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Abstract

Background: Antineoplastic drug cisplatin remains the drug of choice for various solid tumours
including breast cancer. But dose dependent nephrotoxicity is the major drawback in majority of
platinum based chemotherapy regimens. Recent reports have shown that inflammatory pathways
are the main offender for cisplatin induced nephrotoxicity. The present study was undertaken to
assess the effect of rosiglitazone, a PPARy agonist and an anti-inflammatory agent, on cisplatin
induced nephrotoxicity, and its anticancer activity in DMBA induced breast cancer rats.

Methods: Mammary tumours were induced in female Sprague-Dawley rats by feeding orally with
dimethylbenz [a]anthracene (DMBA) (60 mg/kg). Cisplatin induced nephropathy was assessed by
measurements of blood urea nitrogen, albumin and creatinine levels. Posttranslational
modifications of histone H3, mitogen-activated protein (MAP) kinase p38 expression and PPAR-y
expression were examined by western blotting.

Results: Our data shows involvement of TNF-a in preventing cisplatin induced nephrotoxicity by
rosiglitazone. Rosiglitazone pre-treatment to cisplatin increases the expression of p38, PPAR-y in
mammary tumours and shows maximum tumour reduction. Furthermore, cisplatin induced
changes in histone acetylation, phosphorylation and methylation of histone H3 in mammary
tumours was ameliorated by pre-treatment of rosiglitazone. Suggesting, PPAR-y directly or
indirectly alters aberrant gene expression in mammary tumours by changing histone modifications.

Conclusion: To best of our knowledge this is the first report which shows that pre-treatment of
rosiglitazone synergizes the anticancer activity of cisplatin and minimizes cisplatin induced
nephrotoxicity in DMBA induced breast cancer.

Background which 40,840 were related to deaths in the United States
Breast cancer is a complex disease that results from a  alone [1]. This continuing magnitude of the breast cancer
multi-stage process involving the deregulation of a  problem with respect to incidence, morbidity and mortal-
number of different signalling cascades. About 212,930 ity requires further studies involving novel approach to
new cases of breast cancer were diagnosed every year, of  prevent this disease [2]. Cisplatin, cis- [PtCI2(NHs)2], is a
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widely used anticancer drug, proved to be beneficial in the
treatment of wide variety of solid tumours (head and
neck, lung, bladder, colorectal and breast cancer) in vari-
ous combination chemotherapy regimens [3]. Higher
doses of cisplatin are considered to be more efficacious for
cancer chemotherapy; however these therapies manifest
toxicities such as nephrotoxicity, despite its effectiveness
which limits its use [4,5]. It was observed that after a sin-
gle injection of cisplatin, around 28 to 36% of patients
develop dose-dependent nephrotoxicity [6]. However
despite its toxicity, cisplatin remains to be one of the most
commonly used chemotherapy drugs due to its therapeu-
tic efficacy [7]. Recent reports have shown that cisplatin
induced nephrotoxicity is characterized by activation of
pro-inflammatory cytokines and chemokines. TNF-a
appears to play a central role in the cisplatin induced renal
injury by activation of a large network of chemokines and
cytokines in the kidney following cisplatin injection.
Blockade of either TNF-a production or its activity pre-
vents the activation of cytokine network and provides pro-
tection against cisplatin-induced renal dysfunction and
structural damage [8,9].

Peroxisome proliferator-activated receptor-y(PPARy) is a
member of the nuclear receptor superfamily of ligand-
activated transcription factors [10]. PPARy forms a het-
erodimeric complex with the retinoid x receptor and then
binds to the PPAR response element [11]. This interaction
can be responsible for the regulation of cellular events
ranging from glucose and lipid homeostasis to cell differ-
entiation and apoptosis [12]. Ligands for PPARy include
natural compounds such as fatty acids and their deriva-
tives and synthetic agents such as the antidiabetic drugs
rosiglitazone (Avandia) and pioglitazone (Actos) [13].
Although central role of PPAR-y has been demonstrated in
the differentiation of adipose cells, PPARy has also been
shown to regulate the growth, differentiation, and gene
expression in number of different cancer cells [14,15].
Rosiglitazone has been shown to have anti-neoplastic
activity in in-vitro and in-vivo breast cancer models [16]. In
addition, recently, several studies have demonstrated that
PPARy agonist's exhibit an anti-inflammatory effect in-
vitro and in-vivo [17,18].

