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Abstract

Background: The nuclear factor-kB (NF-kB) family is a set of transcription factors with key roles
in the induction of the inflammatory response and may be the link between inflammation and cancer
development. This pathway has been shown to influence ovarian epithelial tissue repair. Inhibitors
of kB (IxB) prevent NF-kB activation by sequestering NF-kB proteins in the cytoplasm until kB
proteins are phosphorylated and degraded.

Methods: We used a case-control study to evaluate the association between single nucleotide
polymorphisms (SNPs) in NFKBIA and NFKBIB (the genes encoding lkBa and kB, respectively) and
risk of epithelial ovarian cancer. We queried |9 tagSNPs and putative-functional SNPs among 930
epithelial ovarian cancer cases and 1,037 controls from two studies.

Results: The minor allele for one synonymous SNP in NFKBIA, rs1957106, was associated with
decreased risk (p = 0.03).

Conclusion: Considering the number of single-SNP tests performed and null gene-level results,
we conclude that NFKBIA and NFKBIB are not likely to harbor ovarian cancer risk alleles. Due to its
biological significance in ovarian cancer, additional genes encoding NF-kB subunits, activating and
inhibiting molecules, and signaling molecules warrant interrogation.
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Background

Despite estimates of more than 21,000 newly diagnosed
cases of ovarian cancer and 15,000 related deaths each year
in the United States [1], the etiology of ovarian cancer
remains poorly understood. Known risk factors include
increased risk with family history and use of fertility drugs,
and decreased risk with oral contraceptive use, parity, and
long duration of breast feeding [2]. Rare, high-penetrant
mutations in BRCA1 and BRCA2 account for approxi-
mately 40% of familial risk, leaving most inherited risk
unexplained [3,4]. The search for additional loci includes
thoughtful selection of candidate genes in key biological
pathways, an approach which has been successful in iden-
tifying new risk alleles for a variety of cancers [5].

Inflammation has been implicated in ovarian carcinogen-
esis because of its role in ovulation and post-ovulatory
repair. During ovulation the ovarian epithelial surface is
damaged, requiring a repair process involving the recruit-
ment of leukocytes and inflammatory cytokines, release of
nitrous oxide, DNA repair, and tissue restructuring [6-9].
Over time, this continuous repair of the ovarian epithelial
tissue increases the likelihood of errors during replication,
potentially leading to carcinogenesis. Nuclear factor-xB
(NF-xB) refers to a family of "fast-acting" transcription
factors that play a critical role in the inflammatory and
innate immune responses [10]. Stimulation by pro-
inflammatory cytokines leads to the activation of NF-xB
complexes which regulate the expression of key genes con-
trolling apoptosis, angiogenesis, and cell proliferation
[10-13]. Aberrant NF-xB functioning can lead to inhibi-
tion of apoptosis, constitutive cell replication, and
increased angiogenesis, all of which are present in cancer
cells [14]. In ovarian cancer, several reports demonstrate
the complex relationship between the immune system
and established disease, suggesting a role for NF-«kB.
Immune effectors are thought to assist tumor growth;
immunosuppressive regulatory T cells are associated with
reduced survival, and the balance of the T cell subsets (reg-
ulated by NF-kB) has been shown to be critical to disease
outcome [15]. In addition, ovarian tumors acquire aber-
rant NF-xB functions allowing them to circumvent apop-
totic pathways, specifically tumor necrosis factor alpha-
(TNFa)-induced apoptosis, and afford protection against
environmental insults such as anti-tumor immune effec-
tors or chemotherapy [16-19].

