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Abstract

Background: Kinase insert domain-containing receptor (KDR) plays a critical role in the
metastasis of cancer and is used as a molecular target in cancer therapy. We investigated the
characteristics of the -271 G>A polymorphism of the KDR gene to gain information that may
benefit the development of individualized therapies for patients with non-small cell lung cancer
(NSCLC).

Methods: The -271 G>A polymorphism of the KDR gene in 106 lung cancer patients and 203
healthy control individuals was analyzed by polymerase chain reaction (PCR) and DNA sequencing
methods. Real-time quantitative PCR and immunohistochemical methods were used to evaluate
KDR mRNA and protein expression levels, respectively, in frozen tumor specimens.

Results: The -271 G>A polymorphism was associated with the mRNA expression level of the
KDR gene in tumor tissues (t = 2.178, P = 0.032, independent samples t-test). Compared with the
AG/GG genotype, the AA genotype was associated with higher KDR mRNA expression in tumor
tissues. We found no relationship between the genotype and the KDR protein expression level and
no significant difference in the distribution of the KDR gene polymorphism genotypes between lung
cancer patients and the control group (x2= 1.269, P = 0.264, Fisher's exact test).

Conclusion: This study is the first to show that the -271 G>A polymorphism of the KDR gene
may be a functional polymorphism related to the regulation of gene transcription. These findings
may have important implications for therapies targeting KDR in patients with NSCLC.

Background cancer is a multi-step process, characterized by the accu-
Lung cancer is a leading cause of cancer deaths in the  mulation of multiple genetic and epigenetic alterations
United States and throughout the world, in both men and  that perturb regulatory and growth-control pathways in
women [1,2]. The development and progression of lung  the cell [3,4]. The prognosis is poor, with only 10-15% of
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patients surviving 5 years after diagnosis, owing to a lack
of efficient diagnostic methods for early detection and a
lack of successful treatment for metastatic disease.

Angiogenesis is an essential process in the development,
growth, and metastasis of malignant tumors, including
lung cancer tumors. Currently, a key therapeutic strategy is
to inhibit specific processes essential for tumor vascular
development. A number of anti-angiogenic agents with
anti-angiogenic and anti-tumor activity, including a tyro-
sine kinase inhibitor (TKI), are currently in development
[5-8]. The kinase insert domain-containing receptor
(KDR; also known as vascular endothelial growth factor
receptor 2: VEGFR-2) gene plays a critical role in cancer
metastasis and is used as a molecular target in cancer ther-
apy [9-11]. However, little is known about its polymor-
phisms and the functional significance of its association
with lung cancer.

The genetic variations of KDR may influence its systemic
production and its effects on vascular endothelial cells in
cancer patients, consequently causing individual differ-
ences in the responses of patients treated with therapies
targeting KDR. Therefore, we analyzed genetic polymor-
phisms in the 5' untranslated region (UTR) of the KDR
gene in Chinese patients with lung cancer, as well as the
relationships of these polymorphisms to KDR mRNA and
protein expression levels. Our investigation provides ini-
tial evidence and information for the development of tar-
geted therapies.

Methods

Patients and control subjects

The study population was composed of 203 healthy con-
trol subjects and 106 patients with non-small cell lung
cancer (NSCLC) who had undergone curative surgical
resection for primary lung cancer at Guangdong General
Hospital. Tumor and matched normal lung specimens of
each patient were stored in the hospital tumor bank. Sam-
ples were collected after obtaining informed consent. The
project was approved by the ethics committee of Guang-
dong General Hospital (No: 200401).

The patient population had histologically confirmed
NSCLC of all stages and consisted of 64 cases of adenocar-
cinoma, 30 cases of squamous cell carcinoma, five cases of
adenosquamous carcinoma, and seven cases of large cell
carcinoma. The median age of the patients was 60 years
(range, 35 to 81 years). The controls were selected from a
pool of healthy volunteers who had visited the hospital's
check-up center. The median age of the controls was 43
years (range, 20 to 83 years).