The eukaryotic genome is maintained as a nucleoprotein
complex called chromatin, which consists, mainly of pos-
itively charged proteins called histones [19]. Post-transla-
tional modification of histone proteins as well as non-
histone proteins including nuclear receptors integrates
signalling pathways mediating diverse biological proc-
esses. The influence exerted by the post-translational
modifications of histones over the regulation of gene
expression has been extensively studied in the past few
years [20]. Post-translational modification of histones
provides a key mechanism of transcriptional regulation.
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Acetylation, phosphorylation and methylation of histone
H3, modulate the activity of many genes by modifying
both core histones and non-histone protein [21]. Altera-
tions in modifications of histones have been linked to
deregulation of many genes which have important roles
in cancer development and progression [22]. Moreover, it
has been reported that HER2-overexpressing breast cancer
cells contained significantly higher levels of acetylated
and phosphorylated histone H3 [23]. So far there are no
reports regarding the effect of rosiglitazone pretreatment
on post-translational histone modifications in DMBA
induced breast cancer in female SD rats.

Based upon above facts we hypothesize that pre-treatment
of rosiglitazone along with cisplatin decreases its nephro-
toxicity and may synergize or potentiate its anticancer
activity. Understanding the mechanism of rosiglitazone
and cisplatin treatment will help in initiating novel
approach for cancer therapeutics.

Methods

Materials

Cisplatin and Rosiglitazone were kindly gifted by Dabur
India Pvt. Ltd and Nicholas Piramal Research Centre,
Mumbai, India, respectively. DMBA was obtained from
Sigma (St. Louis, MO, USA). Blood urea nitrogen (BUN),
creatinine and albumin kits were purchased from Accurex
(Mumbai, India).

Animals

The guidelines of committee for the purpose of control
and supervision of experiments on animals (CPCSEA),
Government of India were followed and prior permission
was sought from the institutional animal ethics commit-
tee (IAEC) for conducting the study. The female Sprague-
Dawley rats (160-180 g) were procured from the central
animal facility of the institute. They were maintained
under standard environmental conditions and provided
with feed and water ad libitum. All the animals were fed on
normal pellet diet one week prior to the experimentation.
Considering the animal ethical issues, all animals were
kept under best hygienic conditions and the tumour bear-
ing animals were inspected daily for any signs of pain, dis-
comfort of distress.

Tumour induction

Female Sprague Dawley rats at the age of 8 weeks weigh-
ing 160-180 g were gavaged with 60 mg dimethylbenz
[a]anthracene (DMBA)/kg body weight, a dose sufficient
to cause 100% tumour incidence in the control group
over the course of the study as described by Whitsett T et
al [24]. The DMBA was dissolved in olive oil at a stock
solution of 30 mg/ml. Animals were sacrificed when the
tumour diameter reached three inch, animals became
moribund or after the completion of experiment.
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Experimental design

Female SD rats were divided initially into two different
groups namely, normal control (Group 1) received olive
oil and DMBA treated group received DMBA (60 mg/kg).
After three months mammary carcinoma was confirmed
by histological examination and breast palpation. Twelve
weeks later, DMBA treated rats were grouped into four dif-
ferent groups on the basis of their tumour volume. DMBA
treated rats received normal saline (Group II). Mammary
carcinoma induced rats treated with rosiglitazone (8 mg/
kg) suspended in 0.5% CMC through oral gavage (Group
IIT). Mammary carcinoma induced rats treated with cispl-
atin (7.5 mg/kg) dissolved in normal saline by intraperi-
toneal route (Group IV). Mammary carcinoma induced
rats first pre-treated with rosiglitazone (8 mg/kg) sus-
pended in 0.5% CMC for five days through oral gavage
and then on fifth day single dose of cisplatin (7.5 mg/kg)
dissolved in normal saline (0.9% w/v) by intra-peritoneal
route (Group V). These animals were maintained on
standard diet and water for 3 months prior to drug inges-
tion.

