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Abstract

Background: MMR is responsible for the repair of base-base mismatches and insertion/deletion
loops. Besides this, MMR is also associated with an anti-recombination function, suppressing
homologous recombination. Losses of heterozygosity and/or microsatellite instability have been
detected in a large number of skin samples from breast cancer patients, suggesting a potential role
of MMR in breast cancer susceptibility.

Methods: We carried out a hospital-based case-control study in a Caucasian Portuguese
population (287 cases and 547 controls) to estimate the susceptibility to non-familial breast cancer
associated with some polymorphisms in mismatch repair genes (MSH3, MSH4, MSHé6, MLH I,
MLH3, PMS| and MUTYH).

Results: Using unconditional logistic regression we found that MLH3 (L844P, G>A) polymorphism
GA (Leu/Pro) and AA (Pro/Pro) genotypes were associated with a decreased risk: OR = 0.65 (0.45-
0.95) (p = 0.03) and OR = 0.62 (0.41-0.94) (p = 0.03), respectively.

Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations
to breast cancer susceptibility: MSH3 Alal045Thr/MSHé6 Gly39Glu - AA/TC [OR = 0.43 (0.21-
0.83), p = 0.01] associated with a decreased risk; and MSH4 Ala97Thr/MLH3 Leu844Pro - AG/AA
[OR =12.35(1.23-4.49), p = 0.01], GG/AA [OR =2.11 (1.12-3,98), p = 0.02], and GG/AG [adjusted
OR = 1.88 (1.12-3.15), p = 0.02] all associated with an increased risk for breast cancer.

Conclusion: It is possible that some of these common variants in MMR genes contribute
significantly to breast cancer susceptibility. However, further studies with a large sample size will
be needed to support our results.
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Background

Breast cancer is the first leading cause of cancer mortality
in women in the United States and Europe and current
estimates suggest that one in eight American women will
be diagnosed with breast carcinoma [1]. Various genetic
and environmental factors have been established as
causes of breast cancer, which is a genetically heterogene-
ous disease [2-4].

Several studies have identified two major susceptibility
genes in breast cancer: BRCA1 and BRCA2 [5]. These genes
have an important role in genome maintenance, in cell-
cycle control and in DNA repair in the control of homol-
ogous recombination [6,7]. Analysis in families with high
risk of breast cancer showed that individuals with point
mutations in these genes have a 40-80% of probability to
develop breast cancer. However, mutations in these two
tumour-suppressor genes account for only 5-10% of all
cases of breast cancer [8].

Thus, the challenge is to identify individuals at risk for the
remaining sporadic cases. Recent evidence shows that
there are probably other background genetic factors that
contribute to the development of breast cancer, such as
polymorphisms in steroid hormone metabolism and
DNA repair pathways that might increase cancer risk
[9,10].

Recent evidence that some DNA-repair functions are hap-
loinsufficient adds weight to the idea that variants in
DNA-repair genes contribute to cancer risk [10,11]. In
fact, higher levels of DNA damage and deficient DNA
repair may predispose individuals to cancer [12]. Com-
monly occurring single nucleotide polymorphisms
(SNPs) in DNA repair genes have also been shown to
incrementally contribute to cancer risk because of their
critical role in maintaining genome integrity [13].

Available evidence indicates that the majority of cancers
show instability in specific sequence motifs of dinucle-
otide repeats. This phenotype of microsatellite instability
(MSI) is commonly observed in DNA mismatch repair
(MMR) pathway defects [14]. In fact, MSI and/or losses of
heterozygosity (LOH) were detected in 83% of skin sam-
ples from 12 invasive ductal breast carcinoma patients,
suggesting a potential role of MMR in breast cancer sus-
ceptibility [15].

Postreplicative mismatch repair (MMR), conserved from
prokaryotes to all eukaryotes, including humans, acts on
base substitution mismatches and insertion/deletion
loops (IDLs) that occur as a result of replication errors that
escape the proofreading function of DNA polymerase
[16,17]. MMR greatly contributes to the overall fidelity of
replication. As such, a decreased activity of MMR confers
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a mutator phenotype by which the rate of spontaneous
mutation is greatly elevated. A characteristic of MMR-defi-
cient cells is instability at microsatellite regions consisting
of mono- and di-nucleotide repeats. MSI is a common
marker for loss of MMR activity in tumour cells [18].

