investigation.
We have previously shown that human plasma samples
currently in long-term storage in biobanks are amenable
to omics analysis [15].

The study was preceded by an unbiased comprehen-
sive analysis of the plasma proteome in a limited group
of CRC patients enrolled at diagnosis and their matched
controls. We then compared the results with those from
an analogous global proteome analysis on a subpopula-
tion of individuals from the EPIC cohort. In this early
phase of the study we were interest in the identification
of common changes in circulating protein profiles. To
this end the differential proteome analyses were done on
pooled samples, as this may minimize individual and
technical variability while still maintaining the possibility
of identifying changes induced by the disease, with the
assumption that changes observed in pools correspond
to the average of the individual changes [16,17].

Plasma proteins identified after the depletion of some
high-abundance ones were still in the high to medium
abundance range [18]. The initial exploratory phase was
meant to identify proteins whose circulating levels
changed in the presence of overt disease. The proteins
identified were involved in inflammation (alpha-1-acid-
glycoprotein, alpha-1-antichymotrypsin, C-reactive pro-
tein, C4b-binding protein, gelsolin, inter-alpha-trypsin
inhibitor heavy chain H3) and immune response (C4b-
binding protein, complement C5, galectin3-binding pro-
tein, vitamin K-dependent protein S), as suggested by sys-
tems biology tools and by a literature search [19-26]. This
supports the notion that acute-phase proteins initiate or
sustain inflammation, a process occurring in response to
the presence of the tumour [19,23]. Altered plasma levels
of some of these proteins have been reported for different
tumour types, including colon and gastric [20,21].

Proteins involved in the immune response also showed
altered levels, in agreement with evidence that an
immune response is involved in CRC in addition to
inflammation [27].

Plasma carbonic anhydrase 1 and peroxiredoxin-2
were lower in cases than controls, but because of their
high abundance in red blood cells these proteins were
not taken into account, since their presence in plasma
might be due to haemolysis during blood collection [28].

Even though some plasma proteins identified in the
exploratory study are different from those reported in
earlier studies, the biological processes in which they are
involved are essentially the same [29,30].

Comparison of the global plasma proteome of the ex-
ploratory and the EPIC studies indicated that most of
the proteins identified were present in both studies,
though in the EPIC there were fewer changes in the cir-
culating protein levels. This comes as no surprise if we
consider that the EPIC samples were collected several
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Table 3 Logistic regression models in the whole EPIC series®: P-values

Model® APOC2 CLU CO4-B co9 FETUA MASP2 MBL2 PGRP2
1 0.62 033 0.56 041 041 042 0.75 0.93

2 0.26 0.17 0.29 0.07 0.35 0.18 0.58 0.59

3 032 0.89 0.32 0.17 0.84 0.37 0.87 0.69

4 0.59 0.68 0.27 0.92 042 0.57 0.81 0.84

296 samples, 40 men + 56 women.

PModel 1 (each protein considered as continuous): stratified by case-set, adjusted by smoking, waistline, education.
Model 2 (each protein considered as continuous): stratified by case-set, adjusted by smoking, BMI, education.
Model 3 (each protein considered as continuous): stratified by case-set, adjusted by smoking, waistline, education, daily intake of fruit, vegetables, red meat,

and alcohol.

Model 4 (each protein considered as dichotomised above/below the median value): stratified by case-set, adjusted by smoking, waistline, education.

years before CRC diagnosis. However, PLS-DA analysis
clearly distinguished EPIC CRC cases from controls and
several proteins contributed to this result (proteins with
VIP >1). Moreover, MetaCore enrichment analysis on
proteins with changed levels indicated that the comple-
ment system cascade was the most significant process
involved in both studies.

