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Abstract
Background: The glycosylphosphatidylinositol (GPI)-anchored epithelial extracellular membrane
serine protease prostasin (PRSS8) is expressed abundantly in normal epithelia and essential for
terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric
cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic
modulation of the epidermal growth factor receptor (EGFR) and is an invasion suppressor. The aim
of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC)
of the human bladder and in human TCC cell lines.

Methods: Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA)
were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16
urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western
blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by
methylation-specific PCR (MSP).

Results: Prostasin is expressed in the normal human urothelium and in a normal human urothelial
cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15) TCC cell lines.
Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin
expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin
expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-
expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-
regulation of E-cadherin.

Conclusion: Loss of prostasin expression in bladder transitional cell carcinomas is associated with
epithelial-mesenchymal transition (EMT), and may have functional implications in tumor invasion
and resistance to chemotherapy.

Background
According to the American Cancer Society Cancer Facts &
Figures 2008, 68,810 new cases of bladder cancer would

have been diagnosed in the United States over the year of
2008, with a total of 14,100 bladder cancer patients dying
from the disease. The cost of managing bladder cancer and
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the associated complications is estimated to be $65,158
per patient per year in the US [1], amounting to a multi-
billion dollar economic impact. For bladder cancer
patients of all stages, the 5-year survival rate is 80%. For
localized disease, the 5-year survival rate is 92%. But the
5-year survival rate sharply declines to 45% and 6% for
patients with regional and distant metastasis, respectively.
The majority of bladder cancers (90%) are "transitional
cell carcinomas" (TCC) [2]. More than 70-80% of the
bladder cancers are papillary non-invasive tumors that
rarely develop into invasive tumors. The remaining blad-
der cancer cases (20-30%) are non-papillary invasive
tumors that produce lymphatic and distant metastasis,
accounting for most of the bladder cancer deaths. Radical
cystectomy combined with chemo- or radiation therapy is
required for patients with invasive bladder cancers, and
offers improved survival [3]. But 50% of patients with
invasive bladder tumors die from metastasis within 2
years of diagnosis [4,5]. For patients with metastasis, i.e.,
invasive tumors that escaped the current chemo- or radia-
tion adjuvant therapy, new drugs and new drug targets are
needed.

Recent advances in bladder cancer research have identi-
fied the process of epithelial-mesenchymal transition
(EMT) as an important factor in determining patient
responses to therapy and survival. EMT is causal to the
development of invasive and metastatic cancers including
TCC. At the molecular level, the epidermal growth factor
receptor (EGFR), the cell adhesion molecule E-cadherin,
and transcription repressors of E-cadherin such as SNAIL
and SLUG have been shown to play essential and major
roles in EMT and development of invasive and metastatic
bladder cancer [6]. We have shown that a glycosylphos-
phatidylinositol (GPI)-anchored epithelial extracellular
membrane serine protease, prostasin/PRSS8, modulates
EGFR signalling via enhancement of matriptase cleavage
of the EGFR extracellular domain (ECD), and regulates
SLUG and E-cadherin expression in cancer cells [7,8].
Prostasin is essential for terminal epithelial differentiation
[9] and is abundantly expressed in the normal epithelium
[10]. In epithelial cancers, prostasin expression, however,
is down-regulated. Down-regulation of prostasin protein
expression has been shown for high-grade and hormone-
refractory prostate cancers [11,12], breast cancers [13],
and gastric cancers [14]. Promoter DNA hypermethyla-
tion was shown to be a mechanism of prostasin silencing
in various cancer cell lines [14-16]. Invasive human cancer
cell lines are often associated with loss of prostasin expres-
sion while prostasin re-expression inhibits their invasion
through the Matrigel [11,15]. In ovarian cancers, however,
an up-regulation of prostasin was reported [17].

We have previously demonstrated urothelial-specific
prostasin expression in the mouse bladder [18]. But the
expression states of prostasin in urothelial cancers have

not been evaluated to date. In this study, we undertook
this task with an immunohistochemical examination of
prostasin protein expression in transitional cell carcino-
mas (TCC) using a commercial bladder cancer tissue
microarray (TMA). We further evaluated prostasin expres-
sion in a normal human urothelial cell line (UROtsa) and
15 TCC cell lines. The methylation states at the -96 CpG
dinucleotide in the prostasin gene promoter region were
determined in all the cell lines.