Estimation of plasma glucose, albumin, blood urea
nitrogen and creatinine

Blood samples were collected from rat tail vein under light
ether anesthesia in heparinized centrifuge tubes and
immediately centrifuged at 2300 g for the separation of
plasma. Plasma was stored at -80° until assayed. The
plasma was used for the estimation of albumin, blood
urea nitrogen (BUN) and creatinine as described previ-
ously [25].

Measurement of TNF-c level

The level of TNF-a in serum was determined by using
enzyme-linked immunosorbent assay (ELISA) Kkits
(Endogen, Woburn, MA, USA), according to the manufac-
turer's instructions. In all the cases, a standard curve was
constructed from standards provided by the manufac-
turer.

Measurement of tumour volume

The measurements were done for visible tumours; two
diameters that is shortest and longest diameter of the
tumours were measured. The volume of the tumour was
calculated as: I1/6.(a)2(b), where a is the smallest and b is
the longest length of the tumour [26].

Histopathology of Mammary and kidney

Histopathology of kidneys and mammary tumours were
done as described previously [27,28]. Briefly rats were
anesthetized under light ether anesthesia, after surgery cir-
culating blood was removed by cardiac perfusion with 0.1
M PBS (pH 7.4; 20-50 ml). After clearance of circulating
blood, 4% paraformaldehyde in 0.1 M phosphate buffer
(pH 7.4) was perfused for another 5 min (100-200 ml of
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fixative) to fix the tissues. Kidneys and mammary tumours
were removed from the animal, decapsulated, sliced trans-
versely, and paraffin embedded for light microscopic eval-
uation. Histopathological changes in these tissues were
assessed in at least 25 randomly selected tissue sections
from each group studied. Sections were stained with
Meyer's hematoxylin and eosin to examine cell structure.
Slides were observed under Olympus microscope (Model
no. BX51). For histological quantification 100 renal
tubules were randomly examined from each animal and
scored as 0, 1, 2, and 3 (No damage, Mild, Moderate, and
extensive damage) depending on the extent of damage
observed. The no. of tubules under each score was multi-
plied with the respective scores and the sum obtained to
get the final renal tubules damage score. For histological
quantification of mammary tumours the histological
grades were assessed as proposed by Elston and Ellis[29].
Briefly histological grade was obtained by summing the
scores of three parameters: tubular formation, nuclear ple-
omorphism and mitotic counts and then classified as fol-
lows: 3-5 points: grade I, well differentiated; 6-7 points:
grade I, moderately differentiated; 8-9 points: grade III,
poorly differentiated.

Protein isolation and western blotting

Nuclei, histone isolation and western blotting were per-
formed in kidney tissues as described previously
[25,27,28]. Immunoblot analysis was performed by using
Anti phospho-Histone H3 (ser-10) (rabbit 1:2000, Santa
Cruz, CA), Anti acetyl-Histone H3 (lysine 14) (rabbit
1:2000, Santa Cruz, CA), Anti Histone H3 (rabbit 1:5000,
Upstate, Lake Placid, NY), Anti PPARy (rabbit 1:500,
Santa Cruz, CA), Anti p38 (rabbit 1:500, Santa Cruz, CA),
Anti-actin (rabbit 1:2500, Sigma, St. Louis, MO) and
HRP-conjugated secondary antibodies (anti-rabbit) from
Santa Cruz. Proteins were detected with the enhanced
chemiluminescence system and ECL Hyperfilm (Amer-
sham Pharmacia Biotech, UK Ltd, Little Chalfont, Buck-
inghamshire, UK).

Statistical analysis

Experimental values are expressed as mean + SEM. Com-
parison of mean values between various groups was per-
formed by one way-analysis of variance (one way-
ANOVA) followed by multiple comparisons by Turkey
test. P-value < 0.05 is considered to be significant.