The main MMR pathway is initiated by the recognition of
a mismatch by the heterodimer consisting of the MSH2
and MSHG6 proteins (also called MutSa). MutSa is respon-
sible for the recognition of base mismatches and IDLs in
mono- to tetranucleotide repeats. This complex, MutSa, is
able to recognize most base-base mismatches and short
IDLs [19].

Another MMR pathway, consisting of MSH2 and MSH3
heterodimers (MutSP) is primarily responsible for bind-
ing to and correcting insertion/deletion mutations, prefer-
entially dinucleotide and larger IDLs. Upon DNA
mismatch recognition the repair process proceeds with
the participation of the heterodimer consisting of MLH1
and PMS2 (also called MutLa), which acts as an endonu-
clease. Subsequent DNA excision is carried out by the exo-
nuclease EXO1 which participates in mismatch-provoked
excision directed by strand breaks located either 5' or 3' to
the mispair [19,20].

The failure of MMR functions leads to high mutation
rates, MSI, LOH, reduction in apoptosis processes and
increases in cell survival, as well as predisposition for car-
cinogenesis [21,22]. MMR is also associated with an anti-
recombination function, suppressing homologous
recombination and plays a role in DNA-damage signal-
ling [23].

The MSH?2 gene is central in mismatch recognition and
there are some studies reporting mutations [24] and pol-
ymorphisms in several MSH2 variants [25,26]. However,
since there is a scarcity of data about the involvement of
polymorphisms in other MMR genes in breast cancer sus-
ceptibility, we carried out a hospital-based case-control
study in a Caucasian Portuguese population to estimate
the potential modifying role of the MSH3, MSH4, MSH6,
MLH1, MLH3, PMS1 and MUTYH gene polymorphisms
on the individual susceptibility to breast cancer.

Methods

Study subjects

Healthcare services in Portugal are mainly public and gen-
erally assist the whole population, and breast cancer treat-
ment units are located in all the major hospitals. This
study includes 287 Caucasian non-familial breast cancer
female patients, recruited at Sao Francisco Xavier Hospital
(Department of Laboratorial Medicine) between 2001
and 2005, without previous history of neoplastic disease,
thyroid pathology, and blood transfusions. Histological
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diagnosis was confirmed in all the cases and includes 251
ductal carcinomas (87.4%), 14 lobular carcinomas
(4.9%), and 22 cases classified as other type of breast
tumours (7.7%). The control population (n = 547)
matched for age and ethnicity, with no previous or con-
current malignant disease, was recruited at the same hos-
pital where they were observed for non-malignant
pathology. Each case was matched whenever possible
with two healthy control individual within the same age
and ethnicity groups.

The anonymity of the patients and control population
was guaranteed, and all studies were conducted with the
informed consent of all the individuals involved. Written
informed consent was obtained prior to individual blood
withdrawal. Information on demographic characteristics,
family history of cancer and lifestyle habits (e.g. smoking,
alcohol drinking) was collected using a questionnaire
administered by trained interviewers. Former smokers
were defined as those who gave up smoking 2 years before
cancer diagnosis or 2 years before the inclusion date as
corresponding matched case. The response rate was higher
than 95% for cases and controls. This study was approved
by the ethics board of the involved institutions.

DNA extraction

Blood samples of all patients and controls were collected
into 10 ml ethylenediamine tetracetic acid (EDTA) tubes
and stored at -80°C until use. Genomic DNA was
obtained from 250 pl of whole blood using a commer-
cially available kit according to the manufacturer's
instructions (QIAamp DNA extraction kit; Qiagen, Hilden,
Germany). Each DNA sample was stored at -20°C until
analysis.

Selection of Polymorphisms

The MSH3 (A1045T, A>G, 1526279; R940Q, G>A,
1s184967), MSH4 (N914S, G>A, 1s5745549; AY7T, A>G,
1s5745325), MSHG (G39E, C>T, 1s1042821), MLHI
(1219V, A>G, 151799977), MLH3 (L844P, G>A,
rs175080), and MUTYH (H335Q, G>C, rs3219489) gene
polymorphisms are all non-synonymous but one poly-
morphism, the PMS1 (G>C, 1s5742933), is a G-to-C tran-
sition in the 5' UTR region. All the polymorphisms had a
minor allele frequency (MAF) >5%.

