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Abstract

Background: The development and progression of liver cancer may involve abnormal changes in
DNA methylation, which lead to the activation of certain proto-oncogenes, such as c-myc, as well
as the inactivation of certain tumor suppressors, such as p/6. Betaine, as an active methyl-donor,
maintains normal DNA methylation patterns. However, there are few investigations on the
protective effect of betaine in hepatocarcinogenesis.

Methods: Four groups of rats were given diethylinitrosamine (DEN) and fed with AIN-93G diets
supplemented with 0, 10, 20 or 40 g betaine/kg (model, 1%, 2%, and 4% betaine, respectively), while
the control group, received no DEN, fed with AIN-93G diet. Eight or |5 weeks later, the
expression of pl6 and c-myc mRNA was examined by Real-time PCR (Q-PCR). The DNA
methylation status within the p | 6 and c-myc promoter was analyzed using methylation-specific PCR.

Results: Compared with the model group, numbers and areas of glutathione S-transferase
placental form (GST-p)-positive foci were decreased in the livers of the rats treated with betaine
(P < 0.05). Although the frequency of plé promoter methylation in livers of the four DEN-fed
groups appeared to increase, there is no difference among these groups after 8 or 15 weeks (P >
0.05). Betaine supplementation attenuated the down-regulation of plé and inhibited the up-
regulation of c-myc induced by DEN in a dose-dependent manner (P < 0.01). Meanwhile, increases
in levels of malondialdehyde (MDA) and glutathione S-transferase (GST) in model, 2% and 4%
betaine groups were observed (P < 0.05). Finally, enhanced antioxidative capacity (T-AOC) was
observed in both the 2% and 4% betaine groups.

Conclusion: Our data suggest that betaine attenuates DEN-induced damage in rat liver and
reverses DEN-induced changes in mRNA levels.
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Background

Liver cancer is one of the most common types of malig-
nancy, especially in Asia and Africa, and it is the second
most common cause of cancer death in China [1,2].
Because of the very poor prognosis, the number of death
remains stubbornly high [1]. Despite the effort in advanc-
ing the treatment of this disease in recent decades, long-
term therapeutic outcome in liver cancer remains poor,
and the prognosis is dire. Thus, prevention appears to be
the best strategy for reducing the current prevalence of the
disease [3].

The development of liver cancer is a multistep process of
genetic alterations, involving the activation of proto-
oncogenes and the inactivation of tumor suppressors [4-
6], which lead to a continuous increase of uncontrolled
cellular proliferation. Therefore, abnormal expression of
related genes plays a crucial role in carcinogenesis. The c-
myc proto-oncogene encodes a transcription factor
involved in regulating cell proliferation, differentiation,
and apoptosis [5,7-9]. A few studies have shown that
hypomethylation of the c-myc gene promoter results in its
over-expression, especially in the methyl-absent condi-
tions [10,11]. C-myc over-expression is associated with
liver cancer development by causing inappropriate gene
expression which results in autonomous cellular prolifer-
ation [8,9,12]. The p16 tumor suppressor is an inhibitor of
cyclin D-dependent protein kinases, and it halts the cell
cycle in the G1 phase [13]. Several recent studies have
revealed that extensive DNA methylation is the primary
cause of p16 inactivation in liver cancer patients, and that
hypermethylation of p16 occurs not only in the liver can-
cer but also in the pre-neoplastic liver tissue as well [14-
16]. Abnormal changes in DNA methylation and mRNA
expression of c-myc and p16 are, therefore, the two impor-
tant stimulatory factors in the development of liver cancer
[14-16].