Genotyping
The genomic DNA of each control volunteer was isolated
from whole-blood sample lymphocytes, using a Universal
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Genomic DNA Extraction kit (TaKaRa, Dalian, China).
DNA from the normal tissue specimens of the lung cancer
patients was extracted using Trizol reagent (Invitrogen,
Life Technologies, Carlsbad, CA), according to the manu-
facturer's instructions. The frozen normal lung tissue of
the patients obtained during surgical resection repre-
sented lung tissue located more than 5 cm from tumor tis-
sue.

The sequences of the -271 G>A polymorphism of the KDR
gene were assayed using PCR and DNA sequencing meth-
ods. The region was amplified using high-fidelity Primer-
STAR™ HS DNA polymerase (TaKaRa) and the following
PCR primers designed according to the GenBank
sequence (Accession No. NM_002253.1): forward, 5'-
AGCTCCCACCCTGCACTGA-3 and reverse, 5'-CTGCCT-
TCCTCCTCCAGAG-3'. The product size was 414 bp, rep-
resenting the region from -316 to 98 (relative to the
transcription site) of the gene. The 50-uL PCR reaction
contained 10 pL of 5x PCR buffer (Mg2+ plus), 4 pL of
dNTP (each 2.5 uM), 1.0 pL of forward and reverse prim-
ers (10 uM), 0.5 puL of DNA polymerase (25 U/uL), and
2.5 uL of DNA template, added water to a final 50 pL vol-
ume. The PCR conditions were 94°C for 2 min, followed
by 35 cycles of 98°C for 10's, 67°C for 15 s, and 72°C for
1 min, with a final extension at 72°C for 5 min. All PCR
products were examined by 1% agarose gel electrophore-
sis and were purification from the gel. A BigDye Termina-
tor v3.1 cycle sequencing kit (Applied Biosystems, Foster
City, CA) and an ABI PRISM 310 Genetic Analyzer
(Applied Biosystems) were used for sequencing.

Real-Time PCR

The primer and probe design, total RNA isolation, cDNA
synthesis, and quantification standards for real-time PCR
were as described previously [12]. Briefly, total RNA was
isolated from 50-100 mg of tissue, using Trizol reagent
(Invitrogen) according to the manufacturer's instructions.
The integrity of the total RNA was examined by 1% agar-
ose gel electrophoresis, the quantity was determined
based on absorbance at 260 nm (A260), and the purity
was analyzed based on the absorbance ratio at 260 and
280 nm (A260/280) (Amersham Biosciences GeneQuant,
Pittsburgh, PA). The cDNA was synthesized from 1 pg of
total RNA using AMV reverse transcriptase XL (TaKaRa). -
actin served as an internal control. The lengths of the
amplified PCR products were within a range of 50 to 150
bp, as recommended by Applied Biosystems for TagMan
assays. The probe sequence was designed to span exon
borders of the gene, to avoid amplification of any contam-
inating genomic DNA. To create real-time PCR standards,
KDR and p-actin were amplified using reverse tran-
scriptase-PCR using specific primers. The amplicons were
cloned into pMD18-T vector (TaKaRa) and confirmed by
sequencing. The purified recombinant DNA was quanti-
fied and then serially diluted in ultra-pure water to final
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concentrations ranging from 107 to 10! copies/uL. For
quantification standards, we used 1-puL aliquots of the ten-
fold serial dilutions of plasmid DNA. A new standard
curve was run for each real-time PCR, and each test run
included a control containing no target DNA. Real-time
PCR was performed independently at least two times, and
the mean value was used for quantification. The amount
of KDR mRNA was normalized to 10¢ copies of the B-actin
internal control, and the data represent copy number/10°
B-actin copies.

Immunohistochemistry

We immunohistochemically examined the protein
expression level of KDR in the frozen tumor specimens
from 76 patients. The other 30 specimens could not be
used for immunohistochemistry, because a reagent
(RNAlater; Ambion, Austin, TX) had been previously
added to the fresh specimens to stabilize and protect the
RNA. For immunohistochemistry, 6- to 8-um-thick frozen
sections were cut, immediately fixed in cold methanol for
10 min, air-dried, and washed in PBS. Subsequently,
endogenous peroxidase activity was blocked with 3%
H,O, for 10 min. The sections were incubated with ready-
to-use anti-human KDR polyclonal antibody (Maixin-Bio,
Fuzhou, China) overnight at 4°C and then rinsed with
PBS. The bound primary antibody was detected using a
ready-to-use secondary antibody kit (Histostain-Plus kit,
Jingmei, Shenzhen, China) and the chromogenic sub-
strate 3,3-diaminobenzidine tetrahydro-chloride. The
specimens were counterstained with hematoxylin,
mounted, and examined by light microscopy (Olympus
BX50). Routine negative controls using PBS instead of the
primary antibody were included to verify specificity.

