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Abstract

Background: Because screening mammography for breast cancer is less effective for
premenopausal women, we investigated the feasibility of a diagnostic blood test using serum
proteins.

Methods: This study used a set of 98 serum proteins and chose diagnostically relevant subsets via
various feature-selection techniques. Because of significant noise in the data set, we applied iterated
Bayesian model averaging to account for model selection uncertainty and to improve generalization
performance. We assessed generalization performance using leave-one-out cross-validation
(LOOCYV) and receiver operating characteristic (ROC) curve analysis.

Results: The classifiers were able to distinguish normal tissue from breast cancer with a
classification performance of AUC = 0.82 £ 0.04 with the proteins MIF, MMP-9, and MPO. The
classifiers distinguished normal tissue from benign lesions similarly at AUC = 0.80 + 0.05. However,
the serum proteins of benign and malignant lesions were indistinguishable (AUC = 0.55 + 0.06).
The classification tasks of normal vs. cancer and normal vs. benign selected the same top feature:
MIF, which suggests that the biomarkers indicated inflammatory response rather than cancer.

Conclusion: Overall, the selected serum proteins showed moderate ability for detecting lesions.
However, they are probably more indicative of secondary effects such as inflammation rather than
specific for malignancy.

Background moderate sensitivity [1] and specificity [2-4] and low pos-
The high prevalence of breast cancer motivates the devel- itive-predictive value in younger women |[1], researchers
opment of better screening and diagnostic technologies. ~ have investigated the efficacy of detecting breast cancer
To complement mammography screening, which has  using proteins. Proteins offer detailed information about
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tissue health conditions, allowing the identification of
cancer type and risk, and thereby prompting potentially
better-targeted and more effective treatment. Some studies
have correlated breast cancer prognosis with proteins in
the tumor [5], such as hormone receptors, HER-2, uroki-
nase plasminogen activator, and plasminogen activator
inhibitor 1 [6,7], and caPCNA [8]. However, accessing
these local proteins requires biopsies, which is not practi-
cal for a screening regimen. We therefore consider serum
proteins. Serum and plasma protein-based screening tests
have already been developed for many diseases, such as
Alzheimer's disease [9], cardiovascular disease [10], pros-
tate cancer [11], and ovarian cancer [12].

For breast cancer, however, there are currently very few
serum markers used clinically. Some studies have identi-
fied as possible breast cancer markers the proteins CA
15.3 [13-15], BR 27.29, tissue polypeptide antigen (TPA),
tissue polypeptide specific antigen (TPS), shed HER-2
[15], and BC1, BC2, and BC3 [16,17]. However, other
studies found a lack of sufficient diagnostic ability in
serum proteins, including CA 15.3 [13,17-20], CA 125
[20], CA 19.9 [20], CA 125 [20], BR 27.29 [13,18], and
carcinoembryonic antigen (CEA) [13]. The European
Group of Tumor Markers identified the MUC-1 mucin
glycoproteins CA 15.3 and BR 27.29 as the best serum
markers for breast cancer, but they could not recommend
these proteins for diagnosis due to low sensitivity [18].

Cancer biomarkers are valued according to their specifi-
city and sensitivity, suiting them for different clinical
roles. For example, general population screening requires
high sensitivity but not necessarily high specificity, if a
low-cost secondary screen is available. Conversely, disease
recurrence monitoring requires high specificity but not
necessarily high sensitivity, if a more sensitive secondary
test is available. Therefore to optimize clinical utility, it is
important to measure the sensitivity and specificity of any
proposed biomarker. Because solid tumors cause many
changes in the surrounding tissue, it is likely that some
potential biomarkers measure the body's response to can-
cer rather than the cancer itself. Cancer marker levels may
be increased due to various secondary factors, such as
therapy-mediated response [21-23] and benign diseases.
For example, CA 15-3 levels increase in chronic active
hepatitis, liver cirrhosis, sarcoidosis [24], hypothyroidism
[25], megablastic anemia [26], and beta-thalassaemia
[27]. To help measure biomarker specificity in our study,
we included normal, benign, and malignant samples.

