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Abstract

Background: Although features of variable differentiation in glioblastoma cell cultures have been
reported, a comparative analysis of differentiation properties of normal neural GFAP positive
progenitors, and those shown by glioblastoma cells, has not been performed.

Methods: Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA):
exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium,
western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To
characterize glioblastoma cells EGFR amplification analysis, LOH/MSI analysis, and P53 nucleotide
sequence analysis were performed.

Results: In vitro differentiation of cancer cells derived from eight glioblastomas was compared with
GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation
medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/
Vimentin+/Beta lll-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to
GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from
glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated
after serum-starvation with varying efficiency into derivatives indistinguishable from the neural
derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of
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8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to

medium with serum.

Conclusion: Our results showed that stable co-expression of multilineage markers by
glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of
glioblastoma cells can present in vitro multilineage phenotype. The mesenchymal differentiation of
glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural

progenitors GFAP+NNP.

Background

The biology and clinical prognosis of glioblastoma is a
subject of intense research, and several reports on differ-
entiation pathways of glioblastoma cells isolated from
high-grade gliomas have been recently published [1,2]. In
addition to neuronal or glial lineages, mesenchymal dif-
ferentiation has recently been described in cell cultures
obtained from some of these tumors [3,4]. Moreover, a
co-expression of markers typically identified either in glial
or neuronal lineages, has been previously described in
glioblastoma cells [2]. It was suggested that this pheno-
type may be a consequence of dedifferentiation/transdif-
ferentiation of transformed cells [2]. Although features of
variable differentiation in glioblastoma cell cultures have
been reported, a direct comparison of differentiation
properties of normal neural cells exhibiting multilineage
phenotype, and those shown by glioblastoma cells, has
not been performed.

Previously we have shown that normal GFAP positive cells
with characteristics of normal neural progenitors
(GFAP+NNP) co-express neuronal, glial, and mesenchy-
mal markers and differentiate into neuronal, glial, and
non-neural cells [5-7]. Our recent studies showed mesen-
chymal differentiation of these cells [8].

The recent demonstration that tumor cells isolated from
some human gliomas can differentiate into neural and
mesenchymal derivatives, and our earlier observations of
neural and mesenchymal differentiation of GFAP+NNP
cells, with multilineage (discordant) phenotype, inspired
us to compare in vitro inducible differentiation and phe-
notypic changes of GFAP+NNP and glioblastoma cells.

The similarities between GFAP+NNP cells and a subpop-
ulation of glioblastoma cells isolated from high-grade gli-
omas presented in this study shed new light on
glioblastoma biology.

Methods

GFAP+NNP growth and differentiation

GFAP+NNP, isolated from the cerebrum of human
fetuses, were purchased from Lonza, formerly Cambrex
(CC-2565, NHA-Normal Human Astrocytes; Walkersville,
MD). GFAP+NNP at passage O (or rarely passage 1) were

grown for 8 hours in expansion medium (supplemented
with thEGF, insulin, AA with 3% fetal bovine serum: AGM
Bullet Kit Media, Lonza), then for 24 hours in serum-star-
vation medium; DMEM/F12 medium (Gibco) supple-
mented with N2 (10x) (Gibco), insulin (10 ng/mlL;
Invitrogen), and epidermal growth factor (EGF) (10 ng/
mL; Invitrogen). Then, the medium was changed to neural
differentiation medium: DMEM/F12 supplemented with
N2 (10x). The cells were grown in the differentiation
medium for 2-20 days.

Glioblastoma aggregate formation

Tissue samples were obtained from patients with glioblas-
toma treated in the Department of Neurosurgery, Polish
Mother Memorial Hospital Research Institute of Lodz and
Department of Neurosurgery Medical University of Lodz,
Poland. All samples were collected under protocols
approved by Medical University of Lodz. The tumor cells
were dispersed by means of collagenase type IV (20 U/mL,
37°C). Subsequently, the cells were for 12 hours in expan-
sion medium. Twelve hours later, the medium was
changed to the serum-starvation medium, and aggregates
were isolated after 1-4 days of incubation. For each tumor
20-40 aggregates were tested.

Glioblastoma aggregate propagation and characterization
The aggregates were isolated and transferred into cell cul-
ture dishes covered with Matrigel (Growth Factor-
reduced; BD Discovery Labware, Bedford, MA) and cul-
tured in neural differentiation medium: DMEM/F12 sup-
plemented with N2 (10x). After 12-24 hours of
incubation, it was observed that cells were released from
the aggregates. The aggregates were then gently removed
by means of a 1-mL pipette and the cells which migrated
out of the aggregates were left on the dish for further
experiments. The aggregate-derived cells were immunocy-
tochemically stained after 12-24 hours and at 5, 10, 15,
and 20 days of growth.

The aggregates could be propagated for at least 10
months, incubated in neural differentiation medium and
transferred every 5-20 days. The experiments presented in
this paper were performed after three to six transfers of the
aggregates into new medium (no longer than five weeks of
propagation).
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Exposure of glioblastoma cells to medium with serum
Glioblastoma cells forming aggregates, non-selected
glioblastoma cells and undifferentiated GFAP+NNP were
cultured in alpha-MEM media containing 10% FBS (fetal
bovine serum).

Western blot analysis

The protein extracts from cell cultures were obtained with
the use of NucleoSpin (Macherey-Nagel). The commer-
cially available Brain Tissue Lysate was used as a positive
control in Western blot analysis (Abcam). Equal amounts
of protein extracts, 25 pg per line, were separated by 5%
or 10% SDS-PAGE followed by transfer onto Immo-
bilon™-P polyvinylidene difluoride membranes (Sigma-
Aldrich). After blocking of nonspecific binding, the mem-
branes were incubated for 1 hour at room temperature
with primary antibodies (Table 1). After extensive wash-
ing in TBST buffer, the membranes were incubated for 1
hour at room temperature with species-specific secondary
antibody (Santa Cruz Biotechnology, Inc.), diluted
1:2000. Membranes were then washed in TBST buffer and
finally in TBS buffer (TRIS Buffered Saline; pH 7.5); anti-
gen-antibody complexes were detected by enhanced
chemiluminescence, using Chemiluminescence Luminol
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Reagent (Santa Cruz Biotechnology, Inc.) and visualized
with the use of BIO-RAD camera and Quantity One soft-
ware.

