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Abstract

Background: Recent studies have demonstrated that a molecular subtype of glioblastoma is
characterized by overexpression of extracellular matrix (ECM)/mesenchymal components and
shorter survival. Specifically, gene expression profiling studies revealed that matrix gla protein
(MGP), whose function has traditionally been linked to inhibition of calcification of arteries and
cartilage, is overexpressed in glioblastomas and associated with worse outcome.

Methods: In order to analyze the role of MGP in glioblastomas, we performed expression,
migration and proliferation studies.

Results: Real-time PCR and ELISA assays confirmed overexpression of MGP in glioblastoma biopsy
specimens and cell lines at mMRNA and protein levels as compared to normal brain tissue.
Immunohistochemistry verified positivity of glial tumor cells for MGP. RNAi-mediated knockdown
of MGP in three glioma cell lines (U343MG, U373MG, H4) led to marked reduction of migration,
as demonstrated by wound healing and transwell assays, while no effect on proliferation was seen.

Conclusion: Our data suggest that upregulation of MGP (and possibly other ECM-related
components as well) results in unfavorable prognosis via increased migration.

Background

Glioblastomas, which represent astrocytic gliomas of
grade IV, are the most common and most malignant
intrinsic brain tumors [1]. Despite considerable improve-
ments in surgery, radiation therapy and chemotherapy,
the prognosis of patients with glioblastoma remains dis-
mal with median survival of about 15 months. A major
reason for this unfavorable outcome is extensive, diffuse
invasion of glial tumor cells into surrounding brain tissue,
which precludes complete surgical resection and leads to

rapid recurrence [2,3]. From the biological point of view,
glioma invasion is based on interactions of tumor cells
with other neoplastic or non-neoplastic cells and with the
cerebral extracellular matrix (ECM).

It has been known for decades that glioblastoma cells in
situ are able to produce and deposit large amounts of
interstitial ECMs such as collagens, fibronectins and lam-
inins, a process that may eventually result in gliosarcomas
[4]. Furthermore, once taken into cell culture glioblast-
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oma cells usually produce increased amounts of ECM
components, a process which has been designated mesen-
chymal drift [5,6]. More recent whole genome gene
expression analyses have identified a subset of glioblasto-
mas that overexpress transcripts of ECM components, cor-
responding to a mesenchymal gene expression profile and
being associated with worse prognosis [7-9].

Matrix gla protein (MGP) is one of the mesenchymal
genes overexpressed in glioblastoma samples [9] as well
as in recurrent gliomas undergoing malignant progression
[10]. Interestingly, MGP expression in astrocytic tumors
appears to be related to grade of malignancy (http://
www.ncbi.nlm.nih.gov/geo/, Geo database accession
numbers GDS1813 and GDS1962). In addition, in silico
analyses using the REMBRANDT database (http://rem
brandt.nci.nih.gov, accessed 10t march 2009) revealed
more than two-fold upregulation of MGP in glioblasto-
mas as compared to non-neoplastic brain tissue, and a
correlation (p = 0.0011) between MGP overexpression
and worse survival in glioblastomas, suggesting that MGP
overexpression is prognostically relevant.

MGP was originally isolated from bone tissue and is also
expressed in kidney, lung, heart, cartilage and vascular
smooth muscle cells [11]. It is upregulated in a variety of
tumors, including ovarian, breast, urogenital and skin
cancer [12-16]. MGP is a 79-amino acid ECM protein con-
taining post-translationally modified y-carboxyglutamic
acid residues resulting from vitamin K dependent carbox-
ylation [17,18]. MGP is traditionally considered to be
involved in the inhibition of calcification of arteries and
cartilage [19], and germline mutations in MGP cause Keu-
tel syndrome, leading to ectopic abnormal calcification
and midfacial hypoplasia [20]. Because virtually nothing
is known about the mechanisms linking upregulation of
MGP and prognosis in gliomas and, more generally,
about the function of MGP in tumors, we hypothesized
that MGP promotes glioma migration and performed
expression and migration analyses.

Methods

Cell culture

U373fast and U373slow glioma cell line subpopulations,
originating from U373MG cells and selected for fast ver-
sus slow migration [21], as well as H4, U343MG, 86HG39
and U373MG glioma cell lines were cultured using stand-
ard cell culture conditions in Dulbecco's modified Eagle's
minimal essential medium (DMEM) supplemented with
10% fetal calf serum (FCS), 100 U/ml penicillin and 100
pg/ml streptomycin at 37°C in 5% CO,.

Tumor and brain samples
Samples from brain tumor tissues were frozen in liquid
nitrogen following resection. The tumors were histologi-
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cally diagnosed as glioblastoma according to WHO crite-
ria [1]. Frozen section analysis verified that specimens
used for RNA and protein extraction were composed of
non-necrotic tumor tissue. We used 16 different glioblas-
toma samples (n = 10 for mRNA and n = 10 for immuno-
histochemical analysis, four samples were used for both
analysis), including samples from 9 females and 7 males.
The mean age (+ SEM) of the patients at the time of sur-
gery was 52 (+ 0.7), with a range of 35-73 years. Two out
of these 16 different samples were diagnosed as secondary
glioblastoma and 14 were diagnosed as primary glioblas-
toma. Non-neoplastic, histologically normal cerebral cor-
tices from three adult subjects without neurological
symptoms were obtained by autopsy. Approval for using
tumor and brain tissues had been obtained by the local
ethics commission.