Inhibitors of kB (IkB), IkBa, IkBf, and IkBe, modulate
NF-«B transcription by sequestering complexes of the NF-
kB subunits (NF-xkB1 [p50/p105], NF-xB2 [p52/p100],
RelA [p65], RelB, and c-Rel) in the cytoplasm [10,20]. In
response to stimulation by TNFa, interleukin-1 (IL-1),
and toll-like receptor (TLR) and T cell receptor (TCR) lig-
ands, IxB proteins are phosphorylated by IxB kinase (IKK)
complexes and degraded by the 26S proteasome, allowing
for the release and nuclear localization of NF-kB proteins
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[11,12,21,22]. Improper functioning of IxB proteins can
lead to inhibition or constitutive activation of NF-kB [20].
Because of NF-xB's central role in numerous cancer-
related processes and involvement in risk of others can-
cers [23-26], we hypothesized that inherited variation in
the genes encoding the key inhibitors IkBa and IxBf
(NFKBIA and NFKBIB, respectively) is associated with
ovarian cancer risk. To examine this hypothesis, we
assessed informative single-nucleotide polymorphisms
(SNPs) in two case-control study populations.

Methods

Study Participants

Participants were recruited at Mayo Clinic in Rochester,
MN and at Duke University in Durham, NC. Study proto-
cols were approved by the Mayo Clinic and Duke Univer-
sity Institutional Review Boards, and all study participants
provided informed consent. At Mayo Clinic, cases were
women over age 20 years with histologically-confirmed
epithelial ovarian cancer living in the Upper Midwest and
enrolled within one year of diagnosis. Controls without
ovarian cancer and without double oophorectomy were
recruited from women seen for general medical examina-
tions and frequency-matched to cases on age and region
of residence. At Duke University, cases were women
between age 20 and 74 years with histologically-con-
firmed primary epithelial ovarian cancer identified using
the North Carolina Central Cancer Registry's rapid case
ascertainment system within a 48-county region. Controls
without ovarian cancer and who had at least one intact
ovary were identified from the same region as the cases
using list-assisted random digit dialing and frequency-
matched to cases on race and age. Women with borderline
and invasive disease were included; cases were 60%
serous, 10% mucinous, 14% endometriod, 6% clear cell,
and 9% multiple or other histologies. Additional partici-
pant details are provided elsewhere [27].