In general, breast cancer biomarker studies have found
individual circulating proteins, but it is important to con-
sider covariation of multiple protein levels. It is useful to
know which combinations of proteins may yield high
diagnostic performance, even though each protein indi-
vidually might yield low performance [28,29]. Some stud-
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ies have detected discriminatory breast cancer biomarkers
using mass spectrometry. [16,30-36] Because of mass
spectrometry's peak interpretation and reproducibility
challenges [37,38], scientists have searched for breast can-
cer biomarkers from predefined collections of known can-
didate markers using newer multiplex technologies, such
as reverse-phase protein microarray [39]. To our knowl-
edge, ours is the first study to assess a large set of serum
proteins collectively by a sensitive and specific multiplex
assay in order to identify the most promising proteins for
breast cancer detection.

Although studies have shown correlations between serum
proteins and breast cancer, it is often unclear how these
correlations translate into clinical applicability for diag-
nosis. To quantify the diagnostic performance of a set of
proposed biomarkers, we have implemented many statis-
tical and machine-learning models. We have focused on
Bayesian models, which provide full posterior predictive
distributions. This detailed information would help a
physician to judge how much emphasis to place on the
classifier's diagnostic prediction.

The goal of this study was to quantify the ability of serum
proteins to detect breast cancer. For measuring predictive
performance on this noisy data set, we used many statisti-
cal classification models. To better understand the cancer-
specificity of the screening test, we ran the classifiers on
proteins from malignant lesions, benign lesions, and nor-
mal breast tissue. Our data indicated that some serum
proteins can detect moderately well the presence of a
breast lesion, but they could not distinguish benign from
malignant lesions.

Methods

Enrolling subjects

This study enrolled 97 subjects undergoing diagnostic
biopsy for breast cancer and 68 normal controls at Duke
University Medical Center from June 1999 to October
2005. Women donating blood to this study were either
undergoing image guided biopsy to diagnose a primary
breast lesion (benign and cancer) or were undergoing rou-
tine screening mammography and had no evidence of
breast abnormalities (normal). All subjects were enrolled
only after obtaining written informed consent for this
Duke IRB approved study (P.I., JRM, current registry
number, 9204-07-11E1ER, Early Detection of Breast Can-
cer Using Circulating Markers). All subjects were premen-
opausal women. Table 1 shows the demographics of the
study population. Additional file 1 shows subjects' ages
and histology findings.

Measuring serum protein levels with ELISA

Blood sera were collected under the HIPAA-compliant
protocol "Blood and Tissue Bank for the Discovery and
Validation of Circulating Breast Cancer Markers." Blood
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Table I: Subject demographics

Normal  Benign Malignant Total
Number of subjects 68 (41%) 48 (29%) 49 (30%) 165 (100%)
Mean age (years) 36+8 38+9 42+4 38+8
Race: Black 23 (41%) 19 34%) 14 (25%) 56 (34%)
Race: White 45 (41%) 29 (27%) 35(32%) 109 (66%)

was collected from subjects prior to surgical resection. All
specimens were collected in red-stoppered tubes and
processed generally within 4 hours (but not greater than
12 hours) after collection and stored at -80°C. Sera were
assayed using the Enzyme-Linked ImmunoSorbent Assay
(ELISA, Luminex platform) and reagents in the Luminex
Core Facility of University of Pittsburgh Cancer Institute.
The Luminex protocol was optimized for analytical per-
formance as described by Gorelik et al. [12]. One replicate
per patient sample was performed with reactions from
100 beads measured and averaged. All samples were ana-
lyzed on the same day using the same lot of reagents.
Complete information about characteristics of individual
assays including inter- and intra-assay coefficients of vari-
ation (CVs) is available from the manufacturers of assays
[see Additional file 2] and from the Luminex Core website
http://www.upci.upmc.edu/luminex/sources.cfm. Based
on our analysis of assays performed monthly within one
month interval for 3 months using the same lot of rea-
gents, the intra-assay CV for different analytes was in the
range of 0.7-11% (typically < 5%) and inter-assay 3.7-
19% (<11% for same lot reagents).