Methods
Immunohistochemical (IHC) evaluation of prostasin 
expression in bladder cancer tissue microarray (TMA)
A paraffin slide panel containing normal human tissues
including the bladder (Multi-Tissue VI) was obtained
from BioChain Institute, Inc. (Hayward, CA). A Bladder
Carcinoma TMA (ARY-HH0087) containing 80 tissue
cores, each at 1.5 mm in diameter; with 40 cancer tissues
and 40 matching or independent non-cancerous tissues
was obtained from Folio Biosciences (Columbus, OH).
The tissue procurement by these commercial suppliers
was conducted with informed consent for use in research,
in compliance with the Helsinki Declaration; also with
approval of the Institutional Review Board (IRB) at the
institutions where the tissues were collected. The tissues
on the slides from these commercial sources did not con-
tain any personal identifiers. The use of these tissues in
this study is exempt from reviews by the IRB of the
authors' institution, per Code of Federal Regulations Title
45, Part 46, Section 101 (United States Department of
Health and Human Services). The IHC staining with a
prostasin-specific polyclonal antibody was carried out as
described previously [11]. The IHC images were taken
with various objective lenses and a SONY DXC-950 3CCD
camera using a 0.45× coupler on a Zeiss Axioskop 2
microscope.

Prostasin-positive staining in the TMA tissue cores was
assigned a score of "1", defined as contiguous prostasin-
specific staining in the urothelial cells. Prostasin-negative
staining in the TMA tissue cores was assigned a score of
"0", including tissues presenting sporadic prostasin-posi-
tive cells in areas of overall negative staining. These scores
were used to calculate the average prostasin staining
score/percent positive in each tumor grade group and the
non-cancerous group. The IHC scores were evaluated by
single-factor ANOVA (analysis of variance) with ranked
prostasin staining data (rank 1 = no staining, rank 2 = pos-
itive staining), using the ANOVA data analysis tool of
Microsoft Excel 2003. The Tukey-Kramer method was
used for post hoc analysis of the ANOVA data to evaluate
between-group differences.

Cell cultures
The normal immortalized urothelial cell line UROtsa was
kindly provided by Dr. Donald A. Sens of the University
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of North Dakota School of Medicine, Grand Forks, ND,
and cultured as described previously [19]. The TCC cell
lines HT-1376, J82, RT4, T24, UM-UC-3 were from the
American Type Culture Collection (Manassas, VA) and
cultured in RPMI-1640 medium supplemented with 10%
fetal bovine serum (FBS). The KU-7 cell line was kindly
provided by Dr. Charles J. Rosser of the University of Flor-
ida School of Medicine, Gainesville, FL, and cultured in
RPMI-1640/10% FBS. A panel of TCC cell lines from the
MD Anderson Cancer Center (Houston, TX), including
253J P and 253J B-V (kindly provided by Dr. Colin P. N.
Dinney), UM-UC-5, -6, -9, -10, -12, -13, and -14 (kindly
provided by Dr. H. Barton Grossman), were cultured in
EMEM supplemented with 10% FBS, 1× glutamine, 1×
vitamins, 1× non-essential amino acids, and 1× sodium
pyruvate (all from the Invitrogen Corporation, Carlsbad,
CA). Sub-confluent cultures of the urothelial cells were
used for phase-contrast photography with a SONY DXC-
950 3CCD camera using a 0.45× coupler on a Zeiss Axi-
oskop 2 microscope, under a 10× objective lens.

Western blot analysis
The procedures for western blot analysis were as described
previously [20]. Briefly, cells were washed with 1× PBS
and lysed at 4°C for 15 minutes in RIPA buffer. The super-
natant was collected following centrifugation at 10,000 ×
g for 10 minutes. Protein concentrations were determined
using a DC Protein Assay (Bio-Rad, Hercules, CA). Equal
amounts of total protein for each sample were resolved on
SDS-PAGE and electro-transferred to a nitrocellulose
membrane. The membranes were blocked with 5% non-
fat milk in TBS-T (20 mM Tris-HCl, pH 7.4, 150 mM
NaCl, 0.1% Tween-20), and incubated with appropriate
primary antibodies. The primary antibodies used were
human prostasin ([20], used at 1:4,000), E-cadherin (BD
Biosciences, San Jose, CA; used at 1:3,000), and glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH, Santa
Cruz Biotechnology, Inc., Santa Cruz, CA; used at
1:5,000). After incubation with each primary antibody,
the membranes were washed and incubated for 1 hour
with an appropriate secondary antibody conjugated to the
horseradish peroxidase (HRP) (Promega, Madison, WI;
1:10,000). The membranes were then washed and sub-
jected to enhanced-chemiluminescence reaction (ECL,
Pierce Biotechnology, Inc., Rockford, IL) before exposure
to X-ray films.