Data and Biospecimen Collection

Information on known and suspected risk factors were
collected through in-person interviews at both sites using
similar questionnaires. Mayo Clinic participants had an
extra vial of blood drawn during their scheduled medical
visit, and DNA was extracted from 10 to 15 mL fresh
peripheral blood using the Gentra AutoPure LS Purgene
salting out methodology (Gentra, Minneapolis, MN).
Duke University participants had venipuncture performed
at the conclusion of their interview. DNA samples were
transferred to Mayo Clinic and, because of the relatively
low quantities of DNA, they were whole-genome ampli-
fied (WGA) with the REPLI-G protocol (Qiagen Inc,
Valencia CA) which we have shown to yield highly repro-
ducible results with these samples [28]. Genomic and
WGA DNA concentrations were adjusted to 50 mg/pl
before genotyping and verified using PicoGreen dsDNA
Quantitation kit (Molecular Probes, Inc., Eugene OR).
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Table I: Selected Characteristics of Study Participants
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Mayo Clinic Duke University
Cases (N =396) Controls p-value Cases Controls p-value
(N = 469) (N =534) (N =568)
Age Mean (S.D.) yrs 59.8 (13.3) 60.1 (13.0) 0.82 54 (11.5) 54.7 (12.2) 0.35
Race White 385 (97.2) 462 (98.5) 0.73 444 (83.3) 479 (84.3) 0.77
African American 3(0.8) 2 (0.4) 70 (13.1) 74 (13.0)
Asian 2 (0.5) 1 (0.2) 6 (1.1 2 (0.4)
Hispanic 3(0.8) 3(0.6) 5(0.9) 5(0.9)
Native American 0 (0.0 0 (0.0) 5(0.9) 6 (1.1)
Other 3(0.8) 1 (0.2) 3 (0.6) 2 (0.4)
Body mass index < 23 kg/m? 79 (20.7) 110 (25.1) 0.02 132 (25.4) 139 (25.2) 0.29
23-26 kg/m? 88 (23.1) 121 (27.6) 117 (22.5) 124 (22.5)
26-29 kg/m2 98 (25.7) 112 (25.6) 106 (20.4) 136 (24.7)
> 29 kg/m? 116 (30.4) 95 (21.7) 165 (31.7) 152 (27.6)
Age at menarche <I12yrs 55 (18.7) 68 (15.8) 0.46 130 (24.4) 118 (20.8) 0.44
12 yrs 77 (26.2) 100 (23.2) 153 (28.8) 166 (29.2)
13 yrs 79 (26.9) 126 (29.2) 134 (25.2) 161 (28.3)
> 14 yrs 83 (28.2) 137 (31.8) 115 (21.6) 123 (21.7)
Oral contraceptive Never 176 (47.6) 166 (38.4) <0.001 182 (34.7) 181 (32.2) 0.36
use
1-48 months 98 (26.5) 92 (21.3) 158 (30.2) 160 (28.5)
> 48 months 96 (25.9) 174 (40.3) 184 (35.1) 221 (39.3)
Postmenopausal Yes 266 (70.2) 333 (75.3) 0.10 354 (71.7) 372 (67) 0.11
No 113 (29.8) 109 (24.7) 140 (28.3) 183 (33)
Postmenopausal Never 240 (63.8) 248 (58.6) 0.31 196 (37.7) 349 (63) <
hormone use 0.001
1-60 months 64 (17) 80 (18.9) 207 (39.8) 109 (19.7)
> 60 months 72 (19.1) 95 (22.5) 117 (22.5) 96 (17.3)
Parity, n/Age at first ~ Nulliparous 70 (18.3) 66 (15) 0.07 113 (21.2) 73 (12.9) 0.003
birth, yrs
1-2/<20 yrs 29 (7.6) 25 (5.7) 73 (13.7) 69 (12.1)
1-2/> 20 yrs 103 (26.9) 131 (29.8) 193 (36.2) 233 (41)
>3/<20yrs 73 (19.1) 64 (14.5) 81 (15.2) 93 (l16.4)
> 3/>20yrs 108 (28.2) 154 (35) 73 (13.7) 100 (17.6)
Ovarian cancer family ~ Yes 51 (13.3) 33(74) 0.01 42 (7.9) 25 (4.4) 0.02
history
No 333 (86.7) 411 (92.6) 492 (92.1) 543 (95.6)
Ovarian or breast Yes 167 (43.5) 189 (42.6) 0.79 196 (36.7) 190 (33.5) 0.26
cancer family history
No 217 (56.5) 255 (57.4) 338 (63.3) 378 (66.5)
Smoking, pack years ~ None 233 (64.9) 285 (68.3) 0.29 297 (57.6) 291 (53.5) 0.41
<=20 71 (19.8) 84 (20.1) 130 (25.2) 148 (27.2)
>20 55 (15.3) 48 (11.5) 89 (17.2) 105 (19.3)
Education achieved No diploma 25 (6.9) 19 (4.3) <0.001 53 (9.9) 69 (12.1) 0.40
High school 136 (37.4) 117 (26.4) 153 (28.7) 149 (26.2)
diploma
Post high school 203 (55.8) 307 (69.3) 327 (61.4) 350 (61.6)

Data are counts (percentage) unless otherwise indicated. Counts do not total to 1,967 subjects due to missing data for some variables. P-values are
from within-sites tests of case-control differences; continuous variables (t-test) and categorical variables (Chi square test). Family history, in first or
second degree relative; bold indicates p < 0.05.
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Samples were bar-coded to ensure accurate and reliable
sample processing and storage.