All of the slides were reviewed concurrently by three of the
authors (QX Lin, SJ An, and HJ Chen). KDR reactivity in
tumor tissues was both nuclear and cytoplasmic. The
staining intensity in both the cytoplasm and nuclei of
tumor cells was scored on a 4-point scale: negative, 0;
weak, 1; intermediate, 2; and strong, 3. Cells with a stain-
ing intensity score of zero were regarded as negative cells;
those with scores of 1, 2, or 3 were regarded as positive.
The percentage of positive cells was calculated by count-
ing more than 1000 cancer cells in randomly selected
high-power fields (10 x 40). Protein expression was con-
sidered positive when immunostaining was seen in at
least 10% of the cancer cells. We identified two groups of
patients based on the KDR level and location (cytoplasm
or nucleus). In the negative group, both cytoplasmic and
nuclear staining was negative; the positive group had
either positive cytoplasmic or nuclear staining.

Statistical analysis
Differences in genotype frequencies between groups were
evaluated using Fisher's exact test, when appropriate. The
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correlation between different genotypes and KDR mRNA
expression level was analyzed using one-way analysis of
variance (ANOVA) or a t-test, as appropriate, with log
transformation of the cDNA concentration data to fit a
normal distribution. A two-tailed P value of < 0.05 was
considered statistically significant.

Results

Frequency of the -271 G>A polymorphism genotypes and
their relationships to clinical parameters and risk for lung
cancer

The amplified products from all 106 specimens were suc-
cessfully sequenced. A comparison of the sequences of 20
specimens with that of GenBank Accession No.
NM_ 002253.1, using the Blast 2 program http://
www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi, did not
reveal any mutations or polymorphisms in the investi-
gated region except the -271 G>A polymorphism in the 5'
UTR. Consequently, we focused on the -271 G>A poly-
morphism in all of the specimens and analyzed the fre-
quency of its genotypes (Fig. 1). A search for -271 G>A
polymorphisms in the single nucleotide polymorphism
(SNP) bank of the National Center for Biotechnology
Information (NCBI) yielded SNP 1s7667298.

The frequencies of the AA, AG, and GG genotypes of the -
271 G>A polymorphism in the NSCLC patients were
20.8% (22/106), 41.5% (44/106), and 37.7% (40/106),
respectively. According to the NCBI SNP data bank http:/
[www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=7667298,
the frequencies of the AA (TT) genotype of the -271 G>A
polymorphism in European, Asian, and Sub-Saharan Afri-
can populations were 17.6%, 4.5-4.7%, and 40.7%,
respectively.

The frequencies of the AA and AG/GG genotypes in our
healthy control subjects were 15.3% (31/203) and 84.7%
(172/203), respectively. The genotype frequencies did not
differ significantly between the lung cancer and control
groups (2= 1.269, P = 0.264, Fisher's exact test).

The correlations between the -271 G>A polymorphism
genotype and the patients' clinical parameters were ana-
lyzed using Fisher's exact test (Table 1). The distribution
of genotypes was not related to gender, age, smoking sta-
tus, tumor histology, or clinical stage of the patients (P >
0.05).

The -271 G>A polymorphism affects the transcriptional
level of the KDR gene, as detected by real-time PCR

In all, 103 specimens were available for mRNA analysis;
the RNA of the other three specimens was degraded dur-
ing the extraction process. ANOVA showed a marginally
significant relationship between the KDR mRNA level and
each of the three -271 G>A polymorphism genotypes,
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Figure |

Sequence graphs of the -271 G>A polymorphism of the KDR gene (sequenced using reverse primer). The arrays
show the polymorphism site. (a) GG (CC) genotype; (b) AA (TT) genotype; (c) AG (TC) genotype.

with mean values of 4.32, 4.08, and 4.03 for the AA, AG,
and GG genotypes, respectively (F = 2.476, P = 0.089).
When the AG and GG groups were combined, the AA gen-
otype was significantly correlated with a higher KDR
mRNA level in tumor tissues (mean, 4.32 + 0.40), com-
pared with the AG/GG genotype (mean, 4.06 + 0.50, t =
2.178, P = 0.032, independent sample t-test, two-tailed;
Table 2). Consequently, we combined the AG and GG
groups (AG/GG group) for all subsequent analyses.