Analysis of prostasin promoter CpG methylation state by 
methylation-specific PCR (MSP)
High molecular weight genomic DNA was extracted from
the urothelial cells as described previously [15]. For each
cell line, aliquots of 2 μg of DNA were separately digested
with 5 units of Xho I (X), Hpa II (H), or Msp I (M) (Invit-
rogen) in a total volume of 20 μl at 37°C for overnight.
The digested DNA was diluted to 100 μl with water (at a
final concentration of 20 ng/μl). MSP was carried out with

100 ng of the digested DNA using the following primers
specific to the prostasin promoter region: upstream - 5'-
CAC ATA CAC ACT ACA CAC CG-3'; and down-stream -
5'-TGG CTG CAC CTA CCT GCC CG-3'. The upstream
primer ends with part of the Hpa II/Msp I sequence at the
-96 CpG: CCGG (underlined). The reaction mixtures were
placed in thin-walled 0.5-ml microcentrifuge tubes, over-
laid with mineral oil, and subjected to the following ther-
mal cycling program: 94°C/90 seconds → 28× [94°C/30
seconds → 60°C/45 seconds → 72°C/45 seconds]. The
PCR products were resolved in 1% agarose gels and
stained with ethidium bromide, and photographed. The
images were black-white inverted for greater contrast. The
amplicon was verified by DNA sequencing.

Reactivation of prostasin expression in the TCC cells by 
demethylation and histone deacetylase inhibition
KU-7 cells were cultured in 12-well plates at a density of
2.5 × 105/well for overnight, and then treated with 500
nM 5-aza-2'-deoxycytidine (5-Aza-2'-dC) for 24 hours.
Trichostatin A (TSA) at 1 μM or equal volumes of 95%
ethanol (E) (solvent control for TSA) was then added to
the cells treated with 5-Aca-2'-dC, or control cells, which
were incubated for another 24 hours before western blot
analysis.

Re-expression of prostasin and a serine active-site mutant 
variant in KU-7
The ViraPower™ Lentiviral Expression System (Invitrogen)
was used for generating replication-incompetent lentivi-
rus stably expressing a recombinant wild-type human
prostasin (Lenti4-Pro) or a serine active-site mutant
(Lenti4-ProM) using the appropriate cDNA's described
previously [8]. KU-7 cells were seeded at 30% confluence
in a T-25 flask in preparation for lentiviral infection. On
the next day, the Lenti4-LacZ (Invitrogen), Lenti4-Pro, or
Lenti4-ProM virus was added for infection in the culture
medium according to Invitrogen protocols. The trans-
fected colonies were selected with zeocin (at a final con-
centration of 1 μg/ml). Approximately 200 colonies were
pooled for each polyclonal subline, KU-7/LacZ, KU-7/
Pro, and KU-7/ProM.

Reverse-transcription and real-time quantitative 
polymerase chain reaction (qRT-PCR)
The procedures for qRT-PCR analysis of prostasin, E-cad-
herin, EGFR, and GAPDH mRNA expression have been
described previously [8,18].

Results
The epithelial glycosylphosphatidylinositol (GPI)-
anchored serine protease, prostasin, is expressed in the 
normal urothelium but down-regulated in high-grade 
transitional cell carcinomas
Using paraffin tissue sections of normal human epithelial
tissues and tissue microarrays (TMA) of bladder cancer
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patients, we performed immunohistochemical (IHC)
evaluation of prostasin expression. Prostasin is expressed
specifically in the urothelial cells across all layers of the
transitional epithelium in the normal tissues, shown as
the intense brown-colored staining in Figures 1A, B, and
1C. No staining was present when the pre-immune serum
was used in place of the human prostasin anti-serum (Fig-
ure 1D). In normal, or matched non-cancerous tissues on
the TMA, prostasin expression was positive in 91.7% (33/
36) of the cases. In low-grade (Grade I and II) transitional
cell carcinomas, prostasin expression was significantly
down-regulated, positively stained in 62.5% (5/8) and
35.3% (6/17), of the cases evaluated, respectively. In high-
grade (Grade III) transitional cell carcinomas, only 16.7%
(2/12) of the cases were positive for prostasin staining. In
Figure 1 we show representative staining with prostasin
expression in Grade-I TCC (E), absence of expression in
Grade-II (F) and Grade-III TCC (G), and expression in
matched non-cancerous urothelium (H, matching tissue
from patient in G). The results of the TMA prostasin IHC
staining are summarized in Table 1. The average prostasin
staining scores among the tumor grade groups and the
non-cancerous group were statistically different from one
another between any two groups.