Immunocytochemistry

Immunocytochemistry assays for double- or triple-
immunofluorescent labeling were performed. For
immunofluorescence studies, cells were grown on tissue-
culture chamber slides or for single cell assay experiment,
in 16-well chamber slides (Nunc). The cells were fixed
with 4% paraformaldehyde for 15 minutes, permeabi-
lized with 0.1% Triton X-100 for 10 minutes at room tem-
perature and blocked with 2% donkey serum in PBS for 1
hour at room temperature. For double or triple immu-
nolabeling, fixed cells were subsequently incubated with
appropriate primary antibodies (Table 1) for 1 hour at
room temperature. Double- or triple-labeling was
achieved by simultaneous incubation with a combination
of species-specific fluorochrome-conjugated secondary
antibodies (1 hour, room temperature). For double
immunolabeling, a mixture of donkey anti-rabbit Alex-
aFluor®488 (dilution 1:250) and donkey anti-mouse Alex-
aFluor®594 (dilution 1:250) antibodies (Molecular
Probes) were applied. For triple labeling, the following

Table I: Primary antibodies used for Western blot (WB) and immunocytochemical staining (IC)

I Ab Host Manufacturer Application (Dilution)
anti-nestin mouse Santa Cruz Biotechnology, Inc.; sc-23927 WB (1:200); IC (1:100)
anti-GFAP mouse Chemicon; MAB360 WB (1:800); IC (1:400)
anti-CD44 mouse Santa Cruz Biotechnology, Inc.; sc-7297 WB (1:100); IC (1:100)
anti-MAP-2 rabbit Santa Cruz Biotechnology, Inc.; sc-20172 WB (1:200); IC (1:100)
anti-nestin rabbit Santa Cruz Biotechnology, Inc.; sc-20978 IC (1:100)
anti-CD133 rabbit Santa Cruz Biotechnology, Inc.;sc-30220 IC (1:100)

anti-BllI-tubulin rabbit Sigma; T 2200 WB (1:250); IC (1:250)
anti-Fibronectin rabbit Sigma; F 3648 IC (1:200)
anti-SOX2 rabbit Chemicon; AB5603 IC (1:1000)
anti-GFAP goat Santa Cruz Biotechnology, Inc.; sc-6171 IC (1:50)
anti-vimentin goat Chemicon; AB-1620 WB (1:100); IC (1:40)
anti-BllI-tubulin mouse Chemicon MAB 1637 IC (1:200)
anti-TH mouse Santa Cruz Biotechnology, Inc.; sc-25269 IC (1:100)
anti-BrdU mouse Sigma B 8434 IC (1:500)
Page 3 of 15

(page number not for citation purposes)



BMC Cancer 2009, 9:54

combination of antibodies was used: donkey anti-rabbit
AlexaFluor®488 (dilution 1:250), donkey anti-mouse
AlexaFluor®594 (dilution 1:250), donkey anti-goat Alex-
aFluor®350 (dilution 1:250); Molecular Probes. After a
final rinse with PBS, the slides were mounted using Pro-
Long® Gold Antifade Reagent (Molecular Probes). For
nuclei staining, the ProLong® Gold Antifade Reagent with
DAPI (Molecular Probes) was used. The slides were cover-
slipped and examined using an Olympus BX-41 fluores-
cence microscope. Semi-quantitative analysis based on
measurement of fluorescence intensity was performed
with the use of WCIF Image ] software (Wright Cell Imag-
ing Facility, Toronto Western Research Institute).
MAP2+high signal was defined based on current measure-
ments and results published by Witusik et al [6]. Cells
showing intensity higher than 120 units/pixel were
defined as MAP2+ high, For immunocytochemical BrdU
staining, the vendor protocol was applied (Sigma).

EGFR amplification analysis

Multiplex PCR was performed for evaluation of EGFR
amplification with superoxide dismutase 1 (SOD1) used
as a reference gene. EGFR and SOD1 were amplified using
the following primers: 5'-ctactagaagttgatggctt-3' and 5'-
ggtccatgaaaaagcagatg-3' (110 bp); 5'-ttaagaagacttggtggtc-
catgaaaaagcagatg-3' and 5'-aaaaaagcttggaatgtttatt-
gggcgatcc-3' (163 bp). PCR products were separated by
electrophoresis in 2% agarose gel, visualized using a Bio-
Rad Gel Doc 1000 and analyzed with Molecular Analyst
software as described before [9].

LOH and MSI analysis

DNA was isolated from the cells obtained from the aggre-
gates and from immunostained cells, original tumor cul-
tures and blood isolated from the patients, by means of
Macherey-Nagel DNA/RNA/Protein purification kit. LOH
and MSI analyses were performed using paired tumor
specimens and corresponding peripheral blood samples.
The following LOH markers were used: D1S2734,
D1S8197, D1S162 D1S156, D9S319, D9S162, D10S587,
D10S1267, D1751828. MSI markers have already been
described [10]. Forward primers were 5'-end fluorescence-
labeled. PCR was performed in thermocycling conditions
individually established for each pair of primers. PCR
products were denatured and gel electrophoresis in LiCor
automatic sequencer system was applied to the separation
and analysis of PCR-generated alleles.