Results

Effect of rosiglitazone on cisplatin induced change in body
weight, BUN, plasma creatinine and plasma albumin levels
Treatment of cisplatin show significant loss in body
weight when compared with breast cancer control rats.
However, there was no significant change in body weight
of rosiglitazone treated rats. Pretreatment of rosiglitazone
(8 mg/kg) for five days in cisplatin treated rats showed sig-
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nificant protection in body weight loss as compared to cis-
platin (7.5 mg/kg) treated rats in breast cancer animals. In
comparison with cancer control rats, nephropathy mark-
ers like BUN and creatinine levels, show significant
increase by cisplatin treatment and a decrease in albumin
level. Pretreatment of rosiglitazone (8 mg/kg) for five days
before cisplatin (7.5 mg/kg) treatment showed significant
decrease in BUN and creatinine levels and increased albu-
min levels as compared to cisplatin (7.5 mg/kg) treated
rats in breast cancer animals. There was no significant
change in BUN, creatinine and albumin levels in rosiglita-
zone (8 mg/kg) treated rats (Table 1). These observations
demonstrate that rosiglitazone pre-treatment is effective
in reducing cisplatin induced nephrotoxicity.

Rosiglitazone prevents cisplatin induced increase in TNF-«
level in breast cancer rats

Previous reports have suggested that TNF-a is involved in
cisplatin induced nephrotoxicity and that a blockade of
TNF-a action ameliorates cisplatin induced nephrotoxic-
ity [8]. We measured the level of TNF-a in serum at 5t day
after the administration of rosiglitazone, cisplatin or cispl-
atin with rosiglitazone pretreatment. Cisplatin injection
increased TNF-a in serum on 5th day as compared to
breast cancer control group. However, pretreatment with
rosiglitazone significantly decreased serum TNF-a levels
in the cisplatin-treated group (Fig. 1). Suggesting that
nephroprotection observed by rosiglitazone involves
TNEF-o inhibition.

Pretreatment of rosiglitazone potentiates antitumour
activity of cisplatin in DMBA induced breast cancer rats
Tumour volume

Table 2 represents the tumour volume in rats after treat-
ment with cisplatin, rosiglitazone, and combination of
both. There was a considerable increase in tumour vol-
ume of breast cancer control animals when compared
with the treatment group's like cisplatin, rosiglitazone and
pre-treatment group. Cisplatin and rosiglitazone treated
rats showed a significant reduction in their tumour vol-
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ume when compared with untreated rats. Reduction in
tumour volume of cisplatin treated animals was more as
compared with rosiglitazone treated animals. However,
rosiglitazone pretreatment along with cisplatin show
maximum reduction in tumour volume as compared to
cisplatin alone treated rats. These finding suggest us that
combination of rosiglitazone and cisplatin is more effec-
tive than individual therapies.

Percentage tumour inhibition

Percentage tumor inhibition was calculated as compared
to cancer control in respective treatment groups (Table 3).
There was a considerable tumour progression in untreated
rats when compared with treated rats. Tumour did not dis-
appear totally by single dose of drug treatment, but a sig-
nificant regression was observed when compared with
untreated rats. In comparison to breast cancer control rats,
Cisplatin treated rats showed 82.95% reduction on the 314
day, 72.64% reduction on 6t day and 68.60% reduction
on 9th day of the tumour size. Rosiglitazone treated rats
showed 85.84, 83.62 and 81.85% reduction on 34 day,
6thand 9th days, respectively. Moreover combination ther-
apy treated rats showed a 79.12, 60.67 and 54.85% reduc-
tion of tumour size on 31, 6th and 9t days, respectively,
indicating combination therapy was most effective when
compared to rosiglitazone and cisplatin alone treated rats.

Changes in renal histology by cisplatin and rosiglitazone
treatment in breast cancer rats

Cancer control rats showed intact renal tubules and
glomeruli, in addition, uniform tubules with single layer
of epithelium lining was observed in renal cortex of con-
trol rats (Fig. 2A). Cisplatin treated rats showed increased
tubular space, vacuolation and desquamation of epithe-
lial cells in renal tubules (Fig 2C). However, pre-treatment
with rosiglitazone dramatically improved the cisplatin
nephrotoxicity showing minimum tubular damage in this
group (Fig. 2D). Rosiglitazone treatment alone (Fig. 2B)
had no effect on renal histology. Supporting our data of