Prostasin protein is expressed in the normal urothelial cell 
line UROtsa, and in TCC cell lines with epithelial 
morphology but not mesenchymal morphology
We further evaluated prostasin protein expression in a
panel of urothelial cell lines, including a normal immor-
talized urothelial cell line UROtsa, and TCC cell lines HT-
1376, J82, RT4, T24, KU-7, 253J P, 253J B-V, UM-UC-3, -
5, -6, -9, -10, -12, -13, and -14.

Prostasin protein expression was evaluated by western
blot analysis in the normal human urothelial cell line
UROtsa, and a panel of TCC cell lines from the ATCC, HT-
1376, J82, RT4, T24, and UM-UC-3, as well as the TCC cell
line KU-7. As shown in Figure 2A, the UROtsa cells and

the TCC cell line HT-1376 express an abundance of the
prostasin protein, while the TCC cell line RT4 expresses a
low but appreciable amount. The J82, T24, UM-UC-3, and
KU-7 TCC cell lines were negative for prostasin protein
expression by western blot analysis. The prostasin-posi-
tive UROtsa, HT-1376, and RT4 cells appear epithelial-
like in 2-D cultures on plastic dishes, as islands of flat and
polygonal-shaped cells with well defined cell-cell contacts
in low-density cultures, as shown in Figure 3. These three
cell lines all express an abundant level of the E-cadherin
protein (Figure 2A). The prostasin-negative J82, T24, and
UM-UC-3 cells all appear as spindle-shaped single cells or
clusters without well defined cell-cell contacts in low-den-
sity cultures (Figure 3), i.e., fibroblastic or mesenchymal,
and do not express E-cadherin at the protein level (Figure
2A). The only exception is the prostasin-negative KU-7
cell line, which does not express E-cadherin but is epithe-
lial in appearance (Figure 2A and Figure 3), as previously
noted by Black et al. [21].

We also evaluated prostasin protein expression in a panel
of TCC cell lines from the MD Anderson Cancer Center
(MDA) (Houston, TX). In Figure 2B, we show that the
UM-UC-5, -9, -10, and -14 TCC cell lines express very high
(UM-UC-5, -9) or intermediate levels (UM-UC-10, -14) of
the prostasin protein. The 253J P, 253J B-V, UM-UC-6, -
12, and -13 TCC cell lines do not express the prostasin
protein. The E-cadherin protein expression information
on the MDA TCC cell lines was recently reported by Black
et al. [21]. The prostasin-positive MDA TCC cell lines,
UM-UC-5, -9, -10, and -14, were shown to express a high
abundance of E-cadherin at the protein level, and were
also all epithelial in appearance in culture [21]. We have
confirmed the observations on E-cadherin protein expres-
sion and morphology for these four cell lines (Figure 2B
and Figure 3). Two of the prostasin-negative MDA TCC
cell lines, UM-UC-6 and -13, were shown not to express E-
cadherin and to have mesenchymal-like morphology in
culture by Black et al. [21]. These two cell lines also

Table 1: Summary of TMA Prostasin IHC Staining Results.

Prostasin IHC Staining in Bladder TMA Grade I Grade II Grade III Normal or
Matching Non-Cancerous

Number of Cases 8 17 12 36

Positive Cases 5 6 2 33

Percent Positive 62.5 35.3 16.7 91.7

The ARY-HH0087 Bladder Carcinoma TMA contained 40 cases of cancer, of which, 37 were TCC of various grades. Only the data on the 37 cases 
of TCC are included in this table. The TMA also contained 40 non-cancerous tissues, of which, 36 presented quality urothelial morphology for 
evaluation. Prostasin-specific staining was noted as positive (with a score of 1.0, as shown in Figure 1E or 1H) or negative (with a score of 0, as 
shown in Figure 1F, or 1G), as described in Methods. The IHC scores of the different tumor grade groups and the non-cancerous group were 
evaluated by ANOVA (single-factor) with ranked prostasin staining data (rank 1 = no staining, rank 2 = positive staining), yielding an F ratio of 15.46 
(F critical = 2.74, p = 8.57E-08, and within-group degrees of freedom for error at 69). The average prostasin staining scores between any two 
groups were statistically different as determined by the Tukey-Kramer method.
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appeared mesenchymal in culture in our hands (Figure 3),
but the UM-UC-6 cells expressed E-cadherin at the protein
level (Figure 2B). The prostasin-negative 253J P, 253J B-V
and UM-UC-12 cell lines express the E-cadherin protein at
low to medium levels (Figure 2B, and [21]) and are mes-
enchymal-like in culture (Figure 3).