Biomarkers were selected based on the known literature
reports about their association with breast cancer. The 98
assayed proteins are shown in Table 2, with further details
in Additional file 2. In addition to the protein levels,
patient age and race were also recorded.

Regression with variable selection

In order to incorporate these proteins into a breast cancer
screening tool, we built statistical models linking the pro-
tein levels to the probability of malignancy. We used
the following three common regression models: linear
regression Y, =X,8+ & &~ N(0,0?), logistic regression

Xib

1+eXiP

= ®O(X;, B), where Y is the response vector (breast cancer

Pr(Y;=1|8)= , and probit regression Pr(Y;= 1| /)

diagnosis), X is the matrix of observed data (protein lev-
els), B 1is the vector of coefficients, ¢ is additive noise, and
®(-) is the cumulative distribution function of the nor-
mal distribution. These classical models become unstable
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and predict poorly if there are relatively few observations
(curse of dataset sparsity [40]) and many features (curse of
dimensionality [41]). It is better to choose a subset of use-
ful features. We used stepwise feature selection [42-46] to
choose the set of proteins that optimized model fit.

However, choosing only one feature subset for prediction
comes with an inherent risk. When multiple possible sta-
tistical models fit the observed data similarly well, it is
risky to make inferences and predictions based only on a
single model [47]. In this case predictive performance suf-
fers, because standard statistical inference typically
ignores model uncertainty.

Accounting for model uncertainty with Bayesian model
averaging

We accounted for model-selection ambiguity by using a
Bayesian approach to average over the possible models.
We considered a set of models M,,..., My, where each
model M, consists of a family of distributions p(D|§,, M,)
indexed by the parameter vector 6,, where D = (X, Y) is the
observed data. Y is the response vector (breast cancer diag-
nosis), and X is the matrix of observed data (protein lev-
els). Using a Bayesian method to average over the set of
considered models [47-52], we first assigned a prior prob-
ability distribution p(D|M,) to the parameters of each
model M,,. This formulation allows a conditional factori-
zation of the joint distribution,

p(D, 6y, My,) = p(D | 6., M}, )p(O), | M, )p(M,,). (1)

Splitting the joint distribution in this way allowed us to
implicitly embed the various models inside one large hier-
archical mixture model. This form allowed us to fit these
models using the computational machinery of Bayesian
model averaging (BMA).

BMA accounts for model uncertainty by averaging over
the posterior distributions of multiple models, allowing
for more robust predictive performance. If we are inter-
ested in predicting a future observation D;from the same
process that generated the observed data D, then we can
represent the predictive posterior distribution p(Dy|D) as
an average over the models, weighted by their posterior
probabilities [47,53,54]:

p(D; D)= Y p(D;|D,MIP(M, D) (2)
k

where the sum's first term p(Dy|D, M,) is a posterior
weighted mixture of conditional predictive distributions

P(Dy | D,My) = [ P(Dy |04, MP(O | D M)
3)
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Table 2: List of the 98 serum proteins measured by ELISA assay (Luminex platform)

ACTH

Adiponectin

AFP

Angiostatin

Apolipoprotein Al

Apolipoprotein Apo A2

Apolipoprotein Apo B

Apolipoprotein Apo C2

Apolipoprotein Apo C3 Apolipoprotein Apo E CA 15-3 CA 19-9
CA-125 CA72-4 CDA40L (TRAP) CEA
Cytokeratin 19 DR5 EGF EGFR
EOTAXIN ErbB2 FGF-b Fibrinogen
Fractalkine FSH G-CSF GH
GM-CSF GROa Haptoglobin HGF
IFN-a IFN-g IGFBP-1 IL-10
IL-12p40 IL-13 IL-15 IL-17
IL-1a IL-1b IL-1Ra IL-2

IL-2R IL-4 IL-5 IL-6

IL-7 IL-8 IP-10 Kallikrein 10
Kallikrein 8 Leptin LH MCP-1
MCP-2 MCP-3 Mesothelin(IgY) MICA

MIF MIG MIP-1a MIP-1b
MMP-| MMP-12 MMP-13 MMP-2
MMP-3 MMP-7 MMP-8 MMP-9
MPO NGF PAI-I(active) PROLACTIN
RANTES Resistin S-100 SAA