SNP Selection

The selection of informative tagSNPs from among a larger
pool of available SNPs allows for maximal genomic cover-
age and reduced genotyping redundancy [29]. We identi-
fied tagSNPs within five kb of NFKBIA (chromosome
14q13.2, RefSeq NM_020529.1) and NFKBIB (chromo-
some 19q13.2, RefSeq NM_002503.3) using the algorithm
of 1dSelect [29] to bin pairwise-correlated SNPs at r2> 0.80
with minor allele frequency (MAF) > 0.05 among publicly-
available European-American data from the National
Heart, Lung, and Blood Institute's Program for Genomic
Applications SeattleSNPs gene-resequencing effort [30].
Within bins of SNPs in linkage disequilibrium (LD), tag-
SNPs with the maximum predicted likelihood of genotype
success (Illumina-provided SNP_Score, San Diego, CA)
were selected. Within each gene, we binned 26 SNPs result-
ingin 13 tagSNPs in NFKBIA and eight tagSNPs in NFKBIB;
four singleton SNPs in NFKBIA and two singleton SNPs in
NFKBIB failed conversion in development of the custom
genotype panel and were excluded. The inclusion of addi-
tional SNPs with particular suspected functional relevance
further increases coverage in a hypothesis-based manner at
minimal increased cost; thus, we included all putative-
functional SNPs (within 1 kb upstream, 5' UTR, 3' UTR, or
non-synonymous) with MAF > 0.05 identified in Ensembl

http://www.biomedcentral.com/1471-2407/9/170

version 34 and [llumina-provided SNP_Score > 0.6, result-
ing in one additional 3' UTR and three additional 5'
upstream SNPs in NFKBIA. A total of 13 NFKBIA SNPs and
six NFKBIB SNPs were genotyped (see Additional file 1).

Genotyping

Genotyping of 1,086 genomic and 1,282 WGA DNA sam-
ples (total = 2,368 including duplicates and laboratory
controls) on 2,051 unique study participants was per-
formed at Mayo Clinic using the Illumina GoldenGate™
BeadArray assay and BeadStudio software for automated
genotype clustering and calling separately for genomic
and WGA samples according to a standard protocol [31].
A total of 1,536 SNPs in a variety of pathways were
attempted (including NFKBIA and NFKBIB), and 57 SNPs
failed (poor clustering or call rate < 95%). Of 2,051 par-
ticipants genotyped, 10 were ineligible and excluded, and
74 samples failed (call rate < 90%). Additional quality
control (QC) information on the overall panel is provided
elsewhere [28]. In NFKBIA and NFKBIB, 18 of the 19 SNPs
were successfully genotyped in both study populations
(call rates > 98.9%); NFKBIA 153138050 was excluded for
Duke University samples due to poor clustering. For gen-
otype QC metrics see Additional file 1.

Statistical Analysis
Distributions of demographic and clinical variables were
compared across case status using chi-square tests and t-

Table 2: NFKBIA and NFKBIB Polymorphisms and Adjusted Risk of Epithelial Ovarian Cancer

General Model OR (95%Cl)

Ordinal Model OR (95% ClI)