Immunofluorescence

1 x 105 cells seeded on glass coverslips and grown under
standard conditions for 24 h were rinsed in phosphate-
buffered saline (PBS) and fixed using 3.7% formaldehyde
in PBS. After permeabilizing with 0.1% Triton X-100
(Sigma, Deisenhofen, Germany) in PBS, cells were
blocked with 0.5% BSA/PBS. The mouse monoclonal
anti-MGP3-15 antibody (Axxora, Griinberg, Germany) was
applied in a 1:200 dilution at 4°C overnight. Alexa Fluor
488 conjugated anti-mouse antibody (A11029, Invitro-
gen, Karlsruhe, Germany, 1:200 dilution) was used as sec-
ondary antibody. Nuclei were stained with Hoechst
33258 and cells were mounted with "Fluoromount"
(DAKO, Hamburg, Germany).

Immunohistochemistry

Immunohistochemical analysis of human glioblastoma
tissue was done on acetone-fixed (4°C, 8 min) 5- to 8-um
frozen sections. The mouse monoclonal anti-MGP anti-
body was applied in a 1:50 dilution at 4°C overnight. For
detection we used the biotinylated goat anti-mouse IgG
BA2001 (dilution 1:100), a horseradish peroxidase avidin
complex and AEC as substrate (secondary antibody and
reagents from Vector Laboratories, Burlingame, CA).
Slides were counterstained with hematoxylin.

For immunostaining on paraffin embedded tissue
[22,23], sections were heated in 0.2% (w/v) citric acid at
pH 6.0 in a microwave and "kept warm" for 15 min before
washing with TBST (10 mM Tris-HCl, 150 mM NadCl,
0.1% Tween; pH 7.6) and incubation with anti-MGP3-15
(1 mg/ml). The antibody was diluted 1:100 in blocking
reagent (TBST/1% BSA). Biotinylated sheep anti-mouse
IgG (Amersham Biosciences, Little Chalfont, UK) was
used as a secondary antibody, followed by incubation
with avidin-linked alkaline phosphatase complex
(DAKO); staining was performed with the alkaline phos-
phatase kit I (Vector Laboratories, Burlingame, CA). All
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specimens were counterstained using hematoxylin and
sections were mounted using imsol-mount.

ELISA Assay

MGP protein concentrations in cell culture supernatant
were quantified using a competitive MGP ELISA kit fol-
lowing manufacturer's instructions (Biomedica, Vienna,
Austria). We used cell culture supernatant from cell lines
Uu373fast and U373slow, as well as from the cell lines
86HG39, U373MG and U343MG cultured in DMEM
without FCS for 24 h (1 x 10° cells). Absorption was meas-
ured at 450 nm. All samples were analyzed in duplicate.

Quantitative RT-PCR (qRT-PCR)

Total RNA was isolated from subconfluent cultured cells
using the RNeasy Plus Mini kit (Qiagen, Hilden, Ger-
many), and from glioblastoma tissue using TRIzol (Invit-
rogen, Karlsruhe, Germany). Total RNA (0.5 pg) was
transcribed in cDNA with the High Capacity cDNA reverse
Transcription Kit (Applied Biosystems, Foster City, CA) in
areaction volume of 20 pl. After cDNA synthesis 1 pl from
the reaction volume was utilized for qRT-PCR measure-
ments. Measurements were done using TagMan GeneEx-
pressions Assay MGP (Hs00179899_m1, Applied
Biosystems, Foster City, CA). Relative MGP mRNA levels
were calculated and compared between tumor and nor-
mal tissue or between siRNA and control transfected cells,
respectively. Data were normalized relative to glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) using prim-
ers GAPDH-for-ACC CAC TCC TCC ACC TTT GAC (bp-
position 928-948), GAPDH-rev-CAT ACC AGG AAA TGA
GCT TGA CAA (bp-position 1003-980) and the fluores-
cent labelled probe GAPDH-probe-CTG GCA TTG CCC
TCA ACG ACC A (bp-position 956-977) as described pre-
viously [21]. The equation fold change = 2-2Actwas applied
to calculate the relative expression of MGP in siRNA trans-
fected glioma cells versus untransfected glioma cells or
tumors versus normal cortex, respectively. All measure-
ments were done in duplicates and the experiments were
repeated at least twice.

RNA interference experiments

U373fast, H4 and U343MG cells were subcultured into
24-well plates till 80% confluence. Transfections were per-
formed using the HiPerfect transfection reagent (Qiagen)
and two different small interfering RNAs (siRNAs)
directed against MGP (Hs_MGP_4 HP siRNA
(S100645428); target sequence: TAG CAG CAT TAC TGA
AAT ACA), Hs_MGP_8 siRNA (S104357913); target
sequence: CTC CCT ACT GCT GCT ACA CAA) and a non
silencing negative control (negative control siRNA
(1022076); target sequence: AAT TCT CCG AAC GTG TCA
CGT) (all siRNAs purchased from Qiagen). Transfections
were done according to manufacturer's instructions. Suc-
cessful knockdown was verified with gRT-PCR and
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immunofluorescence at 24 h, 48 h and 72 h after transfec-
tion. All experiments were done independently for at least
three times.