Genotyping

The MSH3 (1526279; 15184967), MSH4 (rs5745549;
1s5745325), MSHG (rs1042821), MLHI (rs1799977),
MLH3 (rs175080), PMS1 5'UTR (1s5742933) and
MUTYH (1s3219489) gene polymorphisms were deter-
mined by Real-Time PCR using TagMan® SNP Genotyping
Assays from Applied Biosystems (ABI Assays reference:
C_800002_1_, C_907914_10, C_1184803_10,
C_3286081_10, C_8760558_10, C_1219076_20,
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C_1082805_10, C_29329633_10 and C_27504565_10,
respectively). In order to carry out the allelic discrimina-
tion for these polymorphisms the DNA samples were
quantified using the Quant-iT™ Picogreen® dsDNA Assay
Kit (Invitrogen) according to the manufacturer's recom-
mendations.

The Real-Time PCR amplification was performed in 10 pl
reactions containing 10 ng of genomic DNA, 1x SNP Gen-
otyping Assay Mix (containing two primer/probe pairs in
each reaction and two fluorescent dye detectors - FAM®
and VIC®) and 1x TagMan Universal PCR Master Mix con-
taining the AmpliTaqGold® DNA polymerase, dNTPs and
optimized buffer components. The amplification condi-
tions consisted of an initial AmpliTaq Gold® activation at
95°C during 10 min, followed by 40 or more amplifica-
tion cycles consisting of denaturation at 92°C for 15 sec
and annealing/extension at 60°C for 1 min. 10-15% of
the genotype determinations were carried out twice in
independent experiments with 100% of concordance
between experiments.

Statistical analysis

The Hardy-Weinberg distributions for the different poly-
morphisms in the control and cancer patients populations
in this study were analyzed using exact probability tests
available in Mendel (v8.0.1) software [27].

The Chi-Square (2) test was used to evaluate the differ-
ences in genotype frequency, smoking status, and alcohol
consumption distributions between cancer patients and
controls.

The Kolmogorov-Smirnov test was used in order to verify
the normality of the continuous variables (age) and the
Levene test was used to analyze the homogeneity of vari-
ances. The statistical analysis of the homogeneity of age
distributions between cancer patients and controls was
carried out using the Student's t-test.

Unconditional multiplicative logistic regression was used
to test the global null hypothesis of no association
between SNPs and breast cancer, calculating the crude and
adjusted odds ratio (ORs), 95% confidence intervals (Cls)
and the corresponding p-values. The model for adjusted
OR included terms for age at diagnosis (< 30, 31-49, 50-
69, and > 70 years), the lower age group being the referent
class; alcohol consumption (never, social, and regular
drinkers), never drinkers being the referent group; and
smoking habits (smokers/non-smokers), non-smokers
being the referent group. Concerning the analysis of SNP-
SNP interactions the genotypic specific risks for two-way
SNP interactions were estimated as ORs with associated
95% Cls and p-values. Combined effects between two
genotypes were studied by creating different variables,
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each representing the combination of two genotypes, with
the putative "low-risk" homozygous combination as refer-
ence category. All the genotype interactions with >5% fre-
quency were considered to be common. Rare interactions
were pooled.

All analyses were performed with an SPSS statistical pack-
age (version 15) (SPSS Inc., Chicago, IL).

Results

This study comprised 287 breast cancer patients and 547
healthy controls. The Kolmogorov-Smirnov and the Lev-
ene tests showed that the study population follows a nor-
mal distribution and homogeneity of the continuous
variables (age). The main characteristics (age, smoking
habits and alcohol habits) of the case-control populations
are listed in Table 1. There were no significant differences
between cases and controls concerning age and smoking
habits. However, alcohol drinkers are more prevalent in
breast cancer patients than in control population (p <
0.001).

Deviations from Hardy-Weinberg equilibrium (HWE) for
the SNPs were examined each in the control population
and breast cancer cases. Two SNPs (MUTYH - 1s3219489
and MLH1 - 181799977) deviated from HWE, only in con-
trols (p = 0.02 and p = 0.04, respectively). These findings
are unlikely to be due to genotyping errors because no
SNP deviated in both cases and control populations and
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the allelic discrimination of genotypes for the 9 assays was
good.

