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Abstract

Background: Until recently, the molecular mechanisms explaining increased incidence of ovarian
and breast cancers in carriers of BRCAI gene mutations had not been clearly understood. Of
significance is the finding that BRCAI negatively regulates aromatase expression in vitro. Our
objective was to characterise aromatase gene (CYP/9A[) and its promoter expression in breast
adipose and ovarian tissue in BRCA| mutation carriers and unaffected controls.

Methods: We measured aromatase transcripts, total and promoter-specific (Pll, Pl.3, Pl.4) in
prophylactic oophorectomy or mastectomy, therapeutic mastectomy, ovarian and breast tissue
from unaffected women.

Results: We demonstrate that the lack of functional BRCAI protein correlates to higher
aromatase levels in 85% of BRCAI mutation carriers. This increase is mediated by aberrant
transcriptional regulation of aromatase; in breast adipose by increases in promoter II/l.3 and 1.4-
specific transcripts; and in the ovary with elevation in promoter 1.3 and ll-specific transcripts.

Conclusion: Understanding the link between BRCAI| and aromatase is significant in terms of
understanding why carcinogenesis is restricted to estrogen-producing tissues in BRCA| mutation
carriers.

bility to impair aromatase gene expression and enzyme

Background

The roles of BRCA1 in cellular functions include cell cycle
control, protein degradation, DNA damage repair, and
transcriptional regulation of its target genes. One of its tar-
get genes is aromatase (CYP19A1), the enzyme that catal-
yses the conversion of C, , steroids into bioactive estrogens
[1]. In vitro studies demonstrate the direct binding of
BRCA1 to the proximal promoter region of CYP19A1
(promoter IT) and as a consequence the repression of tran-
scription [2,3]. Gene silencing of BRCA1 leads to an ina-

activity [2-5]. However, whether this leads to aromatase
excess in BRCA1 mutation carriers is unknown.

This link between BRCA1 and aromatase is significant in
terms of understanding why carcinogenesis is restricted to
estrogen-producing tissues in mutation carriers. Given
that aromatase is critical in promoting tumour growth
and BRCAl and 2 mutations account for an 80%
increased risk in hereditary breast and ovarian cancer
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development, it is important to investigate the relation-
ship between BRCA1 and aromatase expression in
patients.

The mechanism with which aromatase exerts its activity in
a tissue-specific manner is via transcriptional regulation of
multiple promoters on its gene [6]. In women, aromatase
is expressed in ovarian granulosa cells (PII), placental syn-
cytiotrophoblast (PI.1, and 2a) brain (PI.f), breast cancer
(P11, PL3), skin fibroblasts, bone osteoblasts and
chondrocytes (P1.4) and adipose stromal fibroblasts
(P1L.4) [7,8].

The role of aromatase in promoting breast cancer is well
defined; factors derived from malignant epithelial cells
such as prostaglandin E, as well as trans-acting transcrip-
tion factors such as Liver Receptor Homologue (LRH-1/
NR5A2), cAMP response element binding protein
(CREB), Activating Transcription Factor 2 (ATF2/CREB2)
and CCAAT/enhancer binding protein & (C/EBPJ)
increase aromatase levels within the epithelial cells and
surrounding adipose stromal fibroblasts [9-11]. Addition-
ally in breast cancers, the tumour inhibits adipose stromal
fibroblast differentiation while in normal breast tissues
differentiation into mature adipocytes reduces aromatase
expression [10,12].

Within the breast tissue, adipose stromal cells are the pri-
mary aromatase expressing cells and suppression of
BRCA1 expression via siRNA results in up-regulation of
aromatase mRNA [5]. Hu et al showed that this suppres-
sion of aromatase transcription while mediated by BRCA-
1-associated RING domain (BARDI) protein is also
dependent on other tissue-specific co-regulators, present
only in granulosa and adipose tissue and not cancer epi-
thelial cells. In additions, BRCA1 displaces CBP/p300
from the transcriptional complex at promoter II [3].