There is a growing body of evidence which supports that
chemoprevention is the cornerstone for precluding liver
cancer [3,17]. Betaine, found particularly in wheat, spin-
ach, and sugar beets, is an active methyl-donor. The main
biochemical function of betaine is to transfer one-carbon
moieties to maintain normal DNA methylation pattern in
the body [18-21]. Thus, it is reasonable to propose that
betaine may help to prevent liver cancer through regulat-
ing the expression of proto-oncogenes and tumor sup-
pressors by stabling their mythylation patterns. Although
some studies have suggested the role of betaine in pre-
venting alcoholic liver diseases [18,20], the effect of
betaine supplementation in preventing liver cancer has
not yet to be investigated. The purpose of this study is to
determine whether betaine supplementation attenuates
the development of liver cancer in a well established rat
model induced by diethylinitrosamine (DEN) treatment
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[3,17], as well as the exploration of mechanisms underly-
ing the attenuation effect.

Methods

Animals and dietary intervention

Seventy pathogen-free, weanling male Sprague-Dawley
rats (150 + 10 g) were purchased from the Animal Center
of Guangdong Province, and were kept in metabolism
cages with controlled temperature (23 + 2°C) and humid-
ity (55% =+ 5). All rats were acclimated for one week on a
standard AIN-93G diet, supplying 187 g/kg protein, 70 g/
kg fat, 50 g/kg fiber, and 3970 kcal/kg energy [22]. After a
week of acclimatization, rats were divided into five groups
according to their body weights. The control group was
provided with distilled water and AIN-93G diet. The four
experimental groups were given 0.01% diethylinitro-
samine solution (DEN; Sigma Chemical Co., St. Louis,
MO) and fed AIN-93G diets supplemented with 0, 10, 20,
or 40 g betaine/kg. They were designated as the model,
1%, 2%, and 4% betaine group, respectively. Rats were
housed individually and had free access to food and water
throughout the 15-week period. Body weight and food
consumption were recorded weekly. Betaine was pur-
chased from Cultor Ltd. (Finnsugar Bioproducts, Fin-
land). All the animal work procedures were approved by
the Institutional Animal Care and Use Committee of Sun
Yat-sen University.

Assay of serum marker enzymes

Five rats from each group were sacrificed by exsanguina-
tion under anesthesia after receiving the experiment diet
for 8 or 15 weeks. Blood was collected by femoral artery
puncture. Serum levels of alanine aminotransferase (ALT),
aspartate aminotransferase (AST), alkaline phosphatase
(ALP) and Gamma glutamyl transferase (GGT) were
measured by HITACHI autoanalyzer according to the
standard procedures using commercially available diag-
nostic kits (Sigma).

Assay of hepatic antioxidase and lipid peroxidation

The liver tissue were rapidly removed, washed in 0.9%
NaCl, kept on ice, and homogenized in ice cold isotonic
Na chloride. After centrifugation, the supernatant was col-
lected. Levels of hepatic antioxidase and lipid peroxida-
tion, including MDA, SOD, GSH, GST, and T-AOC, were
measured using corresponding diagnostic kits (Nanjing
Jiancheng Bioengineering Institute, Jiangsu province,
China). Protein concentrations were determined by
Coomassie Blue Staining method (Nanjing Jiancheng Bio-
engineering Institute, Jiangsu province, China).

Histopathology and immunohistochemistry

The livers were removed and 3 slices were taken from each
sublobe and fixed in 10% buffered formalin for his-
topathological examination. Two sections from each slice
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embedded in paraffin were prepared for the histopatho-
logical and immunohistochemical examinations. One
section was stained with hematoxylin and eosin (H&E)
and was examined under light microscopy for diagnosing
liver lesions. Another section was used for Immunohisto-
chemical staining of GST-p. The deparaffinized sections
were incubated with a rabbit polyclonal anti-GST-p anti-
body (1:1,000 dilution, MBL, Nagoya, Japan) overnight in
a humidified chamber at 4°C. The sections were then
washed with PBS, and incubated with a correspondent
secondary antibody. Subsequently, the sections were
reacted with diaminobenzidine and hydrogen peroxide
for 10 min. Control sections, in which the primary anti-
body was omitted, were treated in the same way and
showed no immunostaining. Slides were examined by
light microscopy, and the numbers and areas of GST-p-
positive foci (>0.2 mm diameter) and the total areas of the
liver sections were quantified using Scion Image (Scion
Corp., Frederick, MD, USA).