Nucleotide sequence analysis of P53

Four genomic regions of P53 gene (exons 5-8) were
amplified by PCR using sets of primers encompassing
each exon [11]. Sequencing was performed as described
before [11] using the dideoxy termination method,
SequiTherm Excel DNA Sequencing Kit (Epicentre Tech-
nologies) and LiCor automated sequencer.
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BrdU incorporation assay

To assess the mitotic activity of glioblastoma cells, 10 uM
BrdU (Sigma, St. Louis, MO), a marker of DNA synthesis,
was added to the cells cultured in expansion media for
48-72 hours. To assess the mitotic activity of cells derived
from glioblastomas, 10 uM BrdU was added to DMEM/
F12 media supplemented with N2 on days 1 and 15 of
culture. Similarly, BrdU was added to the glioblastoma
cells passaged in 10% alpha-MEM. BrdU incorporation
was assessed after 5, 10, 15 and 20 passages. After 48-72
hours of incorporation, the cultures were fixed with 4%
paraformaldehyde for 15 minutes and processed for
immunocytochemistry.

Exposure of glioblastoma cells to the adipogenic
differentiation medium

Glioblastoma cells showing CD44+, Vimentin+,
Fibronectin+, and neural markers positive, phenotype
were plated in 6-well tissue culture dishes, and allowed to
reach 80% confluence. Triplicate wells were incubated for
3 weeks in adipogenic medium, containing 0.5 uM hydro-
cortisone (Sigma), 0.5 mM isobutylmethylxanthine
(IBMX) (Sigma) and 60 uM indomethacin (Sigma). The
medium was replaced every 3 to 4 days. To assess lipid
deposition, the cultured cells were washed with PBS and
fixed for 1 hour with 10% formalin, then stained for 15
minutes with a diluted Oil Red-O solution (Sigma) with
shaking at room temperature, then washed three times
with dH,O, and subsequently examined under a light
microscope. Negative controls were glioblastoma cells
showing mesenchymal phenotype but not exposed to adi-
pogenic medium; positive controls consisted of marrow
stromal cells exposed to adipogenic medium and stained
with Oil Red-O.

Single cell assay

Glioblastoma cells obtained after dislodging the aggre-
gates were used for single cell assay: one cell was sus-
pended in the medium directly into one conical well of a
96-well or 16-well immunocytochemistry plate. Then, the
cells were grown in several conditions: serum-starvation
medium, neural differentiation medium, and expansion
medium, as described under the GFAP+NNP growth and
differentiation section. The single cell assay was also
started at passage 0, just after the beginning of the tumor
cell cultures. The cells were stained, photographed and
subsequently DNA was isolated and LOH analysis was
performed to check if clones were obtained from the
tumor cells.

Results

Subpopulation of glioblastoma cells with multilineage
phenotype has the ability to form aggregates

Cells isolated from eight glioblastomas, as well as
GFAP+NNP, were grown in the same culture conditions:
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Table 2: Phenotypic and genetic features of GFAP+NNP and glioblastoma cell cultures

Feature GBMI GBM2 GBM3 GBM4 GBM5 GBM6 GBM7 GBMS8 NHA
% of multilineage 95% 70% 63% 45% 30% 10% 15% 45% 100%
phenotype cells
in original
culture
Other than glial, neuronal- glial, glial, glial, glial, neuronal- glial, other, not glial, neuronal- 0%
multilineage intermediate, mesenchymal mesenchymal mesenchymal intermediate, mesenchymal defined intermediate,
phenotypes mesenchymal mesenchymal neuronal,
observed at the mesenchymal
beginning of in
vitro culture
Clonable - + - + - + - - -
% of CDI133+ 0% 3% 0% 2% 2% 1% 2% 3% 0%
cells
Aggregate- + + + + - - - + +
forming ability
Aggregates + + + + nt nt nt + -
stability
Mesenchymal (+) 10 (+) IS5 (+) 10 (+) 15 (+) 10 (+) 10 - (+) 10 (+)5
differentiation *
Molecular EGFR+, P53wt  EGFR-, P53mut ~ EGFR+, P53wt EGFR-, P53wt EGFR+, P53wt  EGFR-, P53mut ~ EGFR-, P53 wt ~ EGFR-, P53mut EGFR-, P53wt
background

The phenotypes: multilineage phenotype, in brief CD44+/MAP2/GFAP+ (in detail Beta Il tubulin+/Nestin+/Vimentin+/SOX2+); glial, GFAP+/CD44+/MAP2-; neuronal, MAP2+/GFAP-/CD44-;
neuronal-intermediate, GFAP+/MAP2+/CD44-; mesenchymal, in brief CD44+/GFAP-/MAP2- (in detail CD44+/Vimentin+/Fibronectin+/GFAP-/MAP2-/Beta lll-tubulin-/Nestin-/SOX2-).
EGFR+, amplification of EGFR gene; EGFR-, no amplification of EGFR gene; P53wt, wild type; P53mut, mutation in P53; nt, not tested.

GBM, glioblastoma
*Number of passages required to present only mesenchymal (non-neural) cells.

Page 5 of 15

(page number not for citation purposes)



BMC Cancer 2009, 9:54

Figure |

Characterization of GFAP+NNP and GBM cells
showing discordant phenotype. a, GFAP+NNP cells neg-
ative for CD 133 and GFAP positive; b, GBM4 cells positive
for GFAP, Beta lll-tubulin and SOX-2 and cells SOX-2, Beta
Ill-tubulin and GFAP negative; ¢, GBM3 cells forming aggre-
gate; d, GBMI cells released from aggregate positive for
GFAP and MAP2; e, aggregated and released from aggregate
cells positive for CD44 and Nestin (GBM 3); f, GBM2 cells
original culture cells positive for CD 133, and cells positive
for GFAP.