The aims of the current study were to investigate whether
women with hereditary BRCA1 mutations resulting in a
reduction of BRCA1 protein levels or bioactivity, show
alterations in CYP19A1 gene expression in major aro-
matase target tissues such as breast and the ovary.

Methods

Breast and Ovarian Biopsy Samples

Samples of frozen tissue from breast and ovarian tissue
biopsies were obtained from the Kathleen Cuningham
Foundation Consortium for research into Familial Breast
cancer (kConFab) tissue bank (Melbourne, Australia).
Biopsies were obtained from women between the ages of
25-40 years who had undergone therapeutic or prophy-
lactic mastectomy (n = 10 patients) or oophorectomy (n
= 6 patients) due to being positive for known BRCA1
mutations.

http://www.biomedcentral.com/1471-2407/9/148

Subjects had been screened for BRCA1 point mutations
and BRCA1 Multiplex Ligation-dependent Probe Amplifi-
cation (MLPA) for large genomic rearrangements. In all
cases, prophylactic and therapeutic mastectomy or pro-
phylactic oophorectomy biopsies were not derived from
the cancer containing breast or ovary. This was to ensure
that any changes in aromatase expression would not be
caused by tumour-derived factors such as prostaglandin
E, that are known to increase aromatase expression locally
in adipose stromal cells surrounding breast cancers.

For the control cohort, breast adipose tissue samples were
obtained from premenopausal women undergoing reduc-
tion mammoplasty. The age of patients from whom tissue
was collected ranged from 23 to 49 years. Tissue was col-
lected by Mr. A Kalus, The Avenue Plastic Surgery, Mel-
bourne, Australia, snap frozen in liquid nitrogen and
stored at -80°C until use. Tissue samples used for this
study (n = 10) are part of a larger collection of control
samples. This study was approved by the Southern Health
Human Research and Ethics Committee (Monash Medical
Centre).

Reverse Transcription and Quantitative Real-Time PCR
Total RNA was isolated from tissue biopsy samples using
the RNeasy Mini kit according to manufacturer's instruc-
tions (Qiagen). RNA preparations were DNAse (Ambion)
treated to eliminate any DNA contamination. First strand
cDNA synthesis from 300 to 500 ng of total RNA was per-
formed using avian myeloblastosis virus reverse tran-
scriptase  (Promega) primed by random hexamers
according to manufacturer's instructions. Real-time PCR
reactions were carried out using the following primer sets
and annealing conditions outlined in Table 1.

Quantitative real-time PCR amplifications were per-
formed on the Lightcycler (Roche) using Fast Start Master
SYBR Green 1 (Roche) and specific primer pairs described
above. As additional validation, quantitative real-time
PCR was also performed using the ABI 7900 PCR machine
(Applied Biosystems) using the SYBR chemistry (Applied
Biosystems). Experiments run on both real-time PCR sys-
tems were with triplicate RT reactions that had been
diluted 1 in 25. Experimental samples were quantified by
comparison with purified standards of known concentra-
tion. All samples were normalised to 18S transcript levels.

Statistical Analysis

Data points are shown as mean of triplicate determina-
tions, n = 10/group for all parameters. Statistical compar-
isons were performed using GraphPad Prism software. All
data were log transformed before analysis, and the vari-
ances for each group were analysed. Differences between
control and treatment groups were analysed by Mann-
Whitney U-test. Statistical significance was defined as P <
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Table I: Primer sequences and annealing temperatures
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Target Gene Primer Sequence Annealing temperature Reference

CYPI9AI F: 5'-acccttctgcgtcgtgtca-3"' 54 [13,15]
R: 5'-tctgtggaaatcctgcgtctt-3"

CYPI9AI Promoter 1.3 F: 5'-gataaggttctatcagacc-3' 53 [13,15]
R: 5'-caggaatctgccgtgggaga-3'

CYPI9AI Promoter 1.4 F: 5'-gtgaccaactggagcctg-3"' 55 [13,15]
R: 5'-caggaatctgccgtgggaga-3'

CYPI9AI Promoter Il F: 5'-gcaacaggagctatagat-3' 54 [13,15]
R: 5'-caggaatctgccgtgggaga-3'