Association analysis of SNPs and breast cancer risk

Table 2 presents the genotype frequency, minor allele fre-
quency (MAF) in control population (n = 547) and breast
cancer cases (n = 287) and the estimated ORs and 95%
ClIs, for the 9 successfully genotyped SNPs. There was no
difference in genotype frequency between breast cancer
cases and controls for all SNPs.

Regarding the SNP tests for association and the genotype
specific risks, obtained by unconditional multiplicative
logistic regression, there was no difference in cases and
controls for 8 of the 9 SNPs tested (see Table 2). However,
one SNP (MLH3 - rs175080) showed evidence for associ-
ation: the homozygous variant (Pro/Pro) was associated
with a reduced risk of disease [adjusted OR = 0.62, 95% CI
(0.41-0.94), p = 0.03] and the heterozygous (Leu/Pro)
was also associated with a protective effect [adjusted OR =
0.65, 95% CI (0.45-0.95), p = 0.03].

Analysis of two-way SNP interactions

To evaluate the effects in breast cancer susceptibility of
combined genotypes between two polymorphisms within
the same gene the MSH3 and MSH4 genotype combina-
tion frequencies and the OR values associated with each
interaction were estimated [see Additional file 1]. No sig-
nificant difference was found for these interactions.

Table I: General characteristics for the breast cancer cases (n = 287) and control population (n = 547).

Characteristics Cases Controls P value*
n (%) n (%)
Agea, b
<30 | (0.3%) 2 (0.4%) 097 c
31-49 66 (23.0%) 119 (21.8%)
50-69 158 (55.1%) 301 (55.0%)
>70 62 (21.6%) 125 (22.9%)
Missing 0 0
Smoking habits
Never 250 (87.4%) 490 (91.6%) 0.06 ¢
Current 36 (12.6%) 45 (8.4%)
Missing | 12
Alcohol habits
Never 219 (76.3%) 44| (82.6%) <0.001 ¢
Social 25 (8.7%) 59 (11.0%)
Regular 43 (15.0%) 34 (6.4%)
Missing 0 13
Histological diagnosis
Ductal carcinoma 251 (87.4%) -
Lobular carcinoma 14 (4.9%) - -
Non-classifiable as ductal or lobular carcinoma 22 (7.7%) -
2 Age of diagnosis for cases.
b Age of control population at the time of diagnosis for the matched case.
< cases versus control group.
* Chi-Square P value [See Methods].
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Table 2: Genotypic frequencies and minor allele frequency (MAF) in control population (n = 547) and breast cancer cases (n = 287) and
analysis of associations of individual SNPs with breast cancer risk.