SCC sE-Selectin sFas sFasL
sICAM-1 sIL-6R sVCAM-| TGFa
TNF-a TNF-RI TNF-RII tPAI-|
TSH TTR ULBP-1 ULBP-2
ULBP-3 VEGF
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and the sum's second term p(M,|D) is a model's posterior
distribution

| D) = PDIMi)p(Mp)

p(M POl () ()

which incorporates the model's marginal likelihood

p(D|My) = [ P(D |04 MPO: | MOy (5)

Promoting computational efficiency with iterated BMA
BMA allows us to average over all possible models, contain-
ing all possible subsets of features. However, considering
many models would require extensive computations, espe-
cially when computing the posterior predictive distributions.
Such computations would be prohibitively long for a quick
screening tool that is intended not to impede clinicians'
workflow during routine breast cancer screening. Because it
was computationally infeasible to consider all possible
2100~1.26*103% models, we first chose a set of the best fitting
models. For computational efficiency in model selection,
this study followed Yeunget al. [55] and used a deterministic
search based on an Occam's window approach [54] and the
"leaps and bounds" algorithm [56] to identify models with
higher posterior probabilities.

In addition to choosing the best models, we also chose the
best proteins. We applied an iterative adaptation of BMA
[55]. This method initially ranks each feature separately
by the ratio of between-group to within-group sum of
squares (BSS/WSS) [57]. For protein j the ratio is

BSS() _ 54| 107i=0) (Roj=X j)2+1(vi=1) (X1-X j)? |
WSS(j) zi[1(Y,-=0)(Xij—}_(oj)2+1(Yi=1)(Xij—§1j)2]
(6)

where I(-) is an indicator function, Xj; is the level of pro-

tein j in sample i, Xo;j and X1; are respectively the aver-
age levels of protein j in the normal and cancer groups,

and X j is the average level of protein j over all samples.

Ordered by this BSS/WSS ranking, the features were itera-
tively fit into BMA models, which generated posterior
probability distributions for the proteins' coefficients. We
then discarded proteins that had low posterior probabili-
ties of relevance, Pr(b;# 0| D) < 1%, where

Pr(b; #0|D)= Y Pr(M, | D) )

M el’
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where Pr(b;# 0| D) is the posterior probability that protein
j's coefficient is nonzero, I' is the subset of the considered
models M;,..., Mg thatinclude protein j. By discarding pro-
teins that have small influence on classification, this iter-
ative procedure keeps only the most relevant proteins.

Other models for high-dimensional data

To compare iterated BMA's classification and generaliza-
tion performance, we also classified the data using two
other dimensionality-reducing methods: a support vector
machine (SVM) [58] with recursive feature selection
[59,60] and least-angle regression (LAR, a development of
LASSO) [61].

All modeling was performed using the R statistical soft-
ware (version 2.6.2), and specifically the BMA package
(version 3.0.3) for iterated BMA, the packages e1071 (ver-
sion 1.5-16) and R-SVM [31] for the SVM with recursive
feature selection, the lars package (version 0.9-5) for least
angle regression, and the ROCR package (version 1.0-2)
for ROC analysis. We extended the BMA package to com-
pute the full predictive distributions (See Equations 2-6)
within cross-validation using an MCMC approach. Addi-
tional file 3 contains the R code and Additional file 4 con-
tains the data in comma-delimited format.

Evaluating classification performance

The classifiers' performances were analyzed and com-
pared using receiver operating characteristic (ROC) analy-
sis [62]. ROC curve metrics were compared statistically
using a nonparametric bootstrap method [63]. To esti-
mate generalization performance on future cases, we first
defined independent train and test sets by randomly
choosing 70% of samples for training and optimizing the
classifiers, and then we tested the classifiers on the
remaining 30% of the samples. To compare with the
train/test split, we also performed leave-one-out cross-val-
idation (LOOCV). Feature selection was performed
within each fold of the cross-validation.