first in expansion medium, then in serum-starvation
medium, and finally in neural differentiation medium, as
described in Materials and methods. All undifferentiated
GFAP+NNP presented the multilineage phenotype,
defined as co-expression of GFAP, CD44, Beta IlI-tubulin,
MAP2 and Nestin, SOX-2, Vimentin [5-7]. GFAP+NNP
were CD133 negative (Fig. 1a). In initial monolayer cul-
tures isolated from eight glioblastomas, 10% (GBM6) to
95% (GBM1) of cells presented an evident multilineage
phenotype (Table 2). All glioblastoma cells with multilin-
eage phenotype were also SOX-2 positive (Fig. 1b). In
addition to the population of cells with multilineage phe-
notype, cells with one or more of the following pheno-
types were also observed in different glioblastoma
cultures: ~ MAP2+high/ GFAP+/CD44-;  CD44+/GFAP-/
MAP2-; GFAP+/CD44+/MAP2-; MAP2+high/GFAP-/CD44-
; CD133+/CD44+/MAP2+/GFAP+ and CD133+/MAP2-/
GFAP- (Table 2).
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Between 24-48 hours of incubation in the serum-starva-
tion medium, glioblastoma cells growing initially in a
monolayer, began forming aggregates (Fig. 1c). A sponta-
neous ability to form aggregates consisting of multiline-
age tumor cells was observed in five of eight glioblastomas
(GBM1, GBM2, GBM3, GBM4, GBM8), which presented
more than 40% of cells with multilineage phenotype. The
aggregates were very stable and able to be transferred and
micro-surgically manipulated. To confirm that the aggre-
gates were formed by a pure population of tumor cells
with the multilineage phenotype, every aggregate was gen-
tly cut into two parts. One part was removed from the cul-
ture for DNA/protein isolation and immunocytochemical
staining, and the second part was further propagated.

Glioblastoma cells forming aggregates, as well as undiffer-
entiated GFAP+NNP, co-expressed SOX-2, Nestin, Beta
[II-tubulin, MAP2, GFAP, Vimentin, Fibronectin and
CD44, when cultured under serum-starvation media. The
expression of these markers was detected by immunocyto-
chemistry (Fig. 1a-f) [5-7], and Western blotting (Fig. 2a).
Under these conditions, GFAP+NNP did not form aggre-
gates and were maintained in monolayer. Because the
aggregates were formed by homogenous tumor cells, in
terms of the multilineage phenotype, aggregate formation
allowed for separation of these cells from other tumor
cells in glioblastoma cultures. Aggregates, but not monol-
ayer of glioblastoma cells, were used for a majority of fur-
ther experiments.

Analysis of molecular background of glioblastomas: EGFR
amplification and P53 mutations

The phenotypical discrepancies of eight glioblastomas
presented here prompted us to perform basic molecular
testing. The molecular alterations in glioblastoma are var-
iable, however, two predominant genetic pathways typi-
cal for primary (EGFR amplifications) and secondary
glioblastomas (mutations of P53) have been described
[12,13]. Therefore, we performed sequencing of P53 gene
and EGFR amplification analysis by multiplex PCR in
DNA isolated directly from the tumors and from the
respective cell cultures. EGFR amplification was identified
in GBM1, GBM3 and GBMS5, whereas GBM2, GBM6 and
GBMS8 showed P53 gene mutations (Table 2, Fig. 2b-c).
None of these alterations were found in GBM4 and GBM7
(Table 2). The statistical analysis did not reveal any impor-
tant association between the molecular background and
cellular phenotype.

LOH and MSI analyses show that aggregates obtained
from glioblastoma contain only tumor cells
Non-neoplastic stem cells have been previously described
to infiltrate tumor tissue; we verified whether the popula-
tion of the aggregate-forming cells was composed purely
of tumor cells. We showed that DNA isolated from frozen
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Molecular characterization of glioblastomas. a, West-
ern blot analysis to show MAP2, Nestin and GFAP expres-
sion in cultured GBMI, GBM2, GBM3, GBM4 (lanes 1-4)
cells and control brain lane 6; lane 5, negative control blood
cells. b, Multiplex analysis allowing to detect EGFR amplifica-
tion. Lanes |, 2, 3 samples showing amplification of EGFR;
lane 4, negative control; lane 5, positive control. ¢, Sequenc-
ing of P53 normal sample and sample presenting mutation of
P53 (GBMS6). d, LOH analysis. Lane a, blood sample; lane b,
tumor sample frozen tissue contaminated with cells present-
ing ROH (ROH, retention of heterozygosity); lane c, lack of
cells with ROH, DNA isolated from aggregate.

tumors was heterogeneous, most likely as a result of con-
tamination by non-tumor cells: both normal DNA and
allele with chromosomal loss was found in the tumor
samples. However, DNA isolated from the aggregates
showed no retention of the normal allele in LOH analysis,
indicating that these aggregates consisted of only tumor
cells (GBM1-GBM4) (Fig. 2d).
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GFAP+NNP differentiation: presence of neuronal
intermediates

Next, we replaced the serum-starvation medium with neu-
ral differentiation medium in GFAP+NNP cultures as well
as glioblastoma cell aggregates. Under these conditions,
GFAP+NNP rarely formed aggregates. If aggregates
appeared, they were unstable and completely dispersed
after one or two transfers due to massive release of differ-
entiating cells. The dispersed cells showed features of dif-
ferentiation and grew in monolayer (Fig. 3a,b). Using
triple immunocytochemical staining, we showed that at
early stages of differentiation (after 2-3 days of incuba-
tion in the neural differentiation medium), in 25-35% of
the GFAP+NNP derivatives, MAP2+high/ GFAP+low/CD44-
phenotype could be induced. Cells with upregulated
MAP2 and Beta IlI-tubulin expression, and downregu-
lated GFAP expression, express TH (tyrosine hydroxylase),
an enzyme required for catecholamines synthesis, which
further confirms their neuronal characteristics (Fig. 4a-h).
The morphology of these cells, lack of CD44 and high
expression of MAP2 and Beta Ill-tubulin, suggested that
they were potential neuronal intermediates (Fig. 5a).
Moreover, their percentage was almost as high as the per-
centage of neuronal cells observed two days later. Among
cells showing GFAP and MAP2 co-expression, most
(about 70%) presented only the remnants of GFAP, which
constitutes additional evidence that the neuronal cells
originated from the cells initially showing a multilineage
phenotype. The existence of MAP2+, GFAP+, CD44- cells
has already been presented by our group [7]. We showed
that the percentage of those cells after 5-7 days of neural
differentiation did not exceed 5% [7].