SNPs Genotypes Controls Cases MAF All cases
n (%) n (%) Controls Cases Crude OR Adjusted OR
(95% CI) (95% Cl) a
MSH3 Ala/Ala 246 (45.2%) 121 (42.3%) | (Reference) | (Reference)
Alal045Thr A>G
Ala/Thr 240 (44.1%) 129 (45.1%) G:0.33 (£ 0.01) G:0.35 (+ 0.02) 1.09 (0.81-1.48) 1.13 (0.83-1.55)
ThriThr 58 (10.7%) 36 (12.6%) 1.26 (0.79-2.02) 1.29 (0.80-2.09)
n (%) n (%) Crude OR Adjusted OR
(95% CI) (95% Cl) a
MSH3Arg940GIn  Arg/Arg 371 (68.1%) 182 (63.6%) | (Reference) | (Reference)
G>A
Arg/GIn 158 (29.0%) 96 (33.6%) A:0.17 (£0.012) A:0.20 (+ 0.02) 1.24 (0.91-1.69) 1.23 (0.90-1.68)
GIn/GIn 16 (2.9%) 8 (2.8%) 1.02 (0.43-2.43) 1.03 (0.43-2.47)
n (%) n (%) Crude OR Adjusted OR
(95% CI) (95% Cl) a
MSH4 Asn914Ser  Asn/Asn 496 (91.0%) 263 (91.6%) | (Reference) | (Reference)
G>A
Asn/Ser 49 (9.0%) 23 (8.0%) A:0.05 (x0.0l) A:0.04(x0.01) 0.89(0.53-1.49) 0.83 (0.49-1.41)
Ser/Ser 0 (0%) | (0.3%) - -
n (%) n (%) Crude OR Adjusted OR
(95% CI) (95% Cl) a
MSH4 Ala97Thr Ala/Ala 260 (47.7%) 145 (50.7%) | (Reference) | (Reference)
A>G
Ala/Thr 239 (43.9%) 117 (40.9%) G:0.30 (+0.01) G:0.29 (+0.02)  0.88 (0.65-1.19) 0.85 (0.63-1.16)
Thr/Thr 46 (8.4%) 24 (8.4%) 0.94 (0.55-1.60) 1.03 (0.60-1.79)
n (%) n (%) Crude OR Adjusted OR
(95% CI) (95% Cl) a
MSH6 Gly39Glu Gly/Gly 354 (65.1%) 195 (68.2%) | (Reference) | (Reference)
C>T
Gly/Glu 174 (32%) 79 (27.6%)  T:0.19 (£ 0.01) T:0.18(+0.02) 0.82 (0.60-1.13) 0.83 (0.60-1.15)
Glu/Glu 16 (2.9%) 12 (4.2%) 1.36 (0.63-2.94) 1.38 (0.62-3.03)
n (%) n (%) Crude OR Adjusted OR
(95% CI) (95% Cl) a
MLHI lle219Val lle/lle 255 (46.7%) 129 (44.9%) | (Reference) | (Reference)
A>G
lle/Val 251 (46.0%) 129 (44.9%) G:0.30 (£0.01) G:0.33 (£ 0.02) 1.02 (0.75-1.37) 1.01 (0.74-1.37)
Val/Val 40 (7.3%) 29 (10.1%) 1.43 (0.85-2.42) 1.35 (0.79-2.31)
n (%) n (%) Crude OR Adjusted OR
(95% CI) (95% Cl) a
MLH3Leu844Pro  Leu/Leu 166 (30.5%) 76 (26.6%) | (Reference) | (Reference)
G>A
Leu/Pro 283 (52%) 141 (49.3%) A:0.43(x0.02) A:0.49(+0.02) 0.69 (0.47-0.99) 1 0.65 (0.45-0.95) T
Pro/Pro 95 (17.5%) 69 (24.1%) 0.63 (0.42-0.95) T 0.62 (0.41-0.94) T
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Table 2: Genotypic frequencies and minor allele frequency (MAF) in control population (n = 547) and breast cancer cases (n = 287) and
analysis of associations of individual SNPs with breast cancer risk. (Continued)

n (%) n (%) Crude OR Adjusted OR
(95% CI) (95% Cl) a
PMS| 5'UTR GG 352 (64.7%) 181 (63.5%) | (Reference) | (Reference)
Exl-4 G>C
CG 179 32.9%) 90 (31.6%) C:0.19(x0.01) C:021 (x0.02) 0.98(0.72-1.33) 1.01 (0.74-1.39)
CcC 13 (2.4%) 14 (4.9%) 2.09 (0.96-4.55) 1.88 (0.85-4.15)
n (%) n (%) Crude OR Adjusted OR
(95% CI) (95% Cl)a
MUTYH His/His 283 (51.7%) 162 (56.4%) | (Reference) | (Reference)
His335GIn
G>C His/GIn 235 (43.0%) 107 (37.3%) C:0.27 (+0.01) C:0.25(+0.02)  0.80 (0.59-1.07) 0.810 (0.60-1.10)
GIn/GIn 29 (5.3%) 18 (6.3%) 1.08 (0.58-2.01) 1.053 (0.56-1.98)

aORs were adjusted for: age at diagnosis (<30, 31-49, 50-69, and >70 years), the lower age group being the referent class; alcohol consumption
(never, social, and regular drinkers), never drinkers being the referent group; and smoking habits (smokers/non-smokers), non-smokers being the
referent group.

tData in bold highlights the statistic significant results (p < 0.05). P values are adjusted by unconditional multiplicative logistic regression.

Table 3: Two-way SNP interaction effects on breast cancer risk.