Table 3: Cross-validation classification errors, normal versus
cancer

Model FN FP
BMA of linear models 19 8
BMA of logistic models 15 12
BMA of probit models 18 7
SVM with RFS 18 12
LAR 24 5
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ROC curves showing the classification performance of statistical models using the serum protein levels. The
models were run with a 70% train and 30% test split of the data set (A-C) and also with leave-one-out cross-validation
(LOOCYV) (D-F). The classifiers performed similarly, with moderate classification results for normal vs. malignant or benign
lesions (A, B, D, E) and poor classification results for malignant vs. benign lesions (C, F).

Evaluating feature-Selection methods

We compared models with feature-selection techniques
using two methods: feature concentration and classifier
performance. For feature concentration, we performed
feature selection within each fold of a LOOCV. We
recorded how many times each feature was chosen. This
method distinguished the feature selection methods that
chose few versus many features. Using classifier perform-
ance, we investigated the effect of feature selection and
sampling. We compared linear models run on the data
with these four techniques: 1) no feature selection (using
all the proteins in the model), 2) preselecting the features
(using all the data to choose the best features, and then
running the model using only those preselected features
in LOOCV), 3) stepwise feature selection, and 4) iterated
BMA. For each case, we ran the classifier in LOOCV.

Results

Classifier performance

The classifiers achieved moderate classification perform-
ance for both normal vs. malignant (AUC = 0.77 + 0.02 on

the test set, and AUC = 0.80 + 0.02 for LOOCV) and nor-
mal vs. benign (AUC = 0.75 + 0.03 on the test set, and
AUC = 0.77 + 0.02 for LOOCV), but very poor perform-
ance for malignant vs. benign tumors (AUC = 0.57 + 0.05
on the test set, and AUC = 0.53 + 0.03 for LOOCV). The
classification performance is shown as ROC curves in Fig-
ure 1. Whereas the ROC curves show the classification per-
formance over the entire range of prediction thresholds,
we also considered the threshold of Pr(Y; = 1|f) = 0.5 in
particular. For this threshold, Table 3 shows the classifica-
tion error. The models performed similarly, with approxi-
mately 20 false negatives and 10 false positives. All
classifiers were run with leave-one-out cross-validation
(LOOCYV). The classifiers chose the best subsets of pro-
teins for classification.

Figure 2 plots the full posterior predictive distributions for
BMA of probit models run with LOOCV. In general, the
predictive distributions were more "decided" (concen-
trated further from the 0.5 probability line) for the tasks
of normal vs. cancer and normal vs. benign, but they were
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Posterior Predictions for BMA of Probit Models
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Posterior Predictions for BMA of Probit Models
Normal vs. Benign, Test Set
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Posterior Predictions for BMA of Probit Models
Benign vs. Cancer, Test Set
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Posterior predictions of Bayesian model averaging (BMA) of probit models, run with a 70% train and 30% test
split of the data set (A-C) and also with leave-one-out cross-validation (LOOCYV) (D-F). The classifiers achieved
moderate classification results for normal vs. malignant or benign lesions (A, B, D, E) and poor classification results for malig-

nant vs. benign lesions (C, F).

less "decided" (concentrated closer to the 0.5 probability
line) for benign vs. cancer. This trend indicated that the
serum protein levels were very similar for malignant and
benign lesions.

Selected serum proteins

The iterated BMA algorithm chose the best-fitting probit
models. The chosen models and their proteins are shown
in Figure 3. The best proteins for each classification task
are listed in Table 4. The top protein for both normal vs.
cancer and normal vs. benign was macrophage migration
inhibitory factor (MIF), a known inflammatory agent [64-
66]. Other selected proteins also play roles in inflamma-
tion and immune response, such as MMP-9 [67,68], MPO
[69], sSVCAM-1 [70], ACTH [71], MICA [72], IL-5 73], IL-
12 p40 [74-76], MCP-1 [77], and IFNa [78-80]. For
benign vs. cancer, the top protein was CA-125, which is

used as a biomarker for ovarian cancer [12,81-83]. How-
ever, the greater presence of CA-125 in cancer tissue was
still too subtle to allow the classifiers to achieve good clas-
sification performance.