We validated proteins playing a major role in the
separation of cases and controls in the EPIC cohort by
targeted proteomics, a powerful technique allowing the
quantitation of candidate biomarkers in complex mix-
tures across multiple samples with high selectivity and
sensitivity [31]. Using a multiplexed LC-SRM-MS assay
we assessed the relative amounts of all the CRC can-
didate biomarkers, including alpha-2-HS-glycoprotein
(FETUA), an acute-phase response protein [19], apoli-
poprotein C-II (APOC?2) involved in the catabolism of
low- and high-density lipoproteins and inflammation
[32], N-acetylmuramoyl-L-alanine amidase (PGRP2) be-
longing to the family of peptidoglycan recognition pro-
teins of the innate immune system [33], complement
C4-B (CO4-B), complement component C9 (CO9), CLU,
mannan-binding lectin serine protease 2 (MASP2), and
mannose-binding protein C (MBL2) involved in the com-
plement cascade [23].

Targeted proteomics did not confirm the differences
observed after global proteome analysis. The discrepancy
is possibly due to the different sensitivity of the two ana-
lytical technologies, SRM-MS being more sensitive than
MS/MS. Considering the whole EPIC population of our

Table 4 Logistic regression models in EPIC women®: P-values

study, targeted proteomics indicated that CLU was the
only protein slightly higher in CRC than in controls, but
the difference was of borderline significance. This is in
agreement with what was observed after the plasma glo-
bal proteome analysis in the Phase 2 EPIC cohort, CLU
showing FC =1.32. Unlike in previous reports, we did
not see any increase in circulating CLU in the Phase 1
exploratory study, possibly because of the limited num-
ber of individuals enrolled [34,35]. This does not depend
on the analytical method, since absolute quantitation of
plasma CLU showed concentrations in good agreement
with reported data [36].

Interestingly, this study found that CLU was signifi-
cantly higher in EPIC CRC males than in their matched
controls. No such difference was seen in women. This was
corroborated by further statistical analyses showing that
the CLU ROC curve significantly distinguished male CRC
cases from their matched controls. Furthermore, after
multivariate adjustments, CLU was significantly associated
with CRC only in men, with OR 1.8. This sex-related dif-
ference might not be a chance result, as other biomarker
levels differ in men and women. We have previously
shown in a large EPIC cohort that high circulating C-
reactive protein, a marker of systemic inflammation, was
related to colon cancer risk in men, but not in women
[37]. More recently, the association of C-peptide, insulin,
and insulin-like growth factor axis with colorectal carcino-
genesis at an early stage was reported in men only [38].

The molecular basis for the sex difference is not known,
but androgens might possibly be involved; an early study

Model® APOC2 CLU CO4-B co9 FETUA MASP2 MBL2 PGRP2
1 022 0.65 0.59 0.44 0.27 053 0.84 037

2 046 0.76 041 0.21 0.18 040 0.85 048

3 092 0.54 051 0.10 035 044 0.81 0.22

4 032 091 0.66 0.78 0.52 067 0.80 061
256 samples.

PModel 1 (each protein considered as continuous): adjusted by age, smoking, waistline, education.

Model 2 (each protein considered as continuous): adjusted by age, smoking, BMI, education.

Model 3 (each protein considered as continuous): adjusted by age, smoking, waistline, education, daily intake of fruit, vegetables, red meat, and alcohol.
Model 4 (each protein considered as dichotomised above/below the median value): adjusted by age, smoking, waistline, education.
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Table 5 Logistic regression models in EPIC men?: P-values
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Model® APOC2 CLU CO4-B Cco9 FETUA MASP2 MBL2 PGRP2
1 0.31 0.02 0.62 0.96 0.52 0.20 047 0.25
2 0.26 0.01 0.62 0.51 0.78 0.18 0.87 0.20
3 0.80 0.19 0.13 0.29 0.14 0.08 0.51 0.17
4 0.64 0.089 0.089 0.86 0.25 0.21 0.99 0.27

P-values <0.05 are shown in bold type.
240 samples.

PModel 1 (each protein considered as continuous): adjusted by age, smoking, waistline, education.

Model 2 (each protein considered as continuous): adjusted by age, smoking, BMI, education.