Table I: Correlations between the genotypes of the -271 G>A
polymorphism and clinical parameters of patients

Clinical Parameter AA AG/GG ¥2 P-value
(%) (%) (two-sided)
Gender 0.058 0811
Male 13 (20.0%) 52 (80.0%)
Female 9 (22.0%) 32 (78.0%)
Age, years 3.021 0.097
<60 14 (28.0%) 36 (72.0%)
>60 8 (14.3%) 48 (85.7%)
Smoking status 3.664 0.086
Non-smoking 17 (27.0%) 46 (73.0%)
Smoking 5(11.6%) 38 (88.4%)
Histology 0.123 0.810
Adenocarcinoma 14 (21.9%) 50 (78.1%)
Others 8 (19.0%) 34 (81.0%)
Stage 0.994 0.319
il 13 (18.1%) 59 (81.9%)
/v 9 (26.5%) 25 (73.5%)

Fisher's exact test, P (two-sided), N = 106

The -271 G>A polymorphism was not related to the KDR
protein level

Of the 76 tumor specimens analyzed immunohistochem-
ically (Fig. 2), 14 (18.4%) were negative and 62 (81.6%)
were positive for KDR protein expression. There was no
correlation between the -271 G>A genotype and KDR pro-
tein level (Table 3).

Discussion

Angiogenesis, which is the formation of new vessels from
pre-existing vessels, is critical for the growth, mainte-
nance, and metastasis of solid tumors. KDR, first isolated
by Terman et al. [13], consists of an extracellular region
with seven immunoglobulin-like domains, a transmem-
brane domain, and a tyrosine kinase domain. KDR is nor-
mally expressed in hematopoietic precursors as well as
endothelial cells, nascent hematopoietic stem cells, and
the umbilical cord stroma. However, KDR mRNA appears

Table 2: Influence of genotypes of the -271 G>A polymorphism
on KDR mRNA expression level

Genotype N (%) Mean = SD
AA 21 (20.4%) 432 +0.40
AG/GG 82 (79.6%) 4.06 + 0.50
Total 103 (100%) 4.11 £0.49

t =2.718, P = 0.032 (two-tailed), independent samples t-test
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Figure 2

KDR immunohistochemical staining of tumor tissues
from lung cancer patients (original magnification,
%x200). (a) Negative, (b) Positive.

to be down-regulated in quiescent adult vasculature [14].
KDR activation occurs through ligand binding, which
facilitates receptor dimerization and autophosphoryla-
tion of tyrosine residues in the cytoplasmic portion. The
phosphotyrosine residues either enhance receptor cata-
lytic activity or provide docking sites for downstream sig-
naling proteins [15-21]. Hence, specific inhibitors of KDR
tyrosine kinase are thought to be useful in treating cancer
[22]. Some studies have shown that KDR is expressed
strongly in the cytoplasm and nuclei of both cancer cells
and peritumoral vessels [23-25]. Following stimulation
with VEGF, KDR is translocated to the nucleus [26,27],
demonstrating that VEGFR2/KDR is not a vasculature-
restricted receptor but also has an additional role in cancer
cell biology. This hypothesis is further supported by the
frequent translocation of the receptor to the nuclei of can-
cer cells [23]. However, the autocrine VEGF/VEGEFR sys-
tem is not unique to malignant cells; it is also vital for the
survival and growth of stem cells. The operation of auto-
crine pathways in stem cells indicates that these receptors
are not always membrane-bound. Total KDR is reported
to be widely distributed throughout the membrane, cyto-
plasm, and nucleus of a tumor cell [28].