Complementary to the models' matrix plots for feature
strength are the coefficients' marginal posterior probabil-
ity distribution functions (PDFs), which the BMA tech-
nique calculates by including information from all
considered models. Figure 4 shows the marginal posterior
PDFs for the top coefficients for the BMA models. The
coefficients' distributions are mixture models of a normal
distribution and a point mass at zero. This point mass is
much larger for the benign vs. cancer models than for nor-
mal vs. cancer and normal vs. benign models. The higher
weight at zero indicates that the proteins are less suitable
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Table 4: Proteins chosen by BMA of linear models
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Protein

Biological Role

Higher Prevalence In

Normal vs. Cancer

MIF (macrophage migration inhibitory factor) Inflammation, regulates macrophage function in host defense Cancer
through the suppression of anti-inflammatory effects of
glucocorticoids [64-66]

MMP-9 (matrix metalloproteinase) Breakdown and remodeling of extracellular matrix [67], regulates Cancer
growth plate angiogenesis and apoptosis of hypertrophic
chondrocytes [68]

MPO (myeloperoxidase) Inflammation, produces HOCI, modulates vascular signaling and Normal
vasodilatory functions of nitric oxide (NO) during acute
inflammation [69]

sVCAM-I (soluble vascular cell adhesion molecule 1) Mediates leukocyte-endothelial cell adhesion and signal transduction, Normal
membrane-bound adhesion molecules and the process of vascular
inflammation of the vessel wall [70]

ACTH (adrenocorticotropic hormone) Stimulates secretion of adrenal corticosteroids [71] Cancer

Normal vs. Benign

MIF (macrophage migration inhibitory factor) Inflammation, regulates macrophage function in host defense Benign
through the suppression of anti-inflammatory effects of
glucocorticoids [64-66]

MICA (MHC class | polypeptide-related sequence A)  Stress-induced antigen that is broadly recognized by intestinal Benign
epithelial gamma delta T cells, ligands for natural killer cells [72]

IL-5 (Interleukin 5) Stimulates B cell growth, increases immunoglobulin secretion, Normal
mediates eosinophil activation [73]

IL-12 p40 (Interleukin 12, p40 chain) Differentiation of naive T cells into Thl cells, stimulates the growth ~ Normal
and function of T cells, stimulates the production of interferon-
gamma (IFN-y) and [74,75](TNF-a)) from T and natural killer cells,
and reduces IL-4 mediated suppression of IFN-y [76]

MCP-1 (Monocyte chemotactic protein-1) Induces recruitment of monocytes, T lymphocytes, eosinophils, and  Benign
basophils and is responsible for many inflammatory reactions to
disease [77]

Benign vs. Cancer

CA-125 (cancer antigen [25) Marker for ovarian cancer [12,81,82] Cancer

IFNa (Interferon type I) Secreted by leukocytes, fibroblasts, or lymphoblasts in response to ~ Benign
viruses [78] or interferon inducers; implicated in autoimmune
diseases [79,80]

MICA (MHC class | polypeptide-related sequence A)  Stress-induced antigen that is broadly recognized by intestinal Benign

epithelial gamma delta T cells, ligands for natural killer cells [72]

for distinguishing benign from malignant lesions than
they are for distinguishing lesions from normal tissue.

Feature selection and Bayesian model averaging
While doing feature selection for normal vs. cancer within
LOOCYV, we recorded the counts of how many times each

protein was selected. The selection frequencies are shown as
a heatmap in Figure 5. Iterated BMA and least-angle regres-

sion selected the fewest proteins, whereas stepwise feature

selection chose many more proteins. The strongest proteins
were chosen consistently across all feature selection tech-
niques, as shown by the horizontal lines in the figure.
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A B C
Probit Models Selected by BMA Probit Models Selected by BMA Probit Models Selected by BMA
Normal vs. Cancer Normal vs. Benign Benign vs. Cancer
MIF MIF CA-125
MICA IFN-a
MMP-9
IL-5 MICA
MPO IL-12p40 MCP-1
SVCAM-1 MCP-1 CA19-9
Age scec FSH
PAI-I
MCP-2 .
ACTH (active)
IL-13 SAA
Haptoglobin Apolipoprotein G-CSF
Apo B
1 2 3 45 79 12 1 2 3 4 569 15 1 5 9 14 21 30 41 54 70 93 134
Model Number Model Number Model Number
Figure 3

Models selected by BMA of linear models. Features are plotted in decreasing posterior probability of being nonzero.
Models are ordered by selection frequency, with the best, most frequently selected models on the left and the weakest, rarest
chosen on the right. Coefficients with positive values are shown in red and negative values in blue. Strong, frequently selected
features appear as solid horizontal stripes. A beige value indicates that the protein was not selected in a particular model.