18S F: 5'-cggctaccacatccaaggaa-3' 58
R: 5'-gctggaattaccgcggct-3"'

ER F: 5'-tgtccagccaccaaccagt-3"' 55
R: 5'-tttcaacattctccctcctett-3'

LRH-1 F: 5'-ctgatactggaacttttgaa-3' 55 [10]
R: 5'-cttcatttggtcatcaacctt-3'

CCNDI F: 5'-aactacctggaccgcttcct-3' 55
R: 5'-ccacttgagcttgttcacca-3'

FSHR F: 5'-gcggaaccccaacatcgtgtc-3' 55 [14]
R: 5'-tgaagaaatctctgcgaaagt-3'

0.05. Spearman's rank correlation coefficient was used to
analyse whether transcript levels derived from different
primer specific qPCR were correlated.

Results

Promoter-specific expression of aromatase in breast
adipose of BRCAI mutations carriers

Breast adipose tissue was derived from prophylactic or
therapeutic mastectomies from premenopausal women
who had mutations in the BRCA1 gene. qPCR analysis
revealed 25.8-fold higher mean aromatase expression
(1.29 £ 0.5, n = 10 transcripts/18S, n = 10) for prophylac-
tic mastectomy samples compared to controls (0.05 +
0.01, P < 0.0001, Figure 1a). Total aromatase expression
level in therapeutic mastectomy samples was 650-fold
higher compared to control samples (32.53 + 18.11 and
0.05 + 0.01 transcripts/18S respectively, n = 10, P < 0.019,
Figure 1a). Aromatase transcript was uniformly detectable
at low levels in normal premenopausal breast tissue. In
contrast, in prophylactic and therapeutic mastectomy tis-
sues, aromatase mRNA levels were increased in most sam-
ples. This is reflected in the high fold changes observed for
aromatase and its promoter transcripts described below.

Increased aromatase expression in breast cancer-contain-
ing breast adipose is predominantly mediated by a switch
in promoter usage from the constitutive adipose-specific
promoter I.4-specific to gonadal-specific promoter II
expression in the adipose stromal fibroblasts [15]. Con-
sistent with this, in therapeutic mastectomy samples pro-
moter II-specific expression was elevated 692-fold in all
patients exhibiting increased total aromatase levels that
was above control mean value (1654 + 921 and 2.39 =+
0.68 transcripts/18S respectively, n = 10, P < 0.005, Figure
1b). We also observed 14-fold higher promoter II-specific

transcript expression in the BRCA1 prophylactic mastec-
tomy cohort (P <0.011) (Figure 1b). A significant positive
correlation was observed between aromatase and pro-
moter II-specific transcript levels in all subjects (r = 0.8, P
<0.0001).

Relative expression of promoter 1.3-specific transcripts
was 16-fold higher in prophylactic mastectomy samples
compared to controls (0.0006 + 0.0002 and 0.01 + 0.0086
transcripts/18S respectively, n = 9-10, P < 0.008). In ther-
apeutic mastectomy samples, the mean expression (1.24 +
0.79 transcripts/18S, n = 10) was increased 2066-fold
compared to control mean value (P < 0.008, Figure 1c). A
significant and positive correlation was observed between
aromatase and promoter I.3-specific transcript expression
in all subjects (r = 0.46, P = 0.01).

Promoter I.4-specific expression was 34-fold higher in
prophylactic mastectomy tissues compared to controls
(1.36 + 0.77 and 0.04 + 0.03 transcripts/18S respectively,
n = 8-10, P < 0.002, Figure 1d) while in the therapeutic
mastectomy samples there was a 650 fold increase above
basal levels observed (Figure 1d, P < 0.02). Promoter 1.4-
specific transcripts were approximately 60-fold lower in
abundance compared to promoter II-specific transcripts.
There was no significant correlation between aromatase
and promoter .4 transcript expression (r = 0.34, P = 0.07).