Glioblastoma cells released from the aggregates show
features of neural differentiation and differentiation arrest
When cultured under serum-starvation conditions, in
contrast to GFAP+NNP, glioblastoma cells formed stable
aggregates, and aggregate cells maintained the multiline-
age phenotype for several months (as currently observed
for 8 months). The differences between aggregates of
glioblastomas and GFAP+NNP cultures are shown in Fig.
3a,b. When culture conditions were changed to neural dif-
ferentiation conditions after 12-24 hours, tumor cells
migrated from aggregates and formed a monolayer (Fig.
1d,e). After their appearance in monolayer, we continued
with two parallel cultures. The monolayer of cells was left
in culture for further propagation, and the aggregates were
transferred to new dishes.

The monolayer cells released from glioblastoma aggre-
gates presented the multilineage phenotype. In these cells
a co-expression of CD44, GFAP, and MAP2 was observed
after 24 hours and remained after 5 days of exposure to
neural differentiation medium (Fig. 1b,c,d,e). In compar-
ison, after five days of culture in the neural differentiation
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Figure 3

Comparison of GBM and GFAP+NNP aggregate sta-
bility. a, GFAP+NNP aggregate dispersed after attachment
to the surface, separated cells positive either for GFAP or
MAP2; b, GBM4 stable aggregate cells positive for GFAP and
MAP2.

medium, nearly all GFAP+NNP differentiated into neuro-
nal and astrocytic cells (Fig. 5a,b,c).

After 5-20 days of culture in the neural differentiation
medium, the phenotype of the cells released from gliob-
lastoma aggregates was characterized by immunocyto-
chemistry. The results revealed differences in the
differentiation patterns and the capacity between cells
obtained from examined tumors. GBM2 cells released
from aggregates showed the highest resistance to neural
differentiation conditions: predominantly, cells sustain-
ing the multilineage phenotype (CD44+/GFAP+/MAP2+)
were observed (Table 3; Fig. 5d). GBM1 and GBM3 cells
released from aggregates, in the same culture conditions,
showed three phenotypes: multilineage (CD44+/GFAP+/
MAP2+), non-neural (CD44+/GFAP-/MAP2-) and neuro-

20um

50um

Figure 4
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nal intermediate (MAP2+high/GFAP+/CD44-) (Table 3;
Fig. 5e,f). Comparative analysis showed that the neuronal
intermediate phenotype was also observed as a result of
GFAP+NNP differentiation (Fig. 5a). However, in
GFAP+NNP this phenotype was observed only temporar-
ily prior to differentiation into neural cells, whereas it was
very stable in glioblastoma cells. These results suggest that
it was possible to trigger the neural phenotype in GBM1
and GBM3 cells, although it was arrested at early stages of
neural differentiation. GBM4 cells released from aggre-
gates contained a higher percentage of cells with glial phe-
notype (greater than 25%) after neural differentiation
than GBM1 and GBM3 (Table 3), whereas GBM8 cells
contained greater than 40% of glial cells (Table 3; Fig. 5g).
In addition to glial, neural differentiation of GBM8 cells
yielded a subpopulation resembling neuronal cells (Fig.
5g). In all of these cases (GBM1, GBM2, GBM3, GBM4,
GBMS8), during the prolonged neural differentiation (15
days), Nestin expression was not eliminated as it was in
neuronal derivatives of GFAP+NNP (Fig. 5h) [5]. In paral-
lel, the aggregates were cultured and the phenotype was
monitored. After 3-4 months, the aggregates cultured in
neural differentiation medium lost the ability to attach to
tissue culture surface and to release cells into a monolayer.
However, the cells within the aggregates remained viable
and displayed the multilineage phenotype (data not
shown). These results suggest that in contrast to
GFAP+NNP, induction of neural phenotype in the gliob-
lastoma aggregate-derived cell was significantly inhibited.

20um 20pm

50pm 50um

TH, GFAP and MAP2 expression presented by derivatives of GFAP+NNP. a-d, TH expression observed in the cell
showing downregulated GFAP and upregulated MAP2 expression. e-h, TH expression in maturating neuronal cells showing

high expression of MAP2 and lack of GFAP.
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Figure 5

GFAP+NNP vs. GBM neural differentiation. a,
GFAP+NNP cells at passage |, three days of neural differen-
tiation. Cells positive for CD44 and GFAP, and cells positive
for MAP2 and GFAP but negative for CD44. MAP2 domi-
nates but GFAP is visible. Cells CD44+, GFAP+ are also pre-
sented. b, GFAP+NNP cells at passage |, four days of neural
differentiation. Two types of cells are visible: positive for
CD44 and GFAP, and cells MAP2+; GFAP+, CD44-. c,
GFAP+NNP cells at passage |, 5 days of neural differentia-
tion: GFAP+ MAP2- and MAP2+ GFAP- cells. d, GBM2:
CD44, GFAP, MAP2 positive cells- cells sustaining discordant
phenotype. e, GBM | cells released from aggregate, 15 days
of neural differentiation: cells GFAP- MAP2- and MAP2+
GFAP+ are visible. f, GBM3: CD44 negative, GFAP and
MAP2 positive cells in the centre. g, GBM8: strongly MAP2
positive cells and GFAP, CD44 positive cells released from
the aggregate. h, GBM4: GFAP and MAP2 positive cells sus-
taining Nestin expression.