Methylation-specific PCR (MSP)

Genomic DNA was extracted from frozen tissues using a
DNeasy tissue kit (Promega, Madison, WI, America) fol-
lowing the manufacturer's instructions. Methylation sta-
tus of the CpG islands in the promoter region of c-myc and
p16 was determined by bisulfite modification and subse-
quent methylation-specific PCR, as previously described
with some modifications [12]. Briefly, 2 ug of genomic
DNA was used for bisulfite modification. MSP was per-
formed using methyl-specific primers (Forward and
reverse primer for c-myc were 5'-AAA CGA TAA GAG GCG
GAT ATA TAA C-3' and 5'-ATT TTC CAA CTC AAA AAT
CTA ATC G-3'. Forward and reverse primer for P16 were
5'-TAG TAT TGT ATT AGG TAG GGG CGC-3' and 5'-TAT
CGA TAA CCC GAA AAA CGT T-3'.) and unmethyl-spe-
cific primers (U forward and reverse for c-myc were 5'-ATG
ATA AGA GGT GGA TAT ATA ATG T-3' and 5'-TTT TCC
AAC TCA AAA ATC TAA TCA C-3'. U forward and reverse
for P16 were 5'-AGT ATT GTA TTA GGT AGG GGT GTG G-
3'and 5'-ACC TAT CAATAA CCC AAA AAA CATT-3'). The
PCR conditions were as follows: one cycle at 94°C for 5
min, 40 cycles at 94°C for 30 s, an annealing step for 30 s
at the appropriate temperature (59.5°C and 53.0°C for
primers to methylated and unmethylated c-myc, respec-
tively, and 62.0°C and 60.0°C for primers to methylated
and unmethylated p16), extension at 72°C for 30 s, and a
final extension step at 72°C for 10 min. Final PCR prod-
ucts were separated by electrophoresis in a 2% agarose gel
and visualized under UV illumination.

Real time PCR (Q-PCR) for c-myc and pl1é

Total RNA was extracted from liver tissues using RNAiso
Reagent (Takara Bio Co., Ltd., Kyoto, Japan). Comple-
mentary DNA (cDNA) was synthesized from 1 pg of puri-
fied total RNA using the first strand cDNA synthesis Kit
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(ToYoBo, Osaka, Japan). The c-myc and p16 genes were co-
amplified with a fragment of the glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) gene, which served as an
internal standard. Primer sequences for the p16 gene
(GenBank accession L81167) were: 5'-TGC AGA TAG ACT
AGC CAG GGC-3' (Forward Primer) and 5'-CTC GCA
GIT CGA ATC TGC AC-3' (Reverse Primer). Primer
sequences for the c-myc gene (GenBank accession
AY679730) were 5'-GCT CTC CGT CCT ATG TTG CG-3'
(Forward Primer) and 5'-TCG GAG ACC AGT TTG GCA G-
3' (Reverse Primer). Primers for the GAPDH gene (Gen-
Bank accession AF106860) were 5'-ACC AAC TGC TTA
GCC CCC C-3' (Forward Primer) and 5'-GCA TGT CAG
ATC CAC AAC GG-3' (Reverse Primer). Specification of
each pair of primers was tested by randomly sequencing
three clones, and further confirmed by the melting curve
analysis using Q-PCR [23]. The amplification efficiency of
each pair of primers was tested by constructing corre-
sponding plasmid. Only primers with similar amplifica-
tion efficiency were used in this experiment. Q-PCR was
conducted by amplifying 1.0 pl of diluted cDNA with the
SYBR Green Real-time PCR Master Mix kit (TOYOBO
Company, Japan) on the ABI 7500 sequence detection
system (Perkin-Elmer/PE Applied Biosystems). The
cycling conditions of forty cycles of PCR were 94°C/20 s,
58°C/20's, 72°C/20 s. The amount of specific mRNA was
quantified by determining the point at which the fluores-
cence accumulation entered the exponential phase (Ct),
and the Ct ratio of the target gene to GAPDH was calcu-
lated for each sample. Each sample was run in triplet
repeat and all the PCR data were analyzed with the ABI
7500 system software 4.0 version.