Two-way SNP
Interactions

Genotypes Controls Cases All cases

MSH3 Alal045Thr Controls n (%) Casesn (%) Crude OR (95% Cl) P value Adjusted OR (95% P value
(A>G)/IMSH6 Cl)a
Gly39Glu (C>T)

GG/CC 29 (5.3%) 26 (9.1%) | (Reference) 0.36 | (Reference) 0.26
AAITT 43 (7.9%) 22 (7.7%) 0.57 (0.27-1.19) 0.14 0.53 (0.25-1.13) 0.10
AGITT

GG/TT

GG/TC

AAITC 81 (14.9%) 33 (11.5%) 0.45 (0.23-0.89) 0.02 0.43 (0.21-0.83) 0.01
AA/CC 158 (29.1%) 83 (29.0%) 0.59 (0.32-1.06) 0.08 0.55 (0.30-1.00) 0.05
AGI/TC 66 (12.2%) 36 (12.6%) 0.61 (0.31-1.19) 0.14 0.61 (0.310-1.21) 0.16
AG/CC 166 (30.6%) 86 (30.1%) 0.58 (0.32-1.04) 0.07 0.55 (0.30-1.01) 0.05

MSH4 Ala97Thr Controls n (%) Casesn (%) Crude OR (95% ClI) P value Adjusted OR (95% P value
(A>G)/MLH3 Cl)a
Leu844Pro (G>A)

GG/GG 85 (15.6%) 28 (9.8%) | (Reference) 0.02 | (Reference) 0.0l
AAIAA 46 (8.5%) 24 (8.4%) 1.58 (0.83-3.04) 0.17 1.70 (0.87-3.32) 0.12
AA/AG

AAIGG

AG/AA 41 (7.5%) 31 (10.8%) 2.30 (1.22-4.32) 0.01 2.35 (1.23-4.49) 0.01
AG/AG 127 (23.3%) 47 (16.4%) 1.12 (0.65-1.93) 0.67 1.03 (0.59-1.78) 0.93
AG/GG 71 (13.1%) 39 (13.6%) 1.67 (0.94-2.98) 0.08 1.54 (0.85-2.78) 0.15
GG/AA 44 (8.1%) 32 (11.2%) 2.21 (1.18-4.12) 0.01 2.11 (1.12-3.98) 0.02
GG/AG 130 (23.9%) 85 (29.7%) 1.99 (1.20-3.30) 0.01 1.88 (1.12-3.15) 0.02

2 ORs were adjusted for: age at diagnosis (<30, 31 -49, 50-69, and >70 years), the lower age group being the referent class; alcohol consumption
(never, social, and regular drinkers), never drinkers being the referent group; and smoking habits (smokers/non-smokers), non-smokers being the
referent group.

Data in bold highlights the statistic significant results. P values are adjusted by unconditional multiplicative logistic regression.
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The analysis for all SNP-SNP interactions between differ-
ent genes (with biological plausibility) associated with
individual risk for disease was assessed [see Additional file
2]. The data obtained, using unconditional multiplicative
logistic regression show that two interactions (MSH3
Ala1045Thr/MSH6 Gly39Glu and MSH4 Ala97Thr/MLH3
Leu844Pro; see Table 3) are associated with individual
risk for disease. In fact the MSH3/MSHG AA/TC are asso-
ciated with a decreased risk for this pathology (adjusted
OR = 0.43, 95% CI (0.21-0.83), p = 0.01). Additionally,
three interactions between MSH4 Ala97Thr/MLH3
Leu844Pro are associated with an increased risk for breast
cancer (AG/AA interaction: adjusted OR = 2.35, 95% CI
(1.23-4.49), p = 0.01; GG/AA interaction: adjusted OR =
2.11,95% CI (1.12-3.98), p = 0.02; and GG/AG: adjusted
OR = 1.88, 95% CI (1.12-3.15), p = 0.02).

Discussion

To our knowledge, this is the first comprehensive study to
analyze the possible role of 9 common variants of 7 MMR
genes and its influence on the genetic susceptibility to
breast cancer. Our main focus was to understand the con-
tribution of functionally relevant polymorphisms and
SNP-SNP interactions in MMR genes to breast cancer risk.
The results hint to a few potential candidate genes and
SNP-SNP interactions associated with individual breast
cancer susceptibility.

The first plausible association was for MLH3 (Leu844Pro)
a non-synonymous variant being related with a reduced
risk for the homozygous (Pro/Pro) and the heterozygous
(Leu/Pro) individuals on breast cancer susceptibility. The
MLH3 gene has been mainly associated with some cases
of HNPCC, where the presence of a considerable number
of mutations in this gene is consistent with a possible role
in HNPCC progression [28]. Given its role in the repair of
IDLs and its involvement in MSI [29], alterations in its
structure and function could trigger oncogenic events,
such as in breast cancer.