Expression of ER, cyclin DI and LRH-1 in BRCAI
mutations carriers and normal breast adipose

Analysis of the prophylactic and therapeutic mastectomy
samples did not show significant differences in ERa levels
compared to controls (Figure 2a). Cyclin D1 expression
levels in prophylactic samples were significantly different
to controls (0.03 + 0.02 and 0.0014 + 0.0004, P < 0.04).
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Aromatase and its promoter usage in breast adipose of BRCAI mutation carriers and control subjects. Relative
expression levels of (a) total aromatase transcripts (b) promoter ll-specific transcripts (c) promoter |.3-specific transcripts and
(d) promoter |.4-specific transcripts in breast adipose tissue samples from control women and prophylactic and therapeutic
mastectomy samples from BRCA| mutation carriers. Data has been normalized to 18S expression for each sample (n = 10 sub-
jects per group, RT-PCR performed in triplicate for each sample). The mean expression level for each subject group is indi-
cated with a horizontal line and *P < 0.05, **P < 0.01 and ***P < 0.0001 are significantly different versus control.

Likewise in therapeutic mastectomy samples, mean cyclin
D1 expression were higher than controls (2.29 + 1.21 and
0.0015 + 0.0004 transcripts/18S, n = 10, P < 0.008, Figure
2b). A positive correlation was observed with cyclin D1
and aromatase expression in all subjects (r = 0.48, P =
0.007).

Expression analysis of the orphan nuclear receptor LRH-1/
NR5A2 did not demonstrate significant changes between
prophylactic mastectomy and control subjects (Figure 2c).
In therapeutic mastectomy samples the increase in expres-
sion compared to controls was 550-fold higher (0.0004 +
0.0001 and 0.22 + 0.20 transcripts/18S, n = 10, P <
0.0002, Figure 2c). LRH-1/NR5A2 expression was also sig-
nificantly and positively correlated with aromatase tran-
script levels (r = 0.53, P = 0.002).

Transcriptional analysis of aromatase in the ovary of
BRCA| mutations carriers

The mRNA transcripts specific for the gonad-specific pro-
moter II, promoter [.3, and promoter .4 were quantitated
by real-time PCR analysis in control and prophylactic
oophorectomy samples from BRCAI mutation carriers.
Increased CYP19A1 mRNA expression, promoter II- and
I.3-specific transcripts were observed in ovarian tissue
samples derived from BRCAT mutation carriers compared
to controls (Figures 3a—c). While aromatase transcript lev-
els were not significantly different between control and
BRCA1 groups (Figure 3a), promoter II-specific transcript
levels were significantly increased in the prophylactic
oophorectomy samples compared to controls levels (0.13
+ 0.06 and 0.02 + 0.01 transcripts/18S respectively, P <
0.05, n = 6, Figure 3b).
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ERa, cyclin DI and LRH-1/NR5A2 expression in breast adipose in BRCAI mutation carriers and control sub-
jects. Relative expression levels of (a) ERa., (b) cyclin DI and (c) LRH-1/NR5A2 in prophylactic and therapeutic mastectomy
and control breast adipose tissue. Data has been normalized to 18S expression for each sample (n = |10 subjects per group, RT-
PCR performed in triplicate for each sample). The mean expression level for each subject group is indicated with a horizontal
line and *P < 0.05, **P < 0.01 and ***P < 0.0001 are significantly different versus control.

Although approximately 100-fold lower in abundance
than promoter II-specific transcripts, promoter I.3-specific
transcript levels showed significantly higher expression in
the BRCAI mutation carriers compared to controls (0.004
+0.002 and 1.7 x 10-5 + 3.8 x 10-¢ transcripts/18S respec-
tively, P < 0.001, Figure 3c).

The primary site of estrogen production is in the ovarian
follicles where the granulosa cells respond to the pituitary
FSH stimulus to increase aromatase expression in a cyclic
fashion [16-18]. As the study group consisted of premen-
opausal women, we also measured their FSHR transcript
levels to assess whether the increase in aromatase expres-
sion observed was due to the FSHR status of the ovary.
There was no significant difference in means of the two
study groups (Figure 3d).