Characteristics of mesenchymal differentiation of
glioblastoma cells

To observe the mesenchymal differentiation of
GFAP+NNP and glioblastoma aggregate-derived cells, the

http://www.biomedcentral.com/1471-2407/9/54

cells were transferred to the alpha-MEM medium supple-
mented with 10% FBS. When cultured under these condi-
tions, GFAP+NNP generated a population of cells with
robust expression of Fibronectin and maintenance of
CD44 expression (Fig. 6a,b). We previously defined this
population as mesenchymal [8]. We show that similarly
to GFAP+NNP, the aggregate-derived cells from GBM1,
GBM2, GBM3, GBM4 and GBM8 exposed to alpha-MEM
with 10% FBS for a number of passages, were induced to
non-neural, mesenchymal phenotype (CD44+/GFAP-/
MAP2-) and robustly expressed Fibronectin (Fig. 6¢,d).
The same effect was observed when heterogeneous gliob-
lastoma cells isolated from GBM1, GBM2, GBM3, GBM4,
GBM5 and GBMS, were exposed to alpha-MEM with 10%
FBS (Fig. 6e). However, GBM2 and GBM4 cells required
more passages (above 15) than GBM1, GBM3, GBM5,
GBMS8 (above 10), to present purely non-neural, mesen-
chymal phenotype. Interestingly, in GBM1 and GBM3
aggregate-derived cells, non-neural differentiation was
also observed after exposure to neural differentiation
medium, as described in the previous paragraph (Fig. 6d).
Moreover, glioblastoma-derived mesenchymal cells
exposed to adipogenic medium, showed features of adi-
pogenesis (Fig. 6f). Considering our data, and recent liter-
ature demonstrating mesenchymal differentiation of
glioblastoma cells [1], we defined the CD44+, GFAP-,
MAP2- population of glioblastoma cells as mesenchymal.

These results show that two of the analyzed glioblastomas
(GBM1 and GBM3) exhibited non-neural differentiation
under both neural- and non-neural differentiation condi-
tions.

Molecular analyses (LOH and/or P53 sequencing) con-
firmed that the population of cells with non-neural phe-
notype consisted entirely of glioblastoma cells and were
not contaminated with normal cells as LOH, without con-
tamination with the normal allele, nor were P53 muta-
tions identified (Fig. 2¢,d).

In addition, our results show that one out of eight gliob-
lastomas (GBM7) did not form aggregates and did not dif-
ferentiate in accordance with the GFAP+NNP
differentiation model (Table 2).

Glioblastoma cells acquiring mesenchymal features
proliferate slowly and do not express CD133

CD133 positive cells were observed in the primary cul-
tures isolated from six out of eight glioblastomas (Table 2;
Fig. 1f). All these glioblastomas after exposure as a mon-
olayer culture to the alpha-MEM with 10% FBS, showed a
complete loss of CD133-positive cells. Both aggregates of
glioblastoma cells and the cells released from the aggre-
gates were negative for CD133 (Fig. 7a,b). Assay of BrdU
incorporation revealed that acquisition of the mesenchy-
mal phenotype correlated with very low mitotic activity
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Table 3: Features of neural and mesenchymal differentiation presented by glioblastoma cells

fg GBMI GBM2 GBM3 GBM4 GBMS8 GFAP+NNP GFAP+NNP
po pl
Aggregated 100 100 100 100 100 no no
GBM cells with multilineage phenotype
5d Multilineage 100 100 95-100 100 83-87 0-1 0-1
5d NI 0 0 0-2 0 3-6 1-2 1-2
5dMES 0 0 0-2 0 3-5 0 5-8
5dGLIA 0 0 0-3 0 6-10 4446 45-49
5dNEURO 0 0 0 0 0-3 54-56 47-50
5d not classified 0 0 0-2 0 3-5 0-1 0-1
20d Multilineage 19-23 72-75 12-15 42-46 18-22 0 0
20dNI 21-25 8-12 23-25 11-15 16-20 0 0
20dMES 26-29 3-6 36-40 7-11 4-6 0 5-8
20dGLIA 21-24* 4-9* 15-19* 25-31* 44-5]* 48-50* 45-44*
20dNEURO 0 0 0 0 5-7* 50-52%* 48-50*
20d not classified 9-12 8-11 8-13 9-12 9-11 0-1 0-1

GBM, glioblastoma;

GFAP+NNP, normal neural progenitors;

NI, neuronal intermediates;

MES, mesenchymal cells;

GLIA, glial cells;

NEURO, neuronal cells;

5d, five days of differentiation (DMEM/FI2 N2);
20d, twenty days of differentiation (DMEM/FI2 N2);
no, GFAP+NNP did not show stable aggregates.

*After 5 and 20 days of exposure to the differentiation medium glioblastoma cells showed Nestin expression. GFAP+NNP derivatives showed

Nestin expression after 5 but not after 20 days of serum starvation.

when compared to the original population of glioblast-
oma cells isolated from GBM1, GBM 3, GBM 4, GBM 5,
GBM 6, and GBM 8 (Fig. 7c,d). Only GBM2 did not show
this regression of mitotic activity.

Majority of glioblastomas do not expand in single cell
assay conditions

Glioblastoma cells with the multilineage phenotype
obtained from the aggregates and the dispersed cells of all
eight tumors were grown in cloning conditions in differ-
ent media (see Methods). We were able to clone only cells
isolated from GBM2, GBM4, and GBMG6. GBM2 cells
maintained the multilineage phenotype when exposed to
serum-starvation medium (Fig. 8a). However, GBM4 and
GBM6 acquired mesenchymal phenotype in all tested sin-
gle cell assay conditions (Fig. 8b). These results showed

that single cell assay can be applied only for some gliob-
lastomas. Moreover, single cell assay altered the cellular
phenotype in two out of three cloned cell lines. LOH and/
or MSI analysis confirmed the neoplastic origin of the
cloned cells.

Discussion

Analysis of the biological potential of glioblastoma cells is
important for better understanding of the natural course
of the disease. Understanding of the differentiation capac-
ity of glioblastoma cells creates an opportunity of interfer-
ing with the glioblastoma phenotype that may appear
helpful in the design of new therapies for glioblastomas.