Wound healing assay

U373fast, H4 and U343MG cells were seeded at a density
of 8 x 104 per well in a 24-well plate. 24 h after siRNA
transfection cells were scratched ("wounded") using the
back side of a standard 100 pl pipette tip. After being
washed three times with PBS scratches including the
flanking front lines of cells, were photographed (40-fold
magnification). Cells were incubated under standard con-
ditions and migration into the scratched area was photo-
graphed 24 h and 48 h after wounding (corresponding to
48 h and 72 h post-transfection). The edges of the wound
were marked after scratching (time point 0 h), cells
migrating over the edges were counted and the number of
cells was determined related to the total area of the
scratch. Wound closing was compared between MGP
knockdown cells and control transfected cells and evalu-
ated using the analysis FIVE software (Soft Imaging Sys-
tem, Minster, Germany). Differences between two data
points were determined by Student's t test where p < 0.05
was considered significant. Experiments were performed
independently two times, evaluating 4 - 8 scratches in
each experiment.

Transwell migration assay

Disposable ChemoTx 96-well chemotaxis chambers
(#106-8, Neuro Probe, Cabin John, MD) were used for
migration studies. Compared to classical Boyden cham-
bers, these filters have hydrophobic masks surrounding
each of the 96 filter sites. The masks eliminate the need for
a top chamber, because they create surface tension, keep-
ing the cell suspension positioned on the hydrophilic fil-
ter site located directly above the bottom wells. Each filter
site is 5.7 mm in diameter and pores are 8 um in diameter.
Wells ("lower chambers") were filled with 30 ul of DMEM
alone. Polycarbonate filters were positioned on micro-
plates and secured in place with corner pins. 24 h after
siRNA mediated knockdown 1 x 104 U373fast, U343MG
or H4 glioma cells in 60 ul DMEM were placed directly
onto the filter sites ("upper chambers") and incubated for
24 hat 37°C in 5% CO,. Non-migrating cells on the top
of the filters were removed by gently wiping the filters
with cotton swabs. Migrating cells on the bottom side
were fixed for 10 min in 3.7% formaldehyde and stained
with Hoechst 33258 for 3 min. Stained cells were then
captured using a BX50 microscope (Olympus, Tokyo,
Japan) and cells were quantified using morphometry soft-
ware (analysis FIVE, Soft Imaging System). Differences
between two data points were determined by Student's t-
test where p < 0.05 was considered significant. Two inde-
pendent experiments were performed, each of them using
8 fold replicates.
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Proliferation assay

Cellular growth was assessed by (3-(4,5-Dimethylthiazol-
2-yl))-2,5-diphenyltetrazolium bromide (MTT) assay.
Briefly, U373fast, H4 and U343MG cells were seeded at a
density of 1x10% per well in a 96-well plate 24 h after
siRNA transfection. For each time point, an exponential
dilution series of cells was used with 1 x 105 cells as start-
ing dilution. After 4 h, the medium was replaced with 200
pl MTT solution (0.5 mg/ml) and incubated for 3 h at
37°C and 5% CO,. MTT solution was discarded and 200
ul of isopropanol was added to dissolve the formazan
crystals. Measurement was done at 570 nm using an ELISA
reader upon 0 h, 24 h, 48 h and 72 h (corresponding to
24 h, 48 h, 72 h and 96 h after transfection). Experiments
were independently performed three times, and 6 - 10
wells were evaluated for each experimental condition.
Possible differences were determined by Student's t-test.

Results

MGP is upregulated in glioblastoma tissues

To determine MGP expression, we first performed quanti-
tative real-time PCR experiments. The amount of MGP
mRNA in glioblastoma tissues (n = 10) was 2.6 - 21.4 fold
higher compared to normal cortex tissues (n = 3, set as
100%, + 3.4%) (Figure 1). To verify MGP overexpression
on protein levels we performed immunohistochemistry
using both frozen and paraffin sections, which showed
distinct staining for MGP in tumor cells of all glioblasto-
mas examined (n = 10) (Figure 2a and 2b), while cells of
normal autopsy brains were negative or only faintly posi-
tive (Figure 2c). An atheromatous plaque, used as positive
control, exhibited staining of the media, in part being
associated with lipid, which is a normal staining pattern
for MGP (Figure 2d). Negative controls did not reveal any
staining. MGP mRNA expression did not correlate with
age, gender and location of the tumor.