One study on a different cancer population (151 lung can-
cer cases and 172 hospital controls) by Michielis et al. [30]
showed that the MLH3 (Leu844Pro) polymorphism was
associated with an increased risk for lung cancer [OR: 1.97
(1.06-3.65 95% IC), p = 0.04]. However, in contrast to
breast cancer, most of lung cancer cases are typically
caused by smoking habits, and thus the aetiology of the
two cancers is different. In any case, polymorphisms in
DNA repair genes may modify cancer risk [31].

Regarding the potential role of the MLH1 polymorphism
(Ile219Val), it was not associated with breast cancer risk
in this study, which is consistent with a previous work
conducted by Lee et al. [32] that also reports a null associ-
ation for breast cancer in Korean women (872 cases and
671 controls). Another study published by Smith et al.

http://www.biomedcentral.com/1471-2407/9/344

[23] reported a decreased risk of breast cancer [OR = 0.49,
95% CI (0.29-0.85), p < 0.05] in a Caucasian population
(336 cases and 416 controls). These differences across
studies might be related with different population risk fac-
tors and/or with differences in genetic backgrounds.

MMR is achieved by several protein heterodimers. As
such, it was important to evaluate a gene-gene interaction
model in this study. The analysis of the genotype specific
risks shows significant differences for two associations
between different MMR genes. The MSH3 Ala1045Thr/
MSHG6 Gly39Glu - (AA/TC) interaction was associated
with a decreased risk [adjusted OR = 0.43, 95% CI (0.21-
0.83), p = 0.01]. It should be noted that the MSH3 and
MSHG6 genes act as MMR pathway sensors, detecting errors
that occur during DNA replication, being implicated in
postreplicative mismatch correction [17].

We also found evidence for an interaction (MSH4
Ala97Thr/MLH3 Leu844Pro) associated with an increased
risk for breast cancer. As described by Santucci-Darmanin
et al. [33] MLH3 is associated with the meiosis-specific
protein MSH4 in mammalian meiotic cells, strongly sup-
porting the possibility that MLH3 plays a role in mamma-
lian meiotic recombination [33].

It has been known for some years that the MMR pathway
affects the efficiency of meiotic recombination [20]. Nev-
ertheless, MMR proteins are also involved in mitotic
recombination processes and play a critical role in main-
taining the mitotic stability of eukaryotic genomes [34].
During mitotic recombination MMR proteins prevent
exchange between non-identical sequences. In fact, it has
been demonstrated that certain homologous sequences
recombine only when the MMR pathway is inactive [20].
MMR inactivation leads to an increase in mitotic recombi-
nation frequency and an inefficient recombination can
increase the risk for cancer susceptibility. Consequently,
the anti-recombination function of MMR not only sup-
presses homologous recombination but also acts to pre-
vent chromosomal rearrangements involving
translocations and deletions [22].

As a result, it is possible that structural or function modi-
fications in the MSH4 Ala97Thr/MLH3 Leu844Pro inter-
action might be associated with an increased risk for
breast cancer, modifying the progression of MMR path-
way and therefore increasing the mitotic recombination
rates in mammary gland cells. However, larger studies are
required to verify the role of MSH4 and MLH3 genes in
mammalian mitotic recombination.

Conclusion

In summary, we found that the genetic variant of the
MLH3 gene, Leu844Pro, was associated with decreased
risk for breast cancer. Interestingly, an observed decreased
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risk between common homozygous and heterozygous of
the MSH3 Ala1045Thr/MSHG6 Gly39Glu interaction and
an increased risk between several combined genotypes of
the MSH4 Ala97Thr/MLH3 Leu844Pro point towards a
multiplicative gene-gene interaction model.

The association between cancer risk and several genotypes
observed in this study reinforce the hypothesis for the role
of the MMR pathway in breast cancer susceptibility. In
fact, the MMR plays a key role in maintenance of genomic
stability, contributing to tumour suppression by reducing
mutations and promoting apoptosis in response to some
DNA damage during replication and mitotic recombina-
tion processes [17,35]. Different activities and functions
of these genes as well as SNP variations may alter the level
of repair, leading to higher rates of mutations and there-
fore an increase of breast cancer risk or conversely play a
protective role in breast carcinogenesis. However, inde-
pendent studies in a larger population are essential to sup-
port our results.
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