We also investigated the effect of feature selection upon
classifier generalization. Figure 6 shows the ROC and
accuracy curves for linear models with various feature
selection strategies. Preselecting the features generated a
very optimistically biased classification performance.
When the same feature selection technique (stepwise) was
applied within each fold of LOOCYV, the classification per-
formance fell dramatically. Using no feature selection
(using all proteins) had extremely poor classification per-
formance - no better than guessing. The poor perform-
ance demonstrated that the linear model needs feature
selection for good classification performance when the

number of features is roughly the same as the number of
samples in noisy data. Iterated BMA of linear models sig-
nificantly outperformed the stepwise, single-model
method. This performance increase demonstrated the bet-
ter predictive ability of the BMA models; averaging a set of
the most promising models was better than using only the
single best model.

Discussion

The serum proteins allowed the classifiers to detect lesions
(malignant or benign) from normal tissue moderately
well, but they were very poor for distinguishing benign

Coefficients' posterior PDFs, Normal vs. Cancer Coefficients' posterior PDFs, Normal vs. Benign Coefficients' posterior PDFs, Benign vs. Cancer
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Figure 4

Posterior distributions of the model coefficients for the proteins. The distributions are mixtures of a point mass at
zero and a normal distribution. The height of the solid line at zero represents the posterior probability that the coefficient is
zero. The nonzero part of the distribution is scaled so that the maximum height is equal to the probability that the coefficient

is nonzero.
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Selected Features within LOOCYV, by Technique
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Figure 5

Heatmap of normalized frequencies of selected fea-
tures, normal vs. cancer. The feature selection frequen-
cies were averaged over all folds of the LOOCV. For
comparison across techniques, the frequencies in each col-
umn were scaled to sum to one. Less-frequently selected fea-
tures appear as cooler dark blue colors, whereas more
frequently selected features appear as hotter, brighter
colors. Models that used fewer features appear as dark col-
umns with a few bright bands, whereas models that used
more features appear as denser smears of darker bands.

from malignant lesions. These classification results were
consistent in both the test set and the leave-one-out cross-
validation. This consistency implies that the classification

ROC Curve, Normal vs. Cancer, Linear Models
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Figure 6
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results are not highly dependent on the sampling scheme
but rather highlight consistent trends in our data set. The
classification results show that the proteins were not spe-
cific for cancer and suggest that they may indicate states of
biological or immunological stress. A good candidate for
the dominating biological effect is inflammation, since
the top protein selected for both normal vs. cancer and
normal vs. benign was macrophage migration inhibitory
factor (MIF), which is active in inflammation [64-66]. The
best protein for distinguishing malignant from benign
tumors was cancer antigen 125 (CA-125), which is a
prominent serum marker for ovarian cancer [12,81,83].
However, CA-125 levels are influenced by other factors,
such as age, hormone-replacement therapy, smoking hab-
its, and use of oral contraceptives [84]. In general it is very
difficult to ascertain whether biomarker proteins are gen-
erated by the cancer itself or by secondary effects, such as
immune response. Once potential biomarker proteins are
identified in initial studies, follow-up studies can focus on
those proteins to discover their origin and role in the dis-
ease process. Helpful experimental study designs would
control for known secondary causes of biomarker activity
and would collect enough samples to average over unin-
tended secondary causes. Longitudinal studies would also
lessen the effect of transient secondary causes.