In the present study, the frequency of the AA genotype of
the -271 G>A polymorphism was higher among cancer
patients than among controls (20.8% versus 15.3%), but
the difference was not statistically significant (x2 = 1.269,
P =0.264, Fisher's exact test). These results suggest that the
-271 G>A polymorphism may not be associated with a
risk for lung cancer but may play roles in other steps of
lung cancer development. Our study had the limitation of

Table 3: Association of -271 G>A polymorphism genotypes with
KDR protein expression level

KDR protein expression AA (%) AG/GG (%)
Negative 3(21.4) 11 (78.6)
Positive 15 (24.2) 47 (75.8)

%2=0.048, P = 1.000 (Fisher's exact test, two-sided).
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a sample size. A larger study with more than 1000 cancer
cases and controls is needed to confirm our findings.

Compared with the AG/GG genotype, the AA genotype of
the -271 G>A polymorphism was associated with a higher
level of KDR mRNA expression in tumor tissues. This is
the first suggestion that the -271 G>A polymorphism of
the KDR gene may be functionally associated with the reg-
ulation of the gene's transcription level. A sequence in the
5' UTR of the gene contains the promoter region and mul-
tiple putative transcription-factor-binding sites [29]. We
hypothesize that the -271 G>A polymorphism is con-
tained in a response element of the gene and that the dif-
ferent KDR genotypes may affect the affinity of DNA
binding protein for the gene promoter, resulting in differ-
ent transcriptional activities. This hypothesis requires fur-
ther investigation.

Although the -271 G>A polymorphism was related to the
KDR mRNA level, it had no affect at the level of transla-
tion. This inconsistency between mRNA (transcription)
and protein (translation) may be due to the complexity of
the gene's expression or to multi-stage regulation mecha-
nisms of the gene, which may be correlated with more
efficient clearance of mRNA species (i.e., mRNA degrada-
tion). Proteins can be regulated at the levels of transcrip-
tion and translation and may also be regulated post-
translationally via the turnover rate. In addition, the
apparent difference in regulation between KDR mRNA
and protein expression might have resulted from differ-
ences in the methods of analysis. While the KDR mRNA
was extracted from tumor tissues that included both
tumor cells and extracellular matrix, the immunohisto-
chemical assessment evaluated KDR protein only in
tumor cells and not in the extracellular matrix.

Conclusion

We analyzed variations in the expression levels of KDR
mRNA and KDR protein in association with the KDR -271
G>A polymorphism genotype in tumor tissues of NSCLC
patients. Ours is the first study to assess the relationship
between the -271 G>A polymorphism of KDR and KDR
mRNA and protein expression in NSCLC patients. Our
results suggest that the -271 G>A polymorphism of the
KDR gene may be a functional polymorphism associated
with the regulation of KDR transcription. As KDR is a
molecular target of cancer therapy, our clinical and KDR
expression data may help to improve lung cancer therapy
targeted to KDR. The functional polymorphism of KDR
may be related to the response to or toxicity of targeted
KDR therapy, which may provide further clues for tailor-
ing individualized therapies.

Abbreviations
KDR: kinase insert domain-containing receptor; NSCLC:
non-small cell lung cancer; TKI: tyrosine kinase inhibitor.

Page 5 of 6

(page number not for citation purposes)



BMC Cancer 2009, 9:144

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

ASJ and WYL responsible for the research design, sample
collection, processing, analysis, and writing the paper,
CZH, LQX, SJ, CHJ, and LJY responsible for sample collec-
tion, processing, and analysis. The authors read and
approved the final manuscript.

Acknowledgements
We wish to thank Dr. Shi-Liang Chen, Zhi Xie, and Ying Huang for their
DNA and RNA extraction work.

This work was supported by grants from the National Natural Science
Foundation of China (No. 3077253 1), Guangdong Provincial Medical Sci-
ence and Technology Research Foundation (B2006001), and China Post-
doctoral Science Foundation (200604002 12).

References

Paez ]G, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P,
Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck M),
Sellers WR, Johnson BE, Meyerson M: EGFR mutations in lung
cancer: correlation with clinical response to gefitinib ther-
apy. Science 2004, 304(5676):1497-1500.

Bremnesa RM, Sirerab R, Camps C: Circulating tumour-derived
DNA and RNA markers in blood: a tool for early detection,
diagnostics, and follow-up? Lung Cancer 2005, 49(1):1-12.
Ponder BA: Cancer genetics. Nature 2001, 411(6835):336-341.
Sekido Y, Fong KM, Minna |D: Molecular genetics of lung cancer.
Ann Rev Med 2003, 54:73-87.