Gene SNP ID bp to next MAF AB v AA BB v AA p-value per-allele p-value
NFKBIA  rs3138055 639 0.28 0.99 (0.81-1.20) 1.02 (0.72—-1.46) 0.98 1.00 (0.87—1.16) 0.99
rs696 124 0.38 0.94 (0.77-1.15) 0.85 (0.64-1.14) 0.54 0.93 (0.81-1.06) 0.28
rs8904 190 0.38 0.93 (0.76-1.13) 0.84 (0.63-1.13) 0.49 0.92 (0.80-1.05) 0.24
rs1022714 900 0.21 0.94 (0.78-1.15) 0.98 (0.61-1.59) 0.85 0.96 (0.82—1.13) 0.65
rs3138054 485 0.17 1.18 (0.97—1.44) 0.97 (0.51-1.85) 0.26 1.13 (0.94-1.35) 0.19
rs2233415 978 0.27 0.84 (0.69-1.02) 0.93 (0.65-1.32) 0.22 0.91 (0.78-1.05) 0.20
rs1957106 500 0.30 0.77 (0.63-0.94) 0.92 (0.65-1.30) 0.03 0.87 (0.76-1.01) 0.07
rs2233409 253 0.23 I.11(0.92-1.35) 0.93 (0.61-1.40) 0.48 1.04 (0.89-1.21) 0.6l
rs2233407 331 0.06 1.27 (0.96-1.70) 0.24 (0.04-1.24) 0.06 1.13 (0.86-1.47) 0.38
rs3138053 515 0.29 1.03 (0.85-1.25) 1.06 (0.75-1.49) 0.93 1.03 (0.89-1.19) 0.70
rs3138050 2,352 0.22 1.04 (0.77-1.40) 2.28 (1.10-4.73) 0.09 1.20 (0.94-1.54) 0.14
rs3138045 5214 0.22 1.00 (0.82-1.22) 1.25 (0.80-1.97) 0.62 1.05 (0.89-1.23) 0.56
rs2007960 --- 0.39 1.03 (0.84-1.26) 1.02 (0.78-1.34) 0.96 1.01 (0.89-1.16) 0.83
NFKBIB  rs2053071 886 0.35 0.87 (0.71-1.06) 1.08 (0.80—1.46) 0.22 0.99 (0.86—1.13) 0.86
rs12979755 3,098 0.39 0.99 (0.81-1.21) 0.99 (0.75-1.31) 0.99 0.99 (0.87-1.14) 0.93
rs8108039 3,501 0.19 0.99 (0.81-1.21) 1.40 (0.82-2.38) 0.44 1.05 (0.89-1.24) 0.57
rs3136642 233 0.39 1.03 (0.84-1.26) 1.05 (0.80-1.39) 0.93 1.03 (0.90-1.17) 0.71
rs3136645 628 0.20 1.02 (0.83-1.24) 1.23 (0.76-1.99) 0.70 1.05 (0.89-1.24) 0.56
rs3136646 - 0.22 0.99 (0.81-1.21) 0.78 (0.51-1.18) 0.49 0.94 (0.80-1.10) 0.41

Adjusted for race, age, area of residence, body mass index, hormone therapy use, oral contraceptive use, parity, and age at first birth; NFKBIA
rs3138050 exclude Duke University participants; MAF, minor allele frequency among controls; bold = < 0.05; bp to next represents distance in base

pairs between SNPs.
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tests as appropriate. Individual SNP associations for ovar-
ian cancer risk were assessed using logistic regression, in
which odds ratios (ORs) and 95% confidence intervals
(CIs) were estimated. Primary tests for associations
assumed an ordinal (log-additive) effect with simple tests
for trend, as well as separate comparisons of heterozygous
and minor allele homozygous women to major allele
homozygous women (referent) using a 2 degree-of-free-
dom (d.f.) test. In addition, we used a gene-centric princi-
pal components analysis to create orthogonal linear
combinations of minor allele counts. The component lin-
ear combinations that accounted for at least 90% of the
variability in the gene were included in a multivariable
logistic regression model and simultaneously tested for
gene-specific global significance using a likelihood ratio
test. Haplotype frequencies were also estimated within
each gene and a global haplotype score test of association
between haplotypes and ovarian cancer risk was con-
ducted at the gene level using a score test [32]. Individual
haplotype tests compared each haplotype to all other hap-
lotypes combined. NFKBIA rs3138050 was excluded from
gene-level analyses due to failed genotyping in Duke Uni-
versity participants. All analyses were adjusted for age,
race, region of residence, body mass index, hormone ther-
apy use, oral contraceptive use, parity, and age at first

birth. We used SAS (SAS Institute, Cary, NC, Version 8,

1999), Haplo.stats http://mayoresearch.mayo.edu/mayo/

research/biostat/schaid.cfm, and S-Plus (Insightful Corp,
Seattle, WA, Version 7.05, 2005) software systems.