Statistical analysis

All mean values are reported as the mean + SD. Data were
analyzed using a one-way analysis of variance, followed
by least significant difference (LSD) test. Chi Square test
and Fisher's exact test were used to compare the incidence
of irregular DNA methylation. The level of significance
was set at P < 0.05 in all cases. All statistical analyses were
performed using SPSS software (Version 11.0) (SPSS Inc,
Chicago, IL).

Results

General observations

Rats in the control group grew well throughout the entire
experiment period. Although rats in other four groups
showed fluffy fur, glassy eyes and decreased movement,
the food intake and weight gain showed no significant dif-
ference among the groups (data not shown). Two rats of
the 2% betaine group died during the 4th week. In the 4%
betaine group, one rat died during the 5% week and
another one during the 6th week. One rat died in the 1%
betaine group during the 15th week.
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Histopathological Changes and immunohistochemical
expression of GST-P in Rat Livers

In the 8th week, apomorphosis, necrosis, and accrementi-
tion were apparent in the liver slices of the model, 1%,
2%, and 4% betaine groups (date not shown). In the 15t
week, widespread malignant cells were observed in the
four groups receiving DEN, whereas the model group
showed most severely malignancy (Fig. 1).

Since the abnormalities in the expression of GST-p, a cell
proliferation biomarker, play a critical role in the develop-
ment of liver cancer, we assessed the expression of GST-p
in liver cells. Numbers and areas of GST-p-positive foci in
the mode group were significantly increased when com-
pared with the control group (Fig. 2). Although there was
not statistical difference among the four betaine-treated
groups (P > 0.05), betaine supplementation was shown to
decrease numbers and areas of GST-p-positive foci in the
developing of liver cancer induced by DEN (P < 0.05) (Fig.
3). These observations collectively suggest that betaine
decreases the process of hepatocellular carcinoma in rats
induced by DEN.

Contents of ALT, AST, ALP, GGT

We observed marked increases in the levels of ALT, AST,
ALP and GGT in the four groups received DEN (P <
0.001). However, AST and ALT levels after 15 weeks in the
1% betaine group were shown to be deceased compared
with that in the model group (P < 0.05) (Table 1).

Hepatic Antioxidase and Lipid Peroxidation

After 8 week, both MDA and GST levels increased in the
model, 2% and 4% betaine groups (P < 0.05), but
decreased in the 1% betaine group when compared with
the model group (P < 0.05). T-AOC levels were also
shown to be increased in the 2% and 4% betaine groups
(P < 0.05) (Table 2) after 8 week.

DNA methylation status of c-myc

All rats of each group were evaluated for aberrant pro-
moter methylation of the ¢-myc gene using MSP. Methyl-
ated and unmethylated c-myc alleles were shown in Fig 4.

Figure |
Histopathological changes in rat livers. Livers of rats in model, 1%, 2%, and 4% betaine groups: widespread malignant cells
were observed, the model group showed most severe malignancy. Original magnification: 10 x 40. A: Control; B: Model; C: 1%
betaine; D: 2% betaine; E: 4% betaine.
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There was no statistically significant difference among the
groups after 8 (P > 0.05) and 15 weeks (P > 0.05)
(Table 3).

P16 Methylation

Fig 5 shows the results of p16 promoter DNA methylation
by MSP. Although the frequency of promoter methylation
for p16 in livers of the four DEN-fed groups appeared to
increase, we didn't see a difference among these four
groups after 8 or 15 weeks (P > 0.05) (Table 4).