Herbst RS, Onn A, Sandler A: Angiogenesis and lung cancer:
prognostic and therapeutic implications. | Clin Oncol 2005,
23(14):3243-3256.

Rosell R, Felip E, Garcia-Campelo R, Balana C: The biology of non-
small-cell lung cancer: identifying new targets for rational
therapy. Lung Cancer 2004, 46(2):135-148.

Carmeliet P: Angiogenesis in life, disease and medicine. Nature
2005, 438(7070):932-936.

Ferrara N, Kerbel RS: Angiogenesis as a therapeutic target.
Nature 2005, 438(7070):967-974.

McMahon G: VEGF receptor signaling in tumor angiogenesis.
Oncologist 2000, 5(S1):3-10.

Taguchi F, Koh Y, Koizumi F, Tamura T, Saijo N, Nishio K: Antican-
cer effects of ZD6474 a VEGF receptor tyrosine kinase inhib-
itor, in gefitinib ("lressa")-sensitive and resistant xenograft
models. Cancer Sci 2004, 95(12):984-9.

Wedge SR, Ogilvie D), Dukes M, Kendrew |, Chester R, Jackson JA,
Boffey S), Valentine PJ, Curwen JO, Musgrove HL, Graham GA,
Hughes GD, Thomas AP, Stokes ES, Curry B, Richmond GH,
Woadsworth PF, Bigley AL, Hennequin LF: ZD6474 inhibits vascu-
lar endothelial growth factor signaling, angiogenesis, and
tumor growth following oral administration. Cancer Res 2002,
62(16):4645-4655.

An §), Nie Q, Chen ZH, Lin QX, Wang Z, Xie Z, Chen SL, Huang Y,
Zhang AY, Yan JF, Wu HS, Lin JY, Li R, Zhang XC, Guo AL, Mok TS,
Wu YL: KDR expression is associated with the stage and cig-
arette smoking of the patients with lung cancer. | Cancer Res
Clin Oncol 2007, 133(9):635-642.

Zhang Y, Pillai G, Gatter K, Blazquez C, Turley H, Pezzella F, Watt SM:
Expression and cellular localization of vascular endothelial
growth factor A and its receptors in acute and chronic leuke-
mias: an immunohistochemical study. Hum Pathol 2005,
36(7):797-805.

Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP,
Risau W, Ullrich A: High affinity VEGF binding and develop-
mental expression suggest Flk-1 as a major regulator of vas-
culogenesis and angiogenesis. Cell 1993, 72(6):835-846.
Dayanir V, Meyer RD, Lashkari K, Rahimi N: Identification of tyro-
sine residues in vascular endothelial growth factor receptor-

http://www.biomedcentral.com/1471-2407/9/144

2/FLK-1 involved in activation of phosphatidylinositol 3-
kinase and cell proliferation. J Biol Chem 200I,
276(21):17686-17692.

16.  Hubbard SR: Structural analysis of receptor tyrosine kinases.
Prog Biophys Mol Biol 1999, 71(3-4):343-358.

17.  Meyer RD, Dayanir V, Majnoun F, Rahimi N: The presence of a sin-
gle tyrosine residue at the carboxyl domain of vascular
endothelial growth factor receptor-2/FLK-1 regulates its
autophosphorylation and activation of signaling molecules. |
Biol Chem 2002, 277(30):27081-27087.

18. Meyer RD, Latz C, Rahimi N: Recruitment and activation of
phospholipase Cgammal by vascular endothelial growth fac-
tor receptor-2 are required for tubulogenesis and differenti-
ation of endothelial cells. J Biol Chem 2003,
278(18):16347-16355.

19.  Singh A, Meyer RD, Band H, Rahimi N: The carboxyl terminus of
VEGFR-2 is required for PKC-mediated down-regulation.
Mol Biol Cell 2005, 16(4):2106-2118.

20. Strawn LM, Shawver LK: Tyrosine kinases in disease: overview
of kinase inhibitors as therapeutic agents and current drugs
in clinical trials. Expert Opin Investig Drugs 1998, 7(4):553-573.