Here we present an in vitro model system allowing for: 1)

the isolation of glioblastoma cells with multilineage phe-
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b, Yl

Figure 6

GFAP+NNP and GBM cells mesenchymal differentia-
tion. a, GFAP+NNP cells positive for CD44 and Fibronectin
(FIBRO); b, GFAP+NNP cells pasage 5 negative for Nestin
(NST) and positive for Vimenitn (VIM) and Fibronectin
(FIBRO); ¢, original population of GBM2 cells; population
positive for GFAP and Fibronectin and population negative
for GFAP but positive for Fibronectin are visible; d, GBM4
cells eliminating GFAP and MAP2 but sustaining Vimentin
expression; e, Expression of CD44 and Fibronectin pre-
sented by GBM3 cells at passagel?2; f, cellular derivatives
obtained after exposure of GBMs cells to adipogenic differ-
entiation medium.

notype, 2) a comparison between inducible differentia-
tion of normal neural precursors with multilineage
phenotype and cells isolated from human glioblastomas.

Using the in vitro model, we have identified the presence
of a population of tumor cells with multilineage pheno-
type among the primary cells obtained from eight exam-
ined human glioblastomas. These cells could be isolated
from the bulk primary glioblastoma cultures by aggrega-
tion of glioblastoma cells with multilineage phenotype. A
fraction of glioblastoma cells with multilineage pheno-
type varied among examined tumors and represented
between 10% and 95% of primary tumor cell population
(Table 2). In addition, we demonstrated that these tumor
cells differentiated, at least to some degree, into cells with
neuronal, glial, and mesenchymal phenotypes.

Figure 7

CD 133 expression and BrdU incorporation pre-
sented after differentiation of GBMs cells. a, lack of
CD|133 positive cells amongst cells released from GBM 3
aggregate; b, aggregated cells of GBM| negative for CD 133
and positive for CD44; ¢, lack of BrdU incorporation after
mesenchymal differentiation of MAP2 negative GBMS5 cells; d,
BrdU incorporation in aggregated and released from aggre-
gate cells of GBM4.

We have previously shown that uncommitted GFAP+NNP
co-expressed glial, neuronal and mesenchymal lineage
markers, and were capable of multipotent differentiation.
After differentiation into glial lineage, neuronal markers
were lost, while cells that differentiated into neuronal lin-
eage, lost glial markers [5,6]. We showed also that
GFAP+NNP cells differentiated into the mesenchymal lin-
eage, followed by elimination of both neuronal and glial
markers [7]. Similar observations were reported before by
Egusa et al. and Zipori et al. who described undifferenti-
ated cells with a "discordant phenotype", which means
simultaneous expression of markers characteristic for dif-
ferent lineages by the same cell, defining these cells as

Figure 8

Single cell assay of aggregated glioblastoma cells. a,
GBM2 cells positive for GFAP, MAP2 and CD44; b, GBM4:
predominant cells negative for GFAP and MAP2; one cell
presenting remnants of GFAP is visible.

Page 11 of 15

(page number not for citation purposes)



BMC Cancer 2009, 9:54

stem cells [14,15]. While differentiating, these cells gradu-
ally "silence" superfluous genes and acquire a specific
phenotype by up-regulation of specific markers [14,15].
Thus, the process of differentiation is perceived as a com-
plex molecular mechanism that ultimately "switches off"
expression of superfluous genes and articulates expression
of genes required for a final phenotype. That model may
explain a phenomenon of simultaneous expression of
neuronal, glial and mesenchymal markers in glioblast-
oma cells that are able to differentiate into different phe-
notypes [1,2].

In our culture model, a population of glioblastoma cells
was able to form aggregates composed of cells with multi-
lineage phenotype, i.e. showing expression of: CD44,
Vimentin, GFAP, Nestin, Beta IIl-tubulin, MAP2,
Fibronectin and SOX-2, but not CD133. This phenotype
was shared by GFAP+NNP before differentiation [5-7].
This is a very interesting observation in light of recent
reports demonstrating that not only CD133 positive cells,
but also CD133 negative cells, are capable of tumor initi-
ation [16]. SOX2 is marker of neural stem cells/progeni-
tors [17].

According to our data, up to 95% of tumor cells isolated
from human glioblastomas e.g. GBM1 show co-expres-
sion of glial, neuronal and mesenchymal markers. How-
ever, in contrast to GFAP+NNP, glioblastoma cells with
multilineage phenotype appeared to be very resistant to
our neural differentiation medium. One discrepancy
between glioblastoma cells and GFAP+NNP was sus-
tained Nestin expression in neural derivatives of glioblas-
toma cells. Nestin is a marker of undifferentiated
neuroectodermal cells [18]. Although, glioblastoma cells
showed some features of neural and/or mesenchymal dif-
ferentiation after exposure to differentiation medium, the
time and culture conditions required for the differentia-
tion, and the final phenotype, differed among all exam-
ined tumors. For example, GBM2-derived cells sustained
the multilineage phenotype after serum-starvation,
whereas GBM1 tumor cells differentiated efficiently to
mesenchymal cells in any of the differentiation condi-
tions used in this study. GBM8 showed more advanced
neuronal differentiation, whereas GBM1, GBM3 and
GBM4 showed an ability to produce neuronal intermedi-
ates only. Although the advanced neural differentiation
was inhibited in a majority of glioblastomas, at least the
intermediate neuronal phenotype was effectively induced
in glioblastoma cells. We suggest that the MAP2+HIGH/
GFAP+LOW/CD44- phenotype, previously described by us
[7], represents the intermediate neuronal phenotype
observed shortly after the onset of GFAP+NNP neural dif-
ferentiation. These results, together with the multilineage
phenotype of uncommitted GFAP+NNP, suggest that a
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continuation of multilineage phenotype in glioblastoma
cells is a consequence of differentiation arrest.