Effects of betaine on c-myc and pl6 mRNA expression
Using Q-PCR, gene-specific mRNA expression was quanti-
fied in the livers from rats taking DEN solution (model,
1%, 2%, and 4% of betaine) for 15 weeks and results were
expressed relative to the number of GAPDH transcripts.
The mRNA levels of p16 and c-myc in livers of the control
group were set at 1.00, and mRNA expressions of the four
experimental groups were evaluated by its relative ratio.
As shown in Fig 6 and Fig 7, DEN treatment enhanced the
expression of c-myc after both 8 and 15 weeks, while
betaine supplementation decreased the stimulatory effect
on ¢-myc expression by DEN in a dose-dependent manner
after 15 weeks (P < 0.01). On the contrary, betaine supple-
mentation enhanced the down-regulation of p16 expres-
sion induced by DEN in a dose-dependent manner (P <
0.01).

Discussion

Diethylinitrosamine is a powerful hepatocarcinogen
known to induce cancer in experimental animals [3,17].
In our study, all rats given DEN developed the liver cancer,
demonstrating that Sprague-Dawley rat is a suitable
model in studying DEN induced liver cancer. DEN treat-
ment was shown to significantly increase both numbers
and areas of GST-p-positive foci (model group), while
betaine supplementation (in all the three experimental
groups) attenuated the effect of DEN. Although there was
no statistical difference among the betaine treatment
groups, betaine supplementation decreased the increase
of GST-p in the developing of liver cancer induced by
DEN. Collectively, these observations suggested that
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Figure 2
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D E

Immunohistochemical staining of GST-p. Control liver tissue: with weakly positive GST-p; Model liver tissue: with
strongly positive GST-p expression. 1%, 2%, and 4%betaine groups showed liver tissues with positive GST-p expression. Origi-
nal magnification: 10 x 40. A: Control; B: Model; C: 1% betaine; D: 2% betaine; E: 4% betaine.

betaine can decrease the process of hepatocellular carci-
noma in rats induced by DEN.

There is a strong correlation between oxidative stress and
the occurrence of liver cancer [24,25]. Enhanced lipid per-
oxidation and/or a dysregulated antioxidant system have
been associated with liver cancer in both experimental
animal models and in humans [24,25]. Betaine acts as a
methyl donor by participating in the generation of
methionine from homocysteine through the catalytic
action of betaine-homocysteine methyltransferase. Previ-
ous studies have shown that betaine is effective at prevent-
ing a variety of toxic injuries to the liver, such as those
induced by niacin, CCl,, and hyperosmolarity [26-28].
Betaine appears to confer this protection by reducing per-
oxidation in the liver [28]. In our study, we found that
MDA and GST levels decreased in the 1% betaine group
when compared with the model group. Although the
increase in the dosage of betaine did not increase the anti-
oxidation activity in a dose-dependent manner, our obser-
vations are consistent with the suggestion by Hayes et al.
that betaine is safe and nontoxic [29]. Betaine metabolism
occurs predominantly in the liver [20], and DEN is able to

generate acute damages in the rat liver [30]. We found that
T-AOC level was higher in the 2% and 4% betaine groups
than that in either the control or the model group. These
observations suggest that betaine may increase the antiox-
idation activity of the rat hepatocytes.

Carcinogenesis is a multi-stage process characterized by
continuous changes in genotypes and phenotypes [4,5,7-
14]. In the same way, hepatocarcinogenesis is a multistep
process involving genetic and epigenetic alterations of var-
ious oncogenes, proto-oncogenes, and growth factors, as
well as tumor suppressors [4,5,7-14]. DNA methylation is
a fundamental epigenetic process that regulates not only
gene transcription but also histone acetylation and chro-
mosomal stability [11,13,14,31]. DNA methylation, pri-
marily at the C5 position of cytosine, affects gene
expression during many biological processes, such as dif-
ferentiation, genomic imprinting, DNA mutation, and
DNA repair [11,13,14,31].