MGP is upregulated in glioblastoma cell lines

The initial finding of increased MGP expression in gliob-
lastoma tissues compared to normal cortex led us to
experiments with glioblastoma cell lines with different
migratory phenotype [21]. U373fast cells, characterized
by an increased migratory phenotype, demonstrated 22.7-
fold higher MGP mRNA expression levels as compared to
their slow counterparts (U373slow) and 132.8-fold over-
expression compared with normal cortex (Figure 1). Two
other glioblastoma cell lines, U343MG and H4, showed
11.2-fold and 5.6-fold higher MGP mRNA expression
compared to normal brain tissue (Figure 1). These find-
ings were confirmed at protein levels. ELISA analysis
revealed 2.1-fold overexpression of MGP protein in
U373fast cells as compared to U373slow cells. We also
investigated the glioma cell lines 86HG39, U343MG and
non selected U373MG and could verify MGP protein
expression in the supernatants using ELISA. The cell line
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86HG39 showed a concentration of 0.38 nmol/l MGP
protein, U343MG 0.23 nmol/l and U373MG 0.22 nmol/l.

Immunofluorescence showed cytoplasmic staining with
accentuation at perinuclear regions in all tested cell lines
(Figure 2e-g). Negative controls using isotype matched
irrelevant antibodies revealed no staining (Figure 2h).

MGP is involved in glioma cell migration

To examine the functional role of MGP in glioma cell
migration, we first performed siRNA mediated MGP
knockdown experiments with U373fast, H4 and U343MG
cell lines. MGP knockdown was verified using qRT-PCR,
showing residual MGP mRNA levels of 1.1% - 12.9% at
24 h, 0.4% - 11.7% at 48 h, and 0.8% - 11.6% at 72 h
after knockdown compared to 100% MGP mRNA expres-
sion of control transfected cells (n = 8) (Figure 3a).
Accordingly, immunofluorescence revealed reduced fluo-
rescence intensities for both siRNAs, as illustrated for
U373fast cells at 72 h post-transfection in Figure 3b-d.

Wound healing assays at 24 h post-wounding (48 h post-
transfection) and 48 h post-wounding (72 h post-trans-
fection) showed decreased migration of 50.67% + 0.07%
and 51.74% + 2.97% for U373fast cells (p = 0.00092 and
p =0.0048 MGP_4, p = 0.00805 and p = 0.0017 MGP_8),
52.67% + 9.09% and 43.71% + 14.16% for H4 cells (p =
0.0197 and p = 0.0135 MGP_4, p = 0.00461 and p =
0.00260 MGP_8), and 54.76% + 5.78% and 59.34% =+
16.38% for U343MG cells compared to control trans-
fected cells (p = 0.0171 and p = 0.0241 MGP_4, p =
0.00974 and p = 0.00714 MGP_8) (Figure 4).

Transwell migration assays performed with U373fast, H4
and U343MG cells also revealed inhibitory effects on cell
migration following MGP knockdown. Compared to con-
trol siRNA transfected cells (set at 100%), relative migra-
tion at 24 h (48 h after knockdown) following MGP
knockdown using two different siRNAs was 47.7% =+
10.3% and 44.5% + 11.5% in U373fast cells (p = 9.21 x
10 and p = 8.33 x 10-19), 36.4% + 12.1% and 37.27% +
11.2% in H4 cells (p = 5.14 x 10'1%and p = 1.38 x 109),
and 35.8% =+ 15.5% and 31% =+ 9.3% in U343MG cells (p
=1.48 x 10 and p = 3.50 x 10-!1) (Figure 5).

To exclude that decreased numbers of migrating cells were
the consequence of reduced proliferation, we performed
proliferation assays. No difference was detected between
MGP knockdown cells and control transfected cells (data
not shown).

Discussion

In this study we have demonstrated that MGP expression
at mRNA and protein levels is upregulated in glioblast-
oma tissues and cell lines, confirming previous expression
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Expression of MGP mRNA in glioblastoma tissues
and cell lines. Glioblastoma (GBM) biopsy specimens (n =
10) showed increased MGP mRNA levels (quantitative RT-
PCR) as compared to normal human brain tissue (n = 3,
mean set at 100%). Expression levels of MGP mRNA in gli-
oma cell lines U373fast, U373slow, H4 and U343MG
revealed overexpression of MGP mRNA in all cell lines com-
pared to normal brain tissue.

profiling studies using DNA microchip analyses [9,10].
Based on the immunocytochemical demonstration of
intracytoplasmic MGP protein in glioblastoma biopsy
specimens and glioma cell lines we conclude that produc-
tion by glial tumor cells rather than mesenchymal ele-
ments (e.g. abnormal blood vessels) is responsible for
overexpression of this mesenchymal component in glio-
mas. Furthermore, human glioma cells, selected for high
migration capacity (U373fast) showed elevated MGP
expression compared to their less migrating counterparts
(U373slow). Knockdown of MGP using siRNA in three
different glioma cell lines led to decreased cell migration
as demonstrated using two different migration assays,
whereas proliferation remained unchanged. Collectively,
these findings suggest that MGP is involved in glioblast-
oma cell migration in vitro.
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While neural MGP expression has previously been found
in rat retinal ganglion cells after induction with glia con-
ditioned factors [24], most previous studies have focused
on the role of MGP in cartilage, bone and blood vessels,
because vascular smooth muscle cells and chondrocytes
are the major sites of MGP expression. MGP serves as an
inhibitor of cardiovascular calcification as observed in
MGP null mice [19,25] and arterial and valvular calcifica-
tion after warfarin intake [26,27]. In addition, MGP
enhances VEGF expression in bovine aortic endothelial
cells by increasing the activity of TGF-B1 signalling
through activin-like kinase receptor 1 (ALK1) and the
SMAD1/5/8 pathway [28]. The functional role of MGP in
neoplasia remains unclear, but in line with our findings in
gliomas, increased levels of MGP were found in ovarian,
breast, urogenital and skin cancer [12-16], although
decreased levels of MGP have been found in colon carci-
noma [29], and loss of MGP expression in metastatic renal
cell carcinoma and prostatic carcinoma compared with
primary tumors has been associated with tumor progres-
sion and metastasis [15].