Results

Demographic, reproductive, and lifestyle characteristics of
1,967 epithelial ovarian cancer cases and controls are
described in Table 1; generally, the expected distributions
in risk factors were observed. As expected given our use of
tagSNPs with the inclusion of additional functional SNPs
(see Additional file 1), LD (defined as r2 > 0.8) was
observed between only a few pairs of NFKBIA SNPs and
among no pairs of NFKBIB SNPs (Figure 1). Risk of ovar-
ian cancer associated with each SNP is provided in Table
2. Only one SNP in NFKBIA (synonymous coding SNP
1$s1957106) showed evidence of association (p = 0.03;
adjusted OR, 95% CI: heterozygous 0.77, 0.63-0.94,
minor allele homozygous 0.92, 0.65-1.30). Although
both ORs are consistent with decreased risk, this over-
dominant pattern is unusual and may be due to chance. A
second SNP in NFKBIA (5' upstream SNP rs3138050) was
associated with increased risk assuming a recessive model
(minor allele homozygotes v. other genotype groups com-
bined; adjusted OR, 95% CI, 2.24, 1.09-4.61, p = 0.03).
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This SNP did not adequately genotype in Duke University
samples, thus the sample size was limited to Mayo Clinic
participants only. No individual SNPs in NFKBIB were
associated with ovarian cancer risk at p < 0.05. Consider-
ing the number of statistical tests, all SNPs lose statistical
significance.

To assess whether overall variation within each gene was
associated with ovarian cancer risk, we performed multi-
ple logistic regression for participants with complete gen-
otype data (N = 1,901 for NFKBIA, N = 1,930 for NFKBIB).
Gene-level logistic regression revealed null results (NFK-
BIA, d.f. = 12, p = 0.23; NFKBIB, d.f. = 6, p = 0.97) as did
the potentially more-powerful logistic regression analysis
using principal components (NFKBIA, d.f. = 6, p = 0.79;
NFKBIB, d.f. = 4, p = 0.89).

Haplotype analysis can reveal hidden associations with
alleles at ungenotyped variants. Within NFKBIA, five hap-
lotypes were estimated to have frequencies > 0.05; no
associations were observed with any of these. Three rare
haplotypes were associated with increased risk (see Addi-
tional file 2); however, overall variation among all haplo-
types combined was not associated with risk (p = 0.32).
Four NFKBIB haplotypes had estimated frequencies >
0.05; no common or rare haplotypes were associated with
risk, and overall haplotype associations were null (p =
0.50). In summary, single-SNP, multi-SNP, and haplotype
analyses do not indicate that NFKBIA or NFKBIB harbor
risk alleles for ovarian cancer.

Discussion

To our knowledge, this is the first examination of inher-
ited variation in the NF-kB signaling pathway in relation
to epithelial ovarian cancer risk. The two genes studied,
NFKBIA and NFKBIB, encode IkBs with critical roles in
regulating NF-kB transcription by directly binding to NF-
kB subunits in the cytoplasm. We assessed a comprehen-
sive set of SNPs in these two genes in a large combined
case-control study, and found no evidence of association.
Strengths of this study include large sample size, choice of
candidate genes, use of multiple study populations, LD-
based SNP selection, robust genotyping, control of poten-
tial confounding variables, and application of a variety of
genetic analysis tools. Limitations of this study include
the focus on only two genes in a large pathway, the lack of
an independent replication outside of the Mayo Clinic
and Duke University datasets, and the lack of functional
analyses. This study was designed to detect modest genetic
associations with ovarian cancer risk; results suggest that
common risk alleles of modest effect size may not reside
in NFKBIA or NFKBIB.

Although no association was found here, inherited variation
in NFKBIA and NFKBIB have been associated with increased
risk of other cancers including melanoma [26], colorectal

http://www.biomedcentral.com/1471-2407/9/170

cancer [25], multiple myeloma [24], and Hodgkin lym-
phoma [23]. Considering the vast evidence on the impor-
tance of NF-«B in carcinogenesis, additional examination of
NF-kB including study of inherited variation in the NF-xB
pathway and risk of epithelial ovarian cancer is warranted.

Conclusion

Study of inherited variation within the NF-xB pathway
has the potential to identify risk alleles accounting for the
residual increased familial risk of ovarian cancer [3]. The
present analysis is an early epidemiologic assessment
which indicates that NFKBIA and NFKBIB are not likely to
harbor risk alleles under our statistical assumptions; the
key limitation of our study is its focus on only two genes.
Other genes to examine are numerous and a more thor-
ough examination of polymorphisms within this pathway
is needed to better understand the complexities of ovarian
carcinogenesis.
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