For comparisons of gene expression at the transcriptional
level (mRNA), we performed reverse-transcription and
real-time quantitative PCR (qRT-PCR) analysis of the
urothelial cell lines for prostasin, E-cadherin, and EGFR
expression. The results for prostasin and E-cadherin are
shown in Figure 4. The data columns were sorted by the
relative prostasin mRNA levels (per GAPDH mRNA copy)
in the descending order. While the qRT-PCR analysis
yielded a copy number readout for every cell line, an arbi-
trary "zero" cut-off for prostasin mRNA expression in the
data presentation was set with the KU-7 cell line, which
does not express detectable levels of the prostasin protein
(Figure 2A). Among the seven cell lines positive for pros-
tasin mRNA, all but one (UM-UC-10) expressed the E-
cadherin mRNA at above the median level (Figure 4).

Among the nine cell lines negative for prostasin mRNA,
all but two (UM-UC-6 and 253J B-V) expressed the E-cad-
herin mRNA at below the median level, and four lines
were negative (Figure 4). The data on urothelial and TCC
cell line prostasin and E-cadherin expression, and cell
morphology are summarized in Table 2. The relative
EGFR mRNA expression levels were compared among the
urothelial and TCC cell lines and the results are listed in
Table 2, as well.

The prostasin gene promoter is unmethylated in prostasin-
expressing urothelial or TCC cell lines, but 
hypermethylated in TCC cell lines with down-regulated or 
lack of prostasin expression
We have previously shown that prostasin down-regula-
tion in invasive human prostate and breast cancer cell
lines was partially caused by promoter DNA hypermethyl-
ation [15,16]. In the CpG-rich promoter region of the
prostasin gene, methylation state at the CpG dinucle-
otides at position -96, part of the restriction endonuclease
recognition/cutting sequence for Hpa II/Msp I, was
directly correlated to prostasin expression state [15,16].

Prostasin IHC Staining in Bladder TissuesFigure 1
Prostasin IHC Staining in Bladder Tissues. The normal bladder tissue shown in A, B, C, and D, was part of a paraffin 
slide panel containing normal human tissues (Multi-Tissue VI) obtained from BioChain Institute, Inc. (Hayward, CA). The TCC 
and matching non-cancer tissues shown in E, F, G, and H, were part of a Bladder Carcinoma TMA (ARY-HH0087) obtained 
from Folio Biosciences (Columbus, OH). The ARY-HH0087 TMA contained 80 tissue cores, each at 1.5 mm in diameter; with 
40 cancer tissues and 40 matching or independent non-cancerous tissues. The IHC staining with a prostasin-specific polyclonal 
antibody was carried out as described previously [11]. Prostasin-specific positive staining is shown by the intense brown color 
in A, B, C, E, and H. D. Normal w/o Pro Ab: IHC was performed with the pre-immune rabbit serum in place of the prosta-
sin antiserum, serving as a negative control. Images were taken with various objective lenses (O.L.) as indicated in the figure 
and a SONY DXC-950 3CCD camera using a 0.45× coupler.
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We used a methylation-specific PCR (MSP) method to
evaluate the methylation states of the -96 CpG in the
urothelial cell lines. The MSP amplicon is 192 bp in
length, and is expected from the Xho I-digested DNA as
this enzyme does not cut in the amplicon region. Ampli-
fication of the MSP amplicon from the Hpa II-digested
DNA occurs only when the DNA is methylated at the -96
CpG as Hpa II is methylation sensitive and will only digest
unmethylated but not methylated DNA. No amplification
of the MSP band is expected from the Msp I-digested DNA
as this enzyme is insensitive to DNA methylation state at
the -96 CpG and will cut either unmethylated or methyl-
ated DNA. As shown in Figure 5, the prostasin-expressing
cell lines, UROtsa, HT-1376, RT4, UM-UC-5, -10, and -14
are not methylated at this site, as the MSP amplicon is

absent from the Hpa II-digested DNA of these cell lines
under the specific experimental conditions. The cell lines
negative for prostasin protein expression, J82, T24, KU-7,
253J P, 253J B-V, UM-UC-3, -6, -12, and -13 are methyl-
ated to various degrees at the -96 CpG, as indicated by the
MSP amplicon signals from the Hpa II-digested DNA of
these cell lines. The UM-UC-9 cell line expresses a high
abundance of prostasin mRNA and protein, but a very
weak MSP amplicon signal was detected from the Hpa II-
digested DNA of this cell line.