Our data support previous observations that glioblastoma
represents a neoplasm capable of a vast phenotypic diver-
sity in differentiation patterns [1,3,16]. Interestingly, after
induction of differentiation one common phenotype,
mesenchymal, was shared by six of the eight glioblasto-
mas analyzed in this study. The mesenchymal phenotype
associated with glioblastoma was previously described by
Tso et al. [3]. We propose that the mesenchymal differen-
tiation of GBM cells can be recognized as a characteristic
of cells with multilineage phenotype e.g. GFAP+NNP.

The previously published results showing common origin
of gliomatous and sarcomatous component in gliosarco-
mas, [19,20], and recently presented, in vitro observations
of Tso et al. and Ricci-Vitiani et al. point to the common
origin of glioblastoma [3,4]. However, the cellular origin
of glioblastoma is not known. Considering the facts pre-
sented above, a population of glioblastoma cells identi-
fied in this study resembles GFAP+NNP in terms of their
multilineage phenotype before differentiation, and the
capacity, at least to some degree, for neural and mesenchy-
mal differentiation. Tso et al. proposed two hypotheses
explaining GBM origin. One states that a subset of pri-
mary glioblastomas may be derived from transformed
stem cells containing Mesenchymal Stem Cells (MSC)-
like properties and retain partial phenotypic aspects of
MSC nature in tumors. According to the second hypothe-
sis, glioblastomas activate a series of genes that result in
mesenchymal properties of the cancer cells that sustained
tumor growth and malignant progression [3]. We support
the first Tso et al. proposal, and we suggest that cells con-
taining mesenchymal-like characteristics, like
GFAP+NNP, can be transformed into glioblastoma cells
[3]. Based on the observed mesenchymal differentiation
of glioblastoma cells, Ricci-Vitiani et al. proposed that in
a subclass of glioblastomas, the transformation hit occurs
in a multipotent stem cell, which may reveal its plasticity
under specific environmental stimuli [4]. It is possible
that, a population of multipotent progenitor cells with
neural and mesenchymal characteristics, such as
GFAP+NNP, represent this kind of plasticity.

An example of phenotypic plasticity in vitro and in vivo is
the development of mesenchymal cells from neural crest
[21]. It was shown previously that neural stem cells have
the ability to differentiate into neural crest cells [22], and
may represent this kind of plasticity. Our recent studies
showed that GFAP+NNP, in addition to neural and mes-
enchymal, also have characteristics of neural crest [8]. In
this scenario perhaps "neural crest-like to mesenchymal
transition", instead of mesenchymal differentiation of
glioblastoma cells, would be more appropriate to convey
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Figure 9

Stages and pathways of GFAP+NNP and GBM cells differentiation. a, GFAP+NNP cells coexpress Nestin (NST),
Fibronectin (FIBRO), GFAP, MAP2, CD44 and Beta lll-tubulin. Neural intermediants express GFAP, MAP2, Nestin and Beta IlI-
tubulin. Neuronal cells express MAP2, Beta Ill-tubulin. Glial cells coexpress GFAP, Nestin and CD44. Non-neural cells express
CD44 and Fibronectin. b, in GBM cells the mesenchymal differentiation is very advanced; neural differentiation is arrested at

early stages.

the connection between glioblastoma cells and multipo-
tent GFAP+NNP.

After induction into the mesenchymal phenotype, gliob-
lastoma cultures lost CD133 population and their prolif-
eration rate substantially decreased. These results suggest
that extrinsic factors responsible for an efficient mesen-
chymal differentiation should be investigated more thor-
oughly, since acquisition of mesenchymal differentiation
correlates with the characteristics of cell senescence. This
approach may provide an opportunity to reduce the
aggressive behavior of some neoplasms in vivo.

Considering our results, the co-expression of glial, neuro-
nal and mesenchymal markers in glioma cells cannot be
regarded as an anomaly. It has been shown before that
undifferentiated cells isolated from different tissues may
co-express multilineage markers [23,24]. A co-expression
of multilineage markers preceding a commitment in the
hematopoietic system was reported by Hu et al. [24]. The
multilineage phenotype of cultured glioblastoma cells

may represent a stabilized phenotype that is temporarily
expressed by normal uncommitted multipotent cells such
as GFAP+NNP, and lost after differentiation (Fig. 9). They
differentiate in accordance with the so called model of
superfluous genes suppression [15], while the capability
of acquisition of a more mature phenotype is inhibited to
a vast extent in glioblastomas. It should be stressed that
according to our data up to 95% glioblastoma cells
(GBM1) co-express multilineage markers.

An additional observation also appears from our analysis.
Cloning is commonly used as the first step of glioblast-
oma cells analysis. Here we confirmed that not all gliob-
lastomas can be analysed by this technique [1]. It should
be also considered that cloning changes the original phe-
notype of glioblastoma cells.

Conclusion

In conclusion, we showed that human glioblastomas con-
tain cells with multilineage phenotype. According to our
data up to 95% of glioblastoma cells can present multilin-
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eage phenotype. These cells have remarkable phenotypic
similarities to neural progenitors and express neural and
mesenchymal markers before differentiation. The co-
expression of neuronal and glial markers is transient or
stable during the differentiation of GFAP+NNP and gliob-
lastoma cells, respectively. Our data suggest that the co-
expression of neuronal and glial markers in glioblastoma
cells results from a differentiation arrest (Fig. 9). We sup-
port the suggestions of Tso et al. and Ricci-Vitiani et al.
that a subset of glioblastomas is developed from trans-
formed stem cells, with mesenchymal stem cells proper-
ties, or multipotent stem cells, which may reveal their
plasticity under specific environmental stimuli [3,4].
Multipotent cells, with mesenchymal characteristics simi-
lar to GFAP+NNP, can represent these kinds of cells. Mes-
enchymal-like differentiation of glioblastoma cells, as
well as the previously described mesenchymal differentia-
tion of GFAP+NNP, was environmentally regulated, and
mesenchymal differentiation could be induced in major-
ity of glioblastoma cells. The latter phenomenon was
associated with cellular senescence and elimination of
CD133 positive cells. These data may indicate an alterna-
tive therapeutic approach to glioblastoma.
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