Model 3 (each protein considered as continuous): adjusted by age, smoking, waistline, education, daily intake of fruit, vegetables, red meat, and alcohol.
Model 4 (each protein considered as dichotomised above/below the median value): adjusted by age, smoking, waistline, education.

reported a higher incidence of chemically induced CRC in
male than female rats, androgens being involved in this
sex difference [39]. In addition, CLU expression in an
androgen-dependent prostate cancer cell line was shown
to increase in a time- and dose-dependent manner after
androgen treatment both at mRNA and protein levels
[40]. This effect was under the control of the androgen re-
ceptor (AR) and suggested that androgen regulation of
CLU may be cytoprotective in the normal prostate [40].
AR signalling can be ligand-dependent or independent,
the first pathway prevailing in men exposed to testicular
androgens, and the second applies to both sexes. Though
not proven by this study, different AR signalling in re-
sponse to various stimuli might explain why CLU levels
are higher in men than in women.

CLU is a chaperone ubiquitously expressed and in-
volved in several physiological processes, but also in
tumour growth and carcinogenesis [41,42]. CLU is an
acute phase protein and a potent inhibitor of the ter-
minal complement pathway, leading to reduced cytolysis
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Figure 4 Clusterin ROC curve in men (AUC =0.7225; 95% Cl:
0.56-0.88; P =0.0161).

and protection of the host cells from complement attack
[43-45]. Nuclear and secreted isoforms of this protein are
known whose function depends on the isoform involved,
the nuclear isoform being pro-apoptotic and the secreted
one cytoprotective [41,46-48]. In normal cells and early
carcinogenesis CLU may inhibit tumour progression,
whereas it may favour survival advantage in advanced
tumours [42]. Increased CLU expression in tumour biop-
sies correlated with inhibition of apoptosis and tumour
cell survival [41,49].

CLU has already been proposed as a diagnostic bio-
marker of CRC, based on analyses on samples collected
at diagnosis [34,35]. This investigation shows for the first
time that circulating CLU can be altered before the on-
set of the disease and suggests that plasma CLU mea-
surements could be useful for identifying individuals at
risk of developing CRC, at least among men.

It is not clear why plasma CLU increases in preclinical
samples, but we can formulate some hypotheses. Since
plasma samples were collected prospectively, the CLU
changes might be related to the host response, rather
than it being a cancer-derived biomarker. The intestine
wall is protected by a mucosal barrier whose homeosta-
sis is maintained by a multidimensional network, includ-
ing commensal microbiota, host innate immunity and
genetics [50]. Loss of balance of this physiological inter-
action might lead to inflammation and cancer and there
is evidence that the intestinal microbiota plays a role in
colorectal carcinogenesis [50,51]. Thus we can speculate
that the increased circulating CLU in our population is
likely to play a role in CRC development, since it might
inhibit the host response to dangerous bacteria, thus
allowing damage to the mucous intestinal barrier and
favouring inflammation and cancer.

Conclusions

The mass spectrometry-based analysis of the global
plasma proteome identified, with high confidence, pro-
teins involved in inflammation and/or immune pro-
cesses, in samples collected at CRC diagnosis and years
before it. In this preliminary study, the key finding is the
identification of CLU as an early biomarker of CRC, at
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least in men. The main strengths of the study are the
prospective design and the specificity of the analytical
methods used to identify and validate candidate bio-
markers. Though the small sample size is a limitation,
the increased circulating CLU in preclinical samples
warrants further investigation in a larger cohort of sub-
jects to confirm the results of this pilot study and to as-
sess the specificity of CLU as a biomarker for CRC,
since it might help in identifying preventive interven-
tion strategies.

Protein name abbreviations

APOC?2, apoliprotein C-II; CLU, clusterin; CO4-B, com-
plement C4-B; CO9, complement component C9; FETUA,
alpha-2-HS-glycoprotein (Fetuin A); MASP2, mannan-
binding lectin serine-protease; MBL2, mannose-binding
protein C; PGRP2, N-acetylmuramoyl-L-alanine amidase.
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