To determine if promoter DNA hypermethylation is a
potential mechanism for prostasin expression silencing in
TCC, we treated the KU-7 cells with the demethylation
agent 5-aza-2'-deoxycytidine (5-Aza-2'-dC). We chose to
use the KU-7 for this experiment because it is the only cell
line with an epithelial morphology among all prostasin-
negative TCC cell lines, and it has the highest prostasin
mRNA copy number among the prostasin-negative lines
(Figure 4). Demethylation treatment alone resulted in
reactivation of prostasin protein expression (Figure 6,
Lane 2, versus Lane 1). The histone deacetylase (HDAC)
inhibitor trichostatin A (TSA) was also able to reactivate
prostasin protein expression independently of demethyl-
ation (Figure 6, Lane 6). There was a synergistic effect on
the reactivation of prostasin protein expression when
HDAC inhibition was combined with demethylation
(Figure 6, Lane 4). Treating the cells with ethanol (E)
alone did not reactivate prostasin expression (Figure 6,
Lane 5), nor had any synergistic effects on 5-Aza-2'-dC
(Figure 6, Lane 3).

Re-expression of prostasin or a serine active-site mutant 
variant in KU-7 was associated with E-Cadherin mRNA up-
regulation
To determine if prostasin re-expression in a TCC cell line
could result in E-cadherin up-regulation, as we have
observed previously for the human prostate cancer cell
line PC-3 [8], we infected the KU-7 cell line with lentivi-
ruses driving the expression of the wild-type human pros-
tasin (Pro), or a serine active-site mutant variant prostasin
(ProM). As shown in Figure 7, when the wild-type or the
mutant prostasin protein was expressed at similar levels
(Figure 7A), the E-cadherin mRNA was up-regulated by
~50% by the wild-type or the mutant prostasin (Figure
7B).

Discussion
We have shown that the prostasin serine protease is abun-
dantly expressed in the normal terminally differentiated
human urothelium, but significantly down-regulated in
high-grade TCC (Figure 1 and Table 1). This is not surpris-
ing given prostasin's required role in terminal epithelial
differentiation [9]. This association of prostasin expres-
sion and epithelial differentiation also holds true in the

Prostasin Expression in Urothelial Cell LinesFigure 2
Prostasin Expression in Urothelial Cell Lines. Western 
blots were performed for protein expression evaluation of 
prostasin, E-cadherin, and GAPDH (as a control for sample 
loading) in the urothelial cell lines. Sample loading order was 
as indicated in the figure, 20 μg of total protein of each cell 
lysate were loaded in each lane. The nitrocellulose mem-
brane was blotted or re-blotted separately for each target 
protein.
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Urothelial Cell MorphologyFigure 3
Urothelial Cell Morphology. Sub-confluent cultures of the urothelial cells were used for phase-contrast photography. A. 
Urothelial cells with epithelial morphology are positive for prostasin expression, except for KU-7 (see Figure 4). B. Urothelial 
cells with mesenchymal morphology are all negative for prostasin expression (see Figure 4).
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urothelial and cancer cell lines that we have evaluated, as
shown in the summary of data in Table 2. The following
observations were made upon examinations of the data in
the present study. The presence of prostasin protein
expression (in 7 of 16 cell lines evaluated) is associated
with the highest levels of prostasin mRNA expression and
there is a direct correlation of the prostasin protein expres-
sion levels and the prostasin mRNA expression levels.
Prostasin protein or mRNA expression in the urothelial
cells is 100% associated with the epithelial morphology,
and with the most abundant E-cadherin protein expres-
sion (+++). Prostasin expression is also strongly associ-
ated with above-median level E-cadherin mRNA
expression, in 6 out of 7 lines (Figure 4). Conversely, a
lack of prostasin protein or mRNA expression in 9 of the
16 cell lines is strongly associated with the mesenchymal
morphology (8 out of 9), with only one exception (KU-7).
A lack of prostasin protein or mRNA expression is also
strongly associated with below-median level E-cadherin
mRNA expression, in 7 out of 9 lines (Figure 4). Only one

cell line with a high abundance of E-cadherin protein
expression (+++), UM-UC-6, is negative for prostasin
expression. We did not, however, find a good correlation
between prostasin expression and EGFR mRNA expres-
sion in the urothelial cell lines, except to note that the
highest levels of EGFR mRNA expression were observed
among the prostasin-positive cell lines, for example,
UROtsa, HT-1376, and UM-UC-5. Black et al. [21]
reported recently that resistance to the anti-EGFR mono-
clonal antibody drug cetuximab displayed by the TCC cell
lines correlated with their E-cadherin protein expression
state and cell morphology. With a strong correlation to
the epithelial morphology and to E-cadherin expression,
prostasin expression may also correlate with urothelial
cancer sensitivity to cetuximab. This potential correlation
will be investigated in future studies.