Aberrant methylation of cytosine residues at CpG dinucle-
otides in DNA is one of the most common epigenetic
changes observed in the development and progression of
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Figure 3

The numbers and areas of GST-p-positive foci in different groups of rat livers. Data are means + SD. Different letter

(such as "a" versus "b") on the top of each bar indicates P < 0.05 between them. A: Numbers; B: Areas.
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Table I: Levels Of ALT, AST, ALT and GGT
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Week group ALT(U/L) AST(U/L) ALP(U/L) GGT(U/L)
8w control 24.00 £ 2.12 197.60 + 12.09 120.80 + 10.47 7.40 £+ 1.58
model 3750 + 1.91* 247.00 + 15.16* 219.50 + 22.28* 27.10 £ 7.25%
|%betaine 30.80 £ 4.32 196.00 + | 1.874 210.60 + 19.60* 23.30 + 9.90*
2%betaine 38.20 + 3.44* 214.40 + 5.98%A 216.60 + 30.01* 38.10 + 11.21%
4%betaine 3220 £ 491* 206.00 + 7.784 234.00 + 27.51* 14.80 + 7.94
15w control 28.50 + 3.08 215.17 £ 17.88 126.67 + 15.86 11.42 £5.92
model 60.14 + | 1.47* 291.00 + 24.48* 232.86 + 14.33* 41.57 £ 14.38*
|%betaine 41.33 £ 4.55"4 23533+ 19.124 233.67 + 19.15*% 32.67 + 13.74%
2%betaine 51.14 + 9.80* 24843 £ 19.03"4 254.33 + 41.02* 43.29 £ 8.59*
4%betaine 57.57 + 7.99* 253.00 +22.53%4 246.17 + 25.09* 42.50 £ 10.75*

*Compared with the control group, p < 0.05. ACompared with the model group, p < 0.05.

human cancers, including that of the liver [31]. Shen et al.
have shown that environmental factors may influence the
frequency and concomitant degree of hypermethylation
in multiple genes in liver cancer [32]. They have also dem-
onstrated that oxidative damage can directly affect DNA
methylation status [32].

DNA methylation has been recognized as an important
factor in the inactivation of tumor suppressors, such as
p16, and in the activation of proto-oncogenes such as c-
myc. DNA hypermethylation, usually occurring at CpG
islands in promoters, is a major epigenetic mechanism in
the silencing of gene expression [15,16]. Aberrant methyl-
ation of CpG islands in the promoter region of p16 is asso-
ciated with transcriptional inactivation of pi6 itself.
Methylation at CpG islands may inhibit gene expression,
either directly by interrupting the binding of transcription
activators to the promoter, or indirectly through methyl-
binding proteins (MBPs) [15,16,32]. MBPs bind preferen-
tially to methylated DNA sequences of a promoter and
thereby silence its transcription by either competing with
transcription activators for the binding sites, or by pro-
moting histone deacetylation and chromatin remodeling

Table 2: Hepatic antioxidase and lipid peroxidation

that prevent transcription factors from binding to the
DNA [32]. C5 cytosine methylation at CpG sites not only
significantly increases carcinogen-DNA adduct formation
at CpG sites, but also affects carcinogen-DNA adduct for-
mation at surrounding sequences [33].

The p16 gene encodes an inhibitor of cyclin D-dependent
protein kinases. It reduces enzymatic activity of cyclin/cdk
complexes, leading to aberrant phosphorylation of
another tumor suppressor Rb, which, in turn, accelerates
cell proliferation [34,35]. When hypermethylation occurs
in the CpG islands within the 5' flanking region of p16, its
transcription is inhibited, which is a common marker of
the early carcinogenic event [34,35]. We found that com-
pared with the rats in the control group, the rats in all the
four DEN treated groups showed higher rates of hyper-
methylation and decreased mRNA levels of p16. This indi-
cates that p16 hypermethylation induces p16 silencing in
the rat liver cells, correlating with the development of liver
cancer.