The mechanisms linking MGP knockdown and reduced
migration of glioblastoma cells remain to be determined,
but based on available evidence it is conceivable that
interactions with members of the bone morphogenetic
protein (BMP) family and the ECM component vitronec-
tin are involved. BMPs belong to the transforming growth
factor-beta (TGF-B) superfamily [30]. MGP regulates
BMP4 in vascular endothelial cells, and MGP is able to
bind BMP2 and promote an association between BMP2
and matrix components; interaction between MGP and
BMP2 interferes with binding of BMP2 to its receptor and
activation of Smadl [28,31,32]. Furthermore, BMPs
inhibit the tumorigenic potential of human brain tumor-
initiating cells [33,34], so that MGP-induced repression of
BMP signalling may retain tumor cells in an undifferenti-
ated state with enhanced migration potential [35]. In
addition, MGP effects on glioblastoma cell migration
might be mediated by binding of MGP to vitronectin [31].
Vitronectin is a multifunctional plasma and ECM protein,
which serves roles in cell adhesion, complement activa-
tion, coagulation and fibrinolysis [36-39]. MGP might
regulate cell migration via vitronectin receptors of the
integrin family, which are known to play important roles
in glioblastoma migration and invasion [40,41]. Like
MGP, vitronectin expression in gliomas is known to
increase with tumor grade in vivo [40,42]. Of note, the
binding of MGP to vitronectin does not interfere with pos-
sible interactions of MGP and BMP2, because the binding
regions are different [31]. Thus, the migratory promoting
effect of MGP on glioblastoma cell lines might be medi-
ated by both BMPs and vitronectin.
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Figure 2

Cellular localization of MGP protein. Inmunohistochemistry revealed positivity of tumor cells (a, b, arrow), while neu-
rons of the normal neocortex were faintly positive (c, arrow) and glial cells were negative. An atheromatous plaque, used as
positive control, showed distinct staining in the media (d, arrow). e-g: Inmunofluorescence of glioblastoma cell lines U373fast
(e), H4 (f) and U343MG (g) showed cytoplasmic positivity. Negative controls using nonspecific IgG remained unlabeled (h).
Bar = 100 um (a-d) and 50 um (e-h).
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Figure 3

MGP knockdown using siRNA. (a) Transfection of U373fast, H4 and U343MG cells with two different siRNAs targeting
MGP mRNA resulted in decreased MGP expression at mRNA levels at different time points following transfection, as deter-
mined by quantitative RT-PCR. MGP mRNA is expressed relative to control transfections using non-silencing siRNA (set at
100%). b-d: Knockdown verification on protein levels by immunofluorescence staining revealed decreased fluorescence inten-
sities in U373fast cells for both siRNAs 72 h post-transfection (¢, d) compared to control transfected cells (b) (MGP is marked
green in the cytoplasm). Similar results were obtained for H4 and U343MG cells. Nuclei were counterstained with Hoechst
33258 (blue).
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U373fast, H4 and U343MG cells with blocked MGP expression exhibited reduced migration as compared to control cells
transfected with non-silencing siRNA (set at 100%). All differences between MGP siRNA and cells transfected with control
siRNA are significant (p <0.01 =** or p < 0.001 = ***¥). b-g: Representative monolayer wound healing assay using H4 cells. For
better illustration of differences in migration activity, the initial borders of scratch areas are labeled. H4 cells after MGP knock-
down (right panels, e, f, g) showed reduced migration into central scratch areas as compared to the control cells, transfected

with non-silencing siRNA (left panels, b, c, d).

Page 8 of 11

(page number not for citation purposes)



BMC Cancer 2009, 9:302

140
g 120 l l
E 100
® 80
D ek Kk
g 60
Q
Z 40
S
S 20
o | L [
o N
S5 & & 5
[&] s s [&]
U373fast

http://www.biomedcentral.com/1471-2407/9/302

O 24h

*h*k

ool
o
o
=

N
o
O

% o

o o =

O 0] 5

= = Q =

H4 U343MG

Figure 5

Migration of glioma cells following MGP knockdown using ChemoTX migration chambers. (a) Quantification of
cell migration: U373fast, H4 and U343MG cells with reduced MGP expression exhibited reduced migration as compared to
control cells transfected with non-silencing siRNA (set at 100%) 24 h after seeding in the upper chamber (all differences
between siRNA and control transfected cells are significant with p < 0.001 = **¥)_b-d: Representative migration chamber assay
using H4 cells. Reduced numbers of H4 cells were observed on the lower side of the filter following knockdown with MGP
specific siRNA (c = siRNA MGP_4, d = siRNA MGP_8) as compared cells transfected with non-silencing siRNA (b). Nuclei

were counterstained with Hoechst 33258.