Prostasin promoter DNA hypermethylation is an epige-
netic mechanism of prostasin expression silencing in
human gastric, breast, and prostate cancer cells [14-16]. In

Table 2: Prostasin Association with the Epithelial Phenotype in Urothelial Cells.

Urothelial
Cell Lines

Prostasin 
Protein Levels

Prostasin 
mRNA Levels

E-Cadherin 
Protein Levels

E-Cadherin 
mRNA Levels

Morphology 
(2-D, Plastic)

Prostasin
-96 CpG 

Methylation

EGFR mRNA 
Levels

UM-UC-9 +++++ +++++++++ +++ +++++++++ Epithelial +/- +++++++

HT-1376 +++++ +++++++++ +++ ++++++ Epithelial - 50× +

UROtsa +++ +++ +++ ++++ Epithelial - > 20× +

UM-UC-5 +++ ++ +++ ++++ Epithelial - > 250× +

UM-UC-10 ++ ++ +++ ++ Epithelial - ++++

UM-UC-14 ++ + +++ ++++++++ Epithelial - +++

RT4 + + +++ +++++++ Epithelial - +++++

KU-7 - - - - Epithelial + ++++

UM-UC-6 - - +++ ++ Mesenchymal + > 10× +

J82 - - - + Mesenchymal + +++++++++

T24 - - - - Mesenchymal + ++

253 J P - - ++ + Mesenchymal + ++++

UM-UC-13 - - - - Mesenchymal + ++++

UM-UC-12 - - + + Mesenchymal + +++++++

253J B-V - - ++ ++ Mesenchymal + > 10× +

UM-UC-3 - - - - Mesenchymal + +++
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Prostasin and E-cadherin mRNA Expression in Urothelial Cells Evaluated by qRT-PCRFigure 4
Prostasin and E-cadherin mRNA Expression in Urothelial Cells Evaluated by qRT-PCR. The red and blue data col-
umns represent prostasin and E-cadherin mRNA expression, respectively, shown as relative levels per GAPDH mRNA copy. 
The data columns were sorted by the relative prostasin mRNA levels in the descending order from left to right. The yellow 
horizontal line indicates the median E-cadherin mRNA level.

Prostasin Promoter DNA Methylation in Urothelial Cell LinesFigure 5
Prostasin Promoter DNA Methylation in Urothelial Cell Lines. MSP was performed to determine the methylation 
state at the -96 CpG dinucleotide in the prostasin gene promoter region. The cell types are indicated under the sectioned 
images of the MSP results. The restriction enzymes used for digestion of the genomic DNA prior to MSP are indicated above 
the sectioned images for each cell type; X: Xho I, H: Hpa II (methylation-sensitive), M: Msp I (methylation-insensitive).
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this study, we showed that methylation of the -96 CpG
dinucleotide in the promoter region is associated with
prostasin expression silencing in the TCC cell lines. By the
ratio of the MSP amplicon signal from the Hpa II-digested
DNA to the signal from the Xho I-digested DNA (Figure
5), we could see that the prostasin promoter -96 CpG
dinucleotide is methylated to various degrees in the TCC
cell lines negative for prostasin expression. In most cases,
the ratio suggests a heterogeneous state of methylation,
i.e., the amplicon signal is stronger from the Xho I-
digested DNA than that from the Hpa II-digested DNA. In
the 253J P cells, the amplicon signal from the Hpa II-
digested DNA is as strong as that from the Xho I-digested
DNA, suggesting a homogeneous methylation state at the
-96 CpG. On the other hand, the UROtsa and all TCC cell
lines expressing the prostasin mRNA and protein, except
for one (UM-UC-9), did not present -96 CpG methylation
at the sensitivity level of our MSP assay. The UM-UC-9 cell
line with abundant prostasin mRNA and protein expres-
sion had a weak but detectable signal of the MSP ampli-
con from the Hpa II-digested DNA. This is consistent with
our previous findings that heterogeneous methylation at
this site is permissive for prostasin protein expression, as
was seen in the MDA-MB-453 human breast cancer cell
line [15]. Clearly promoter region CpG dinucleotide
methylation is not the only mechanism by which prosta-
sin expression is regulated in epithelial or cancer cells.