21. Zeng H, Sanyal S, Mukhopadhyay D: Tyrosine residues 951 and
1059 of vascular endothelial growth factor receptor-2 (KDR)
are essential for vascular permeability factor/vascular
endothelial growth factor-induced endothelium migration
and proliferation, respectively. J Biol Chem 2001,
276(35):32714-32719.

22. Nakamura K, Yamamoto A, Kamishohara M, Takahashi K, Taguchi E,
Miura T, Kubo K, Shibuya M, Isoe T: KRN633: A selective inhibi-
tor of vascular endothelial growth factor receptor-2 tyrosine
kinase that suppresses tumor angiogenesis and growth. Mol
Cancer Ther 2004, 3(12):1639-1649.

23. Giatromanolaki A, Koukourakis MI, Sivridis E, Chlouverakis G,
Vourvouhaki E, Turley H, Harris AL, Gatter KC: Activated
VEGFR2/KDR pathway in tumour cells and tumour associ-
ated vessels of colorectal cancer. Eur | Clin Invest 2007,
37(11):878-886.

24. Giatromanolaki A, Koukourakis MI, Turley H, Sivridis E, Harris AL,
Gatter KC: Phosphorylated KDR expression in endometrial
cancer cells relates to HIF lalpha/VEGF pathway and unfa-
vourable prognosis. Mod Pathol 2006, 19(5):701-707.

25. Stewart M, Turley H, Cook N, Pezzella F, Pillai G, Ogilvie D, Cartlidge
S, Paterson D, Copley C, Kendrew J, Barnes C, Harris AL, Gatter KC:
The angiogenic receptor KDR is widely distributed in human
tissues and tumours and relocates intracellularly on phos-
phorylation, An immunohistochemical study. Histopathology
2003, 43(1):33-39.

26. Feng Y, Venema V), Venema RC, Tsai N, Caldwell RB: VEGF
induces nuclear translocation of Flk-1/KDR, endothelial
nitric oxide synthase, and caveolin-| in vascular endothelial
cells. Biochem Biophys Res Commun 1999, 256(1):192-197.

27. Thuringer D, Maulon L, Frelin C: Rapid transactivation of the vas-
cular endothelial growth factor receptor KDR/Flk-1 by the
bradykinin B2 receptor contributes to endothelial nitric-
oxide synthase activation in cardiac capillary endothelial
cells. | Biol Chem 2002, 277(3):2028-2032.

28. Blazquez C, Cook N, Micklem K, Harris AL, Gatter KC, Pezzella F:
Phosphorylated KDR can be located in the nucleus of neo-
plastic cells. Cell Res 2006, 16(1):93-98.

29. Kuehl P,Zhang], Lin Y, Lamba ], Assem M, Schuetz ], Watkins PB, Daly
A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K,
Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E:
Sequence diversity in CYP3A promoters and characteriza-
tion of the genetic basis of polymorphic CYP3AS5 expression.
Nat Genet 2001, 27(4):383-91.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1471-2407/9/144/pre
pub

Page 6 of 6

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15118125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15949585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15949585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15949585
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11357140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12471176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15886312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15886312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15474661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15474661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15474661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16355210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16355214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15596048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15596048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15596048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12183421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12183421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12183421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17479290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17479290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16084950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16084950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16084950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7681362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7681362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7681362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11278468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11278468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11278468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11278468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10354703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12023952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12023952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12023952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15673613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15673613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15991993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15991993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15991993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11435426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11435426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11435426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15634658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15634658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15634658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17883421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17883421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17883421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16557278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16557278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16557278
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10066445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10066445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10066445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11711543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11711543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11711543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16467880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11279519
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11279519
http://www.biomedcentral.com/1471-2407/9/144/prepub

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Patients and control subjects
	Genotyping
	Real-Time PCR
	Immunohistochemistry
	Statistical analysis

	Results
	Frequency of the -271 G>A polymorphism genotypes and their relationships to clinical parameters and risk for lung cancer
	The -271 G>A polymorphism affects the transcriptional level of the KDR gene, as detected by real-time PCR
	The -271 G>A polymorphism was not related to the KDR protein level

	Discussion
	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Pre-publication history