Glioma cells in vitro and in situ express various ECM com-
ponents that modulate their microenvironment and pro-
mote migration, including collagens, laminins, brevican,
tenascin-C and SPARC. These components interact with
tumor cells via ECM receptors of the integrin type.
Another pair of ECM component/receptor is hyaluronan
and CD44 [43]. Several of the components identified in

glioma ECMs are permissive substrates enhancing cell
migration, but like the interaction of MGP and vitronec-
tin, effects can be modulated by additional ligands or
modifications. For example, brevican exposed its promi-
gratory attributes after cleavage by members of the
ADAMTS protease family [44] and glioma migration on
laminin is stimulated by binding of glycosaminoglycans
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[45]. These findings suggest that it is stimulation of inva-
sion by MGP and other ECM components, which under-
lies the unfavorable prognosis of glioblastomas with
mesenchymal gene expression profile.

Conclusion

In conclusion, we have demonstrated that MGP is overex-
pressed in glioma cells, while siRNA mediated knock-
down leads to decreased glioma cell migration. Taking
into account previous data on negative prognostic effects
of MGP overexpression in glioblastomas, our data suggest
that upregulation of MGP in concert with other ECM-
related components may result in unfavorable prognosis
via increased invasion.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

Sonja Mertsch carried out the molecular studies, partici-
pated in functional assays and drafted the manuscript.
Leon J. Schurgers carried out the immunohistology stain-
ing. Kathrin Weber performed the ELISA. Werner Paulus
and Volker Senner conceived of the study, and partici-
pated in its design and coordination and helped to draft
the manuscript. All authors read and approved the final
manuscript.

Acknowledgements

The authors thank Helene Seifried and Andrea Wagner for excellent tech-
nical assistance. This study was supported by Wilhelm Sander Foundation
(grant 2005.058.1).

References

I.  Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet
A, Scheithauer BW, Kleihues P: The 2007 WHO classification of
tumours of the central nervous system. Acta Neuropathol 2007,
114(2):97-109.

2. Claes A, Idema AJ, Wesseling P: Diffuse glioma growth: a guerilla
war. Acta Neuropathol 2007, | 14(5):443-458.

3.  Giese A: Glioma invasion - pattern of dissemination by mech-
anisms of invasion and surgical intervention, pattern of gene
expression and its regulatory control by tumorsuppressor
p53 and proto-oncogene ETS-I. Acta Neurochir Suppl 2003,
88:153-162.

4.  Kleihues P: Glioblastoma. In WHO Classification of Tumours of the
Central Nervous System 4th edition. Edited by: David N. Louis HO,
Otmar D. Wistler, Webster K. Lyon: WHO; 2007:33-49.

5.  McKeever PE: Insights about brain tumors gained through
immunohistochemistry and in situ hybridization of nuclear
and phenotypic markers. | Histochem Cytochem 1998,
46(5):585-594.

6.  Paulus W, Huettner C, Tonn JC: Collagens, integrins and the
mesenchymal drift in glioblastomas: a comparison of biopsy
specimens, spheroid and early monolayer cultures. Int | Can-
cer 1994, 58(6):841-846.

7.  Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau
LM, Mischel PS, Nelson SF: Gene expression profiling of gliomas
strongly predicts survival. Cancer Res 2004, 64(18):6503-6510.

8. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD,
Misra A, Nigro JM, Colman H, Soroceanu L, et al.: Molecular sub-
classes of high-grade glioma predict prognosis, delineate a
pattern of disease progression, and resemble stages in neu-
rogenesis. Cancer Cell 2006, 9(3):157-173.

20.

21.

22.

23.

24.

25.

26.

27.

28.

http://www.biomedcentral.com/1471-2407/9/302

Tso CL, Shintaku P, Chen J, Liu Q, Liu J, Chen Z, Yoshimoto K,
Mischel PS, Cloughesy TF, Liau LM, et al: Primary glioblastomas
express mesenchymal stem-like properties. Mol Cancer Res
2006, 4(9):607-619.

Boom ] van den, Wolter M, Kuick R, Misek DE, Youkilis AS, Wechsler
DS, Sommer C, Reifenberger G, Hanash SM: Characterization of
gene expression profiles associated with glioma progression
using oligonucleotide-based microarray analysis and real-
time reverse transcription-polymerase chain reaction. Am |
Pathol 2003, 163(3):1033-1043.

Cancela L, Hsieh CL, Francke U, Price PA: Molecular structure,
chromosome assignment, and promoter organization of the
human matrix Gla protein gene. | Biol Chem 1990,
265(25):15040-15048.