Within our MSP assay's sensitivity, the UM-UC-6 cell line
is only marginally more methylated than the UM-UC-9 at
the -96 CpG (Figure 5), yet the UM-UC-6 is negative for
prostasin mRNA or protein expression while the UM-UC-
9 expresses an abundance of prostasin mRNA and protein
(Figure 2B and Figure 4). Other factors that could also reg-
ulate prostasin expression in the urothelial or urothelial
cancer cells, such as the sterol regulatory element-binding
proteins (SREBP's) and the SNAIL family transcription
repressors [23], will be investigated in future studies. In
the KU-7 cells, demethylation with 5-Aza-2'-dC or HDAC
inhibition with TSA independently restored prostasin pro-
tein expression to a level detectable by western blot anal-
ysis, and to a greater level when the two agents were
combined (Figure 6). This synergistic effect of 5-Aza-2'-dC
and TSA on prostasin expression was also observed for the
prostasin/E-cadherin double-negative T24 cell line, which
is mesenchymal in morphology, with an up-regulation of
the prostasin mRNA (data not shown). The E-cadherin
mRNA in the T24 cells was also up-regulated by 5-Aza-2'-
dC or TSA, and more robustly up-regulated by their com-
bination (data not shown). We could not, however,
attribute the E-cadherin mRNA up-regulation solely to the
up-regulation of prostasin because these two epigenetic
modulating agents have a direct impact on the E-cadherin
promoter [24,25]. DNA demethylation agents and HDAC
inhibitors, though, could be used as intravesical drugs for
restoring prostasin expression in TCC and suppressing
tumor invasion and metastasis once an anti-invasion role
for prostasin in TCC is established.

We had previously shown with the PC-3 human prostate
cancer cell line, that re-expression of the wild-type prosta-
sin or a serine protease-inactive mutant could up-regulate
E-cadherin expression via a transcriptional mechanism
[8]. This transcriptional up-regulation of E-cadherin by
prostasin or the protease-inactive variant could be recapit-
ulated in the KU-7 cells (Figure 7), though not as robust
as that seen previously with the PC-3 cells [8]. The extent
by which E-cadherin transcription is up-regulated by pros-
tasin re-expression could be impacted by epigenetic mod-
ifications in the E-cadherin promoter, events that are
common in cancer cells [24,25]. We also performed pros-
tasin expression silencing by using a prostasin-specific
siRNA previously shown to effectively knock-down its
expression [26]. We knocked-down prostasin expression
by at least 50% and up to 75%, in five urothelial cell lines,
UROtsa, HT-1376, RT4, UM-UC-5, and UM-UC-9, but the
prostasin expression knock-down was not associated with
E-cadherin down-regulation (data not shown). We have
observed in the TCC cell lines, a low level of prostasin
expression could still be associated with a high abundance
of E-cadherin expression, as seen with the RT4 cells (Fig-
ure 2B and Figure 4). The prostasin expression knock-
down may not have been sufficient to affect E-cadherin

Demethylation or HDAC Inhibition Reactivates Prostasin Expression in TCC CellsFigure 6
Demethylation or HDAC Inhibition Reactivates 
Prostasin Expression in TCC Cells. KU-7 cells were 
treated with 5-Aza-2'-dC, Trichostatin A (TSA) or equal 
volumes of 95% ethanol (E) (solvent control for TSA), or in 
combinations as indicated in the figure, before western blot 
analysis for prostasin protein expression. The results are 
representative of multiple repeat experiments.
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expression. During urothelial tumorigenesis, prostasin
expression down-regulation is likely a progressive event.
This hypothesis is supported by the IHC data, showing a
progressive loss of prostasin expression from non-cancer-
ous tissues to TCC of increasing grades (Table 1). The
association between prostasin expression state and cell
morphology is manifested at the two end points of this
progression, i.e., the starting end of epithelial morphol-
ogy and prostasin/E-cadherin expression, and the EMT
end of mesenchymal morphology and loss of prostasin
with reduced or loss of E-cadherin expression. It may
require a complete loss of prostasin expression over many
generations of cell division to have a significant impact on
E-cadherin expression and cell morphology seen in the
prostasin-negative TCC cell lines.

Conclusion
Expression of prostasin in the urothelial cells is associated
with the epithelial state, marked by abundant E-cadherin
expression. Absence of prostasin is associated with the
epithelial-mesenchymal transition (EMT), marked by a
loss of or a reduced E-cadherin expression. EMT and EMT-
associated molecular changes are underlying mechanisms
of malignant progression of TCC, such as gain of invasive
potential and resistance to anti-EGFR therapy. Future
research is warranted to address if prostasin may be used
as a therapeutic agent for treating invasive and chemo-

resistant TCC cells that have undergone an epithelial-mes-
enchymal transition.
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