C-myc is an important regulator of various cellular proc-
esses, and has been shown to drive quiescent cells into the

week GSH GST MDA SOD T-AOC
mgGSH/gprot U/mgprot nmol/mgprot U/mgprot U/mgprot
8w control 35.77 £ 3.39 27.37 £2.63 0.166 + 0.055 170.09 + 33.93 0.269 * 0.089
model 42.45 + 6.87 38.62 + 2.55*% 0.357 + 0.152* 164.98 + 56.91 0.609 + 0.248
| %betaine 39.05 £ 6.77 31.36 £3.10 0.145 + 0.0684 190.86 + 55.32 0.516 £ 0.201
2%betaine 41.23 +2.59 35.14 £ 3.29* 0.361 £ 0.116* 178.75 + 37.26 1.152 + 0.407*A
4%betaine 41.34 £ 5.21 35.23 + 4.22% 0.334 + 0.124* 183.74 + 83.19 0.755 + 0.361"4
15w control 38.21 £ 6.47 27.79 £ 6.73 0.236 + 0.088 167.70 + 44.01 0.363 + 0.096
model 3822 £9.11 29.29 +4.23 0.299 + 0.087 150.44 + 57.59 0.912 £ 0.290
| %betaine 40.19 + 4.96 2641 £ 3.46 0.222 + 0.032 161.79 + 40.13 0.564 + 0.184
2%betaine 39.99 £ 6.07 32.04 £ 6.89 0.231 + 0.062 184.92 + 38.38 0.942 + 0.183
4%betaine 36.13 £4.29 25.99 + 5.07 0.307 + 0.076 152.49 + 45.54 0.777 £ 0.184
*Compared with the control group, p < 0.05; ACompared with the model group, p < 0.05.
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Table 3: The methylation status of c-myc in the 8thand 15th week

group 8 w (M/U) 15w (M/U)

control 5(0) 9(0)

model 4(1) 8(1)
1%betaine 5(0) 7(1)
2%betaine 4(1) 7(0)
4%betaine 5(0) 6(1)

M: methylated; U:unmethylated. The methylation status of c-myc in
each group didn't show statistically significant differences after 8
weeks (P > 0.05) and 15 weeks (P > 0.05).

S phase in the absence of other mitogenic signals [5,7,12].
Diverse cellular functions of the c-myc oncogene are
closely tied to its ability to either activate or repress gene
transcription. Recently, a few studies have indicated that
hypomethylation of the c-myc gene results in its over-
expression in hepatocarcinogenesis, especially in the
methyl-absent conditions [10,11].

As a methyl donor, betaine is proposed to play a role in
homocysteine metabolism [36], and provides methyl
groups for the synthesis of S-adenosylmethionine (SAM)
[18,19,37]. The requirement of SAM for cellular metabo-
lism normally exceeds what mammals obtain through
their diets. Insufficiency in SAM can be prevented through
the methionine cycle that metabolizes 5'-methyltetrahy-
drofolate (5'-methyl-THF) and betaine [38]. In the
methionine cycle, both an increase in s-adenosyl-l1-homo-
cysteine (SAH) level and a decrease in the SAM:SAH ratio
are known to reduce DNA methyltransferase activity and
inhibit transmethylation reactions [18,19,37,39,42,43].
Betaine is effective at increasing the SAM:SAH ratio and

UMUMUM

100bp =
50bp—>

Figure 4
DNA methylation status of the c-myc promoter
region. U: unmethylated, 103 bp; M: methylated, 100 bp.
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UM UMUM

153bp

153bp 151bp

Figure 5
DNA methylation status of the pl6 gene promoter
region. U: unmethylated, |51 bp; M: methylated, 153 bp.

supposed to maintain normal DNA methylation patterns
[40].