To quantify and compare classification performances, we
used ROC analysis, which fairly compares classifiers that
may be operating at different sensitivities due to arbitrary
decision thresholds applied to the classifiers' output val-

Accuracy Curves, Normal vs. Cancer, Linear Models
@
o
— Preselected
— BMA
Stepwise
All features
>
o
il
3
Q
Q
<

-1.0 -0.5 0.0 0.5 1.0 1.5 20

Cutoff

ROC and accuracy curves for linear models with four feature selection techniques. 1) Preselected: the features
(using all the data to choose the best features, and then running the model using only those preselected features in LOOCYV),
2) BMA: iterated Bayesian model averaging, 3) Stepwise feature selection, and 4) All features: using all the proteins in the

model, no feature selection.
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ues. Although our data set comprised three classes (nor-
mal, benign, and cancer), current ROC methods required
us to split an inherently three-class classification problem
into three different two-class tasks: normal vs. benign,
normal vs. cancer, and benign vs. cancer. The field of ROC
analysis is still in development for the three-class prob-
lem; no consensus has yet been reached about how to
quantitatively score the resulting six-dimensional ROC
hypersurface [85-88]. However, for other methods of clas-
sifier comparison, such as the generalized Brier score or
discrete counts of classification errors, full three-class
models could have been used, albeit with decision thresh-
olds.

This study investigated a group of 98 serum proteins
(Table 2), which is relatively small sample of all detecta-
ble serum proteins. Future studies may identify other pro-
teins with stronger relationships to breast cancer. Rather
than relying on only a few proteins, upcoming protein
technologies will allow the screening of large populations
with protein-based tests that require a larger set of pro-
teins. Microfluidics chips would simplify the process of
automating blood tests in a high-throughput fashion.
However, with current assay technology and cost-benefit
analysis of screening programs, the fixed cost per protein
assayed essentially limits the number of proteins that can
be used for screening. To lower screening costs, we chose
small subsets of the features via feature-selection meth-
ods. Iterated BMA and least-angle regression were able to
classify well using a far smaller set of features than those
chosen by stepwise feature selection.

High feature correlation impedes many feature-selection
techniques. For stochastic feature-selection methods, two
highly correlated features are each likely to be chosen in
alternation. Similarly, a cluster of highly correlated fea-
tures causes the feature selection technique to spread the
feature selection rate among each feature in the cluster,
essentially diluting each feature's selection rate. Severe
dilution of selection rates can cause none of the cluster's
features to be selected. Future work will entail adding clus-
ter-based methods to the iterated BMA algorithm.

The currently proposed serum biomarkers for breast can-
cer are not sensitive or specific enough for breast cancer
screening. However, better biomarkers may be identified
with newer protein assay technology and larger data sets.
A protein's subtle diagnostic ability may be enhanced by
the assimilation of other medical information, such as
gene expression and medical imaging. The proteins will
boost diagnostic performance only if they provide com-
plementary and non-redundant information with the
clinical practice of mammograms, sonograms, and physi-
cal examination. The relationship of medical imaging and
protein screening remains to be determined in future
work.

http://www.biomedcentral.com/1471-2407/9/164

Conclusion

We have performed feature-selection and classification
techniques to identify blood serum proteins that are
indicative of breast cancer in premenopausal women. The
best features to detect breast cancer were MIF, MMP-9, and
MPO. While the proteins could distinguish normal tissue
from cancer and normal tissue from benign lesions, they
could not distinguish benign from malignant lesions.
Since the same protein (MIF) was chosen for both normal
vs. cancer and normal vs. benign lesions, it is likely that
this protein plays a role in the inflammatory response to
a lesion, whether benign or malignant, rather than in a
role specific for cancer. While the current set of proteins
show moderate ability for detecting breast cancer, their
true usefulness in a screening program remains to be seen
in their integration with imaging-based screening prac-
tices.
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This article used the following abbreviations: AUC: for
Area under the ROC curve; BMA: for Bayesian model aver-
aging; CV: for coefficient of variation; ELISA: for enzyme-
linked immunosorbent assay; HIPAA: for Health Insur-
ance Portability and Accountability Act; LOOCV: for
leave-one-out cross-validation; MICA: for human major
histocompatibility complex class I chain-related A; MIF:
for macrophage migration inhibitory factor; MMP-9: for
matrix metalloproteinase 9; PDF: for probability density
function; and ROC: for receiver operating characteristic.
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