Chen L, O'Bryan )P, Smith HS, Liu E: Overexpression of matrix
Gla protein mRNA in malignant human breast cells: isola-
tion by differential cDNA hybridization. Oncogene 1990,
5(9):1391-1395.

Chen Y, Miller C, Mosher R, Zhao X, Deeds |, Morrissey M, Bryant B,
Yang D, Meyer R, Cronin F, et al.: Identification of cervical cancer
markers by cDNA and tissue microarrays. Cancer Res 2003,
63(8):1927-1935.

Hough CD, Cho KR, Zonderman AB, Schwartz DR, Morin PJ: Coor-
dinately up-regulated genes in ovarian cancer. Cancer Res
2001, 61(10):3869-3876.

Levedakou EN, Strohmeyer TG, Effert PJ, Liu ET: Expression of the
matrix Gla protein in urogenital malignancies. Int | Cancer
1992, 52(4):534-537.

Micke P, Kappert K, Ohshima M, Sundquist C, Scheidl S, Lindahl P,
Heldin CH, Botling J, Ponten F, Ostman A: In situ identification of
genes regulated specifically in fibroblasts of human basal cell
carcinoma. | Invest Dermatol 2007, 127(6):1516-1523.

Price PA, Urist MR, Otawara Y: Matrix Gla protein, a new
gamma-carboxyglutamic acid-containing protein which is
associated with the organic matrix of bone. Biochem Biophys
Res Commun 1983, 117(3):765-771.

Price PA, Williamson MK: Primary structure of bovine matrix
Gla protein, a new vitamin K-dependent bone protein. | Biol
Chem 1985, 260(28):14971-14975.

Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR,
Karsenty G: Spontaneous calcification of arteries and carti-
lage in mice lacking matrix GLA protein. Nature 1997,
386(6620):78-81.

Munroe PB, Olgunturk RO, Fryns JP, Van Maldergem L, Ziereisen F,
Yuksel B, Gardiner RM, Chung E: Mutations in the gene encoding
the human matrix Gla protein cause Keutel syndrome. Nat
Genet 1999, 21(1):142-144.

Tatenhorst L, Senner V, Puttmann S, Paulus W: Regulators of G-
protein signaling 3 and 4 (RGS3, RGS4) are associated with
glioma cell motility. J Neuropathol Exp Neurol 2004,
63(3):210-222.

Schurgers L), Teunissen K|, Knapen MH, Geusens P, Heijde D van der,
Kwaijtaal M, van Diest R, Ketteler M, Vermeer C: Characteristics
and performance of an immunosorbent assay for human
matrix Gla-protein. Clin Chim Acta 2005, 351(1-2):131-138.
Schurgers L), Teunissen K], Knapen MH, Kwaijtaal M, van Diest R,
Appels A, Reutelingsperger CP, Cleutjens P, Vermeer C: Novel
conformation-specific antibodies against matrix gamma-car-
boxyglutamic acid (Gla) protein: undercarboxylated matrix
Gla protein as marker for vascular calcification. Arterioscler
Thromb Vasc Biol 2005, 25(8):1629-1633.

Goritz C, Thiebaut R, Tessier LH, Nieweg K, Moehle C, Buard |,
Dupont L, Schurgers LJ, Schmitz G, Pfrieger FW: Glia-induced neu-
ronal differentiation by transcriptional regulation. Glia 2007,
55(11):1108-1122.

Murshed M, Schinke T, McKee MD, Karsenty G: Extracellular
matrix mineralization is regulated locally; different roles of
two gla-containing proteins. | Cell Biol 2004, 165(5):625-630.
Price PA, Faus SA, Williamson MK: Warfarin causes rapid calcifi-
cation of the elastic lamellae in rat arteries and heart valves.
Arterioscler Thromb Vasc Biol 1998, 18(9):1400-1407.

Schurgers L), Aebert H, Vermeer C, Bultmann B, Janzen J: Oral anti-
coagulant treatment: friend or foe in cardiovascular disease?
Blood 2004, 104(10):3231-3232.

Bostrom K, Zebboudj AF, Yao Y, Lin TS, Torres A: Matrix GLA
protein stimulates VEGF expression through increased

Page 10 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17618441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17618441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17805551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17805551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14531573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14531573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14531573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9606106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9606106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9606106
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7523312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7523312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7523312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15374961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16530701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16530701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16530701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16966431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16966431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12937144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12937144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12937144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2394711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2394711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2394711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2216462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2216462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2216462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11358798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11358798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1399132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1399132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17273163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17273163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17273163
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6607731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6607731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6607731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3877721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3877721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9052783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9052783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9916809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9916809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15055445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15055445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15055445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15563881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15563881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15563881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17582617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17582617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15184399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9743228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9743228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15265793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15265793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15456771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15456771

BMC Cancer 2009, 9:302 http://www.biomedcentral.com/1471-2407/9/302

transforming growth factor-betal activity in endothelial
cells. | Biol Chem 2004, 279(51):52904-52913.

29. Fan C, Sheu D, Fan H, Hsu K, Allen Chang C, Chan E: Down-regu-
lation of matrix Gla protein messenger RNA in human color-
ectal adenocarcinomas. Cancer Lett 2001, 165(1):63-69.

30. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters M), Kriz RW,
Hewick RM, Wang EA: Novel regulators of bone formation:
molecular clones and activities. Science 1988,
242(4885):1528-1534.

31. Nishimoto SK, Nishimoto M: Matrix Gla protein C-terminal
region binds to vitronectin. Co-localization suggests binding
occurs during tissue development. Matrix  Biol 2005,
24(5):353-361.

32. Zebboudj AF, Imura M, Bostrom K: Matrix GLA protein, a regu-
latory protein for bone morphogenetic protein-2. | Biol Chem
2002, 277(6):4388-4394.

33. Lee), Son MJ, Woolard K, Donin NM, Li A, Cheng CH, Kotliarova S,
Kotliarov Y, Walling J, Ahn S, et al.: Epigenetic-mediated dysfunc-
tion of the bone morphogenetic protein pathway inhibits dif-
ferentiation of glioblastoma-initiating cells. Cancer Cell 2008,
13(1):69-80.

34. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G,
Brem H, Olivi A, Dimeco F, Vescovi AL: Bone morphogenetic
proteins inhibit the tumorigenic potential of human brain
tumour-initiating cells. Nature 2006, 444(7120):761-765.

35. Canoll P, Goldman JE: The interface between glial progenitors
and gliomas. Acta Neuropathol 2008, 116(5):465-77.

36. Dufourcq P, Louis H, Moreau C, Daret D, Boisseau MR, Lamaziere
JM, Bonnet J: Vitronectin expression and interaction with
receptors in smooth muscle cells from human atheromatous
plaque. Arterioscler Thromb Vasc Biol 1998, 18(2):168-176.

37. Jang YC, Tsou R, Gibran NS, Isik FF: Vitronectin deficiency is
associated with increased wound fibrinolysis and decreased
microvascular angiogenesis in mice. Surgery 2000,
127(6):696-704.

38. Podor TJ, Peterson CB, Lawrence DA, Stefansson S, Shaughnessy SG,
Foulon DM, Butcher M, Weitz JI: Type | plasminogen activator
inhibitor binds to fibrin via vitronectin. | Biol Chem 2000,
275(26):19788-19794.

39. Zheng X, Saunders TL, Camper SA, Samuelson LC, Ginsburg D: Vit-
ronectin is not essential for normal mammalian develop-
ment and fertility. Proc Natl Acad Sci USA 1995,
92(26):12426-12430.

40. Gladson CL, Cheresh DA: Glioblastoma expression of vitronec-
tin and the alpha v beta 3 integrin. Adhesion mechanism for
transformed glial cells. | Clin Invest 1991, 88(6):1924-1932.

41. Uhm JH, Dooley NP, Kyritsis AP, Rao |S, Gladson CL: Vitronectin,
a glioma-derived extracellular matrix protein, protects
tumor cells from apoptotic death. Clin Cancer Res 1999,
5(6):1587-1594.

42. Gladson CL, Wilcox JN, Sanders L, Gillespie GY, Cheresh DA: Cer-
ebral microenvironment influences expression of the vit-
ronectin gene in astrocytic tumors. | Cell Sci 1995, 108(Pt
3):947-956.

43. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG: Microregional
extracellular matrix heterogeneity in brain modulates gli-
oma cell invasion. Int | Biochem Cell Biol 2004, 36(6):1046-1069.

44. Hu B, Kong LL, Matthews RT, Viapiano MS: The proteoglycan
brevican binds to fibronectin after proteolytic cleavage and
promotes glioma cell motility. J Biol Chem 2008,

45.

283(36):24848-24859.

Aguiar CB, Lobao-Soares B, Alvarez-Silva M, Trentin AG: Gly-
cosaminoglycans modulate Cé glioma cell adhesion to extra-
cellular matrix components and alter cell proliferation and

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

cell migration. BMC Cell Biol 2005, 6:31. disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Pre-publication history
The pre-publication history for this paper can be accessed
here:

Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance

http://www.biomedcentral.com/1471-2407/9/302/pre * cited in PubMed and archived on PubMed Central

pub

« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 11 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15456771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15456771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11248420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11248420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11248420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3201241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3201241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15982861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15982861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15982861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11741887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11741887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18167341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18167341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18167341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17151667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17151667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17151667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18784926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18784926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9484980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9484980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9484980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10840366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10840366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10840366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10764803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10764803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8618914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8618914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8618914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1721625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1721625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1721625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10389948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10389948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10389948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7542670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7542670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7542670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15094120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15094120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15094120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18611854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18611854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18611854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16111491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16111491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16111491
http://www.biomedcentral.com/1471-2407/9/302/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Cell culture
	Tumor and brain samples
	Immunofluorescence
	Immunohistochemistry
	ELISA Assay
	Quantitative RT-PCR (qRT-PCR)
	RNA interference experiments
	Wound healing assay
	Transwell migration assay
	Proliferation assay

	Results
	MGP is upregulated in glioblastoma tissues
	MGP is upregulated in glioblastoma cell lines
	MGP is involved in glioma cell migration

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Pre-publication history