Discussion

The aim of the current study was to investigate the clinical
relationship between aromatase and increased risk of
breast and ovarian cancer in BRCAI mutation carriers. We
aimed to characterise aromatase transcriptional regula-
tion in non-tumour containing breast adipose and ovary
of women with pathogenic BRCA1 mutations, who had
undergone prophylactic or therapeutic mastectomy or
prophylactic oophorectomy.

We show that aromatase expression is significantly higher
in BRCA1 mutation carriers, in patients who had experi-
ence breast cancer but also in women who had a high risk
for breast cancer and had prophylactic removal of their
breast tissue. As observed in studies with the tumour-asso-
ciated breast adipose tissue, in the therapeutic mastecto-

mies, gonad-specific promoter L3/ levels were
significantly elevated. This supports the notion of a pro-
moter-switch mechanism causing aromatase over-expres-
sion and increased local estrogen concentration as a
tumour-promoting stimulus [6]. This finding also sup-
ports in vitro molecular study reports that show that
BRCA1 is part of a repression complex at promoter 1.3/11
[2-4].

As an extra validation of the inverse relationship between
BRCA1 and aromatase transcriptional activity, we also
assessed breast and ovarian tissue derived from prophy-
lactic organ removal from BRCAI mutation carriers.
Increases in aromatase and its proximal promoter 1.3/I1
transcripts were also observed in these BRCA1 mutation
carriers, supporting the hypothesis that with decreased
BRCA1 function there is a dysregulation of aromatase
transcription regulation and a predisposing factor to
breast and ovarian cancer.

In breast adipose from BRCA1 mutation carriers, we
observed greater fold increase in promoter 1.3/II specific
transcripts in therapeutic compared to prophylactic mas-
tectomy tissue. The difference in the expression of tran-
scripts derived from proximal promoters 1.3 and II
between the therapeutic and prophylactic samples sug-
gests that there may be a difference in exposure to factors
such as prostaglandin E, or a more downstream compo-
nent of the signalling pathway such as CAMP between the
two study groups. This may also indicate that in the pres-
ence of a tumour, increasing levels of factors such as pros-
taglandin E, also have effects on the adjacent, non-
tumour breast adipose.
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trol.

Therefore the current transcriptional model for aromatase
over-expression in tumour containing breast tissue may
be similar for the tumour-free adjacent breast tissue.
Tumour-derived prostaglandin E, stimulates the expres-
sion of orphan nuclear receptor LRH-1/NR5A2 and
increases its occupancy on the nuclear receptor half-site
upstream of promoter II [10]. This model is extended with
data from in vitro experiments demonstrating that with
prostaglandin E, treatment BRCA1 is removed from the
histone acetylase p300 and phospho-CREB transcription
complex that occupies the promoter 1.3/1I region [3].

The increase in LRH-1 expression in therapeutic mastec-
tomy samples is further evidence of its role in driving pro-

moter II mediated aromatase transcription in adipose
stromal cells surrounding breast tumours [10,19,20]. The
promoter switch from the basal promoter 1.4 to gonad-
specific promoter II occurs with the increased expression
of LRH-1 in adipose stromal cells as well as in the tumour
epithelial cells [19-22]. Furthermore it has been shown
that the LRH-1 gene is an estrogen-responsive [23].

The observed increase in basal breast-specific promoter .4
transcript levels in both therapeutic and prophylactic mas-
tectomy tissue samples implicates an inverse relationship
between BRCA1 and promoter 1.4 driven transcription. It
could also imply that glucocorticoids and cytokines such
as interleukin-6/11 and tumour necrosis factor-a which
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stimulate promoter 1.4-driven expression are elevated in
BRCA1 mutation carriers allowing the increase in pro-
moter [.4-specific transcripts [24].

The mRNA expression of ERa was investigated to under-
stand whether increased hormone sensitivity was a mech-
anism for development of breast cancer in BRCA1
mutation carriers. There were no changes observed in pro-
phylactic mastectomy samples while in therapeutic mas-
tectomies, some samples had increased ERa levels,
however this was not significant. In this case, ERa. func-
tional studies would be a more relevant endpoint to
address this hypothesis in light of previous studies that
demonstrate that BRCA1 interacts directly with ERa sup-
pressing ERo-mediated transcription of target genes [25-
27]. It was shown that the BRCA1 protein binds to ERa to
inhibit activity of the activation function AF-2 domain
and may cause conformational change and recruitment of
coactivator proteins [27].