In the present study, we have, however, found that betaine
had no effect on methylation of p16 or c-myc by MSP and
there were no differences in ¢c-myc methylation among the
five groups of rats. It may be necessary to use more sensi-
tive methods to quantify methylation levels. It is also pos-
sible that betaine plays a key role in maintaining complete
organism-wide methylation, not the methylation of a few,
specific genes. This requires further investigations.

There are two re-methylation pathways utilized by betaine
and 5'-methyl-THF, which are interrelated in the methio-
nine cycle. The limitation of one pathway increases re-
methylation via the other pathway [41]. Folic acid is the
precursor of 5'-methyl-THF, and it also takes part in cer-
tain important procedures like the synthesis and repara-
tion of DNA and RNA in addition to its effects on
regulating DNA methylation. Having efficient methyl
groups with three active methyls, betaine may reduce the
consumption of folic acid in the methionine cycle, and it
may play some part in maintaining DNA stability [42,43].
After metabolism, betaine molecules are degraded to NS,
N10-methenyl-tetra-hydrofolic acid and N>, N'0-methyl-
ene-tetra-hydrofolic acid, which can be reused in the syn-
thesis of purine and thymine. These actions can regulate
the mRNA expression.

Table 4: The methylation status of p/6 in the 8thand 15th week

group 8 w (M/U) 15w (M/U)
control 1(4) 3(6)
model 4(1) 7(2)
| %betaine 3(2) 6(2)
2%betaine 3(2) 6(1)
4%betaine 4(1) 7(0)

M: methylated; U:unmethylated. The methylation status of p/ 6 in each
group didn't show statistically significant differences after 8 weeks (P >
0.05) and 15 weeks (P > 0.05).
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@ control
B model
0O 1%betaine
0O 2%betaine
B 4%betaine

C-MYC/GADPH

15 week

8 week

Figure 6

Quantitation of MRNA levels of c-myc in the liver at
week 8 and 15 in model, 1%, 2% and 4% betaine
groups. Results were expressed relative to the control
group. Compared with the control group, the mRNA levels
of ¢-myc in the model group were increased after 8 weeks (P
<0.001) and I5 weeks (P < 0.001). Betaine significantly
decreased the up-regulation of c-myc expression induced by
DEN in a concentration-dependent manner (P < 0.01). Data
are means * SD. Different letter (such as "a" versus "b") on
the top of each bar indicates P < 0.05 between them.

We found c-myc over-expression in the four DEN treated
groups, while the enhancement was inhibited by betaine
in a dose-dependent manner. Meanwhile, betaine supple-
mentation also enhanced the down-regulation of p16
induced by DEN in a dose-dependent manner. These

@ control
B model
O 1%betaine
0 2%betaine

B 4%betaine

P16/GADPH

15 week

8 week

Figure 7

Quantitation of mMRNA levels of p16 in livers at week
8 and 15 in model, 1%, 2% and 4% betaine groups.
Results were expressed relative to the control group. The
mRNA levels of p/ 6 in the model group were decreased
after 8 weeks (P < 0.001) and I5 weeks (P < 0.001) and
betaine increased the down-regulation induced by DEN in a
dose-dependent manner (P < 0.01). Data are means * SD.
Different letter (such as "a" versus "b") on the top of each
bar indicates P < 0.05 between them.
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results suggest that betaine regulates transcription of c-myc
and p16, which leads to the stability of the two genes in
the body and attenuate the carcinogenic effects of DEN.

Conclusion

DEN induces disequilibrium in the lipid peroxidation and
antioxidation systems of the rat liver, and alters mRNA
expression levels of both p16 and c-myc. Betaine supple-
mentation attenuates carcinogenic effects of DEN in rat
livers and reverses DEN-induced changes in p16 and c-myc
mRNA expression.
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