Cyclin D1 promotes progression through the G1-S phase
of the cell cycle by phosphorylating and inactivating the
retinoblastoma protein and its over-expression has been
linked to early onset of cancer and increased risk of
tumour progression and metastasis in parathyroid ade-
noma, breast cancer, colon cancer, lymphoma,
melanoma, and prostate cancer (reviewed in [28]). The
existing model for cyclin D1 function is via binding the
cyclin dependent kinases, p300 and histone deacetylases
to modulate local chromatin structure of its target genes
that are involved in the regulation of cell proliferation and
differentiation [29]. In the context of this study, cyclin D1
mRNA expression and its promoter activity have been
shown to be up-regulated by adipokines produced by the
adipose stromal cells leading to increased breast epithelial
cell proliferation, motility and angiogenesis [30]. In addi-
tion, cyclin D1 interacts with ERa and promotes its
recruitment to estrogen response elements on promoters
of target genes [31]. The significant increase in cyclin D1
expression in therapeutic mastectomy samples supports
the idea that secreted factors in the breast stroma can pro-
mote increased cell proliferation and thus bring about a
tumour-promoting environment. Also increased cyclin
D1 levels may enhance ERa activity especially in the pres-
ence of higher concentrations of estrogen.

In prophylactic oophorectomy tissues, the mean expres-
sion of total aromatase was 8-fold higher than control lev-
els however this was not statistically significant. This may
be due to the small sample size of the study group or that
in premenopausal women aromatase is predominantly
under the control of gonadotropins. There was a signifi-
cant increase in promoter II- and I.3-specific transcripts
indicating aberrant regulation of the transcriptional proc-
ess. FSHR expression in both groups were not significantly

http://www.biomedcentral.com/1471-2407/9/148

different (fold change difference 1.6 between groups). We
conclude that the aromatase promoter transcript increases
observed is not due to gonadotropin sensitivity.

In summary, the current study is the first that to validate
the negative association between BRCA1 function and
aromatase expression in clinical samples. We demonstrate
that the lack of functional BRCA1 protein correlates to
higher aromatase levels in 85% of BRCA1 mutation carri-
ers in our study cohort (therapeutic and prophylactic mas-
tectomy tissues). We also show that the change in
aromatase expression levels is mediated via aberrant tran-
scriptional regulation of the CYP19A1 gene; in breast adi-
pose by increases in gonad and breast cancer-specific
promoter 1I/1.3 and promoter 1.4 transcripts; and in the
ovary with elevation in breast cancer-specific promoter 1.3
and promoter II transcripts.

We and others have shown positive correlation between
quantitative RT-PCR, promoter-specific reporter assays,
aromatase protein levels and aromatase enzymatic activity
in vitro [10,19,24,32]. Furthermore little is known about
post translational modification of the aromatase protein.
Therefore the measurement of aromatase and its pro-
moter-specific transcripts is considered an accurate reflec-
tion of aromatase activity in vivo.

The availability of pathology samples is a limitation for
clinical studies in humans especially to perform experi-
ments such as western blot analysis for protein expres-
sion. Despite the small sample size we have observed
statistically significant differences between our control
and study group highlighting that a larger scale study to
address this question is of value. As data may be affected
by other variables such as medication and parity, a more
extensive patient history and a larger scale analysis is
required to further understand the relationship between
BRCA1 and aromatase.

Conclusion

Aromatase mRNA expression is increased in breast adi-
pose tissue of BRCA1 mutation carriers; this supports pre-
vious in vitro data showing interaction between BRCA1
and the aromatase promoter. It also raises the possibility
of prophylactic use of aromatase inhibitors as an alterna-
tive to surgical removal of tissue in high breast and ovar-
ian cancer risk women.
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