Table I: Effect of rosiglitazone pre-treatment on cisplatin-induced nephrotoxicity in chemically induced breast cancer model

Change in Body weight (g) BUN (mg/dl) Creatinine (mg/kg)  Albumin (g/dl)
Normal control 11.00 £ 3.37 33+3.78 1.02 + 0.08 3.59 £ 0.03
Breast cancer control 3.00 + 3.12 36 £ 3.53 1.07 £ 0.12 3.73+£0.12
Rosi (8 mg/kg) 8.00 + 3.49 28 +2.85 0.93 £ 0.05 3.58 £ 0.09
Cis (7.5 mgl/kg) -35.00 + 2.52°%F*k 318 + 14.20%+* 5.52 + 0.35%F* 2.94 + 0.| 4k

PT Rosi (8 mg/kg) + Cis (7.5 mglkg) -6.00 + 2.33*%b

167 + 14.41%Fb 1.96 + 0.23%Fk 3.73 £ 0.20%F

All the values are expressed as mean + SEM (n = 8). ¥**P < 0.001, a Vs Cancer Control & b Vs Cisplatin. Where, Rosi is rosiglitazone, Cis is cisplatin

and PT is pretreatment
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Effect of rosiglitazone pretreatment on level of
TNFa in serum following cisplatin administration. All
values are expressed as mean + SEM (n = 8). **P < 0.001, *P
< 0.05. a Vs Cancer Control & b Vs Cisplatin.

biochemical protection observed in cisplatin induced
nephrotoxicity.

Effect of rosiglitazone pre-treatment on mammary tumour
histology in DMBA induced breast cancer

Breast cancer control group displays normal neoplasm
histology (Fig. 3A). Rosiglitazone treated group showed, a
low grade of differentiation which is demonstrated by
giant multinucleated cells (Fig. 3B). Decreased cell density
and higher level of fibrosis was observed in cisplatin
treated animals (Fig. 3C). However, Rosiglitazone pre-
treatment for five days in cisplatin treated animals showed
appearance of glandular structures, an indication for func-
tional differentiation (Fig. 3D). Suggesting combination
of cisplatin and rosiglitazone prevents tumour progres-
sion significantly.

Rosiglitazone changes p38 expression in mammary tumour
It has been shown that p38 participates in the regulation
of apoptotic cell death through transcriptional upregula-
tion of proapoptotic gene expression, such as Fas ligand
[30,31]. p38alpha can suppress cell proliferation by
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antagonizing the JNK/c-Jun pathway, which is an impor-
tant regulator of proliferation and apoptosis [32]. In addi-
tion, recent reports show that p38 phosphorylation is
down regulated and Akt phosphorylation is up regulated
in multiple human tumour tissues, and this correlates
with tumour stage in human breast cancer [33]. Cancer
control animals showed very low level of p38 (Fig. 4 lane
a). Rosiglitazone and cisplatin (Fig. 4 lane b and c) treated
animals showed increased p38 in mammary tumour
when compared with cancer control. However, pretreat-
ment of rosiglitazone, showed further increase in level of
P38 expression, suggesting further increase in apoptotic
cell death in breast cancer cells. The increase in the p38
expression supports our earlier data of maximum tumour
reduction in pre-treatment group.

Rosiglitazone pretreatment in breast cancer increases
PPARy expression

It has been previously reported that PPARy is detectable in
normal mammary epithelium [34]. PPARy expression is
reduced in human benign breast disease and cancers cor-
relating with increased cyclin D1 abundance [35]. Breast
cancer control animals show low level of PPARy expres-
sion (Fig. 4 lane a), where as Rosiglitazone treated ani-
mals show increased PPARy expression (Fig. 4 lane b).
However, cisplatin treated (Fig. 4 lane c) rats showed low
level of PPARy expression. Pretreatment of rosiglitazone
show maximum increase in expression of PPARy (Fig. 4
lane d) which very well coincides with maximum antitu-
mour activity.

Change in histone post-translational modifications by
pretreatment of rosiglitazone in breast cancer rats

The modification of the lysine groups of core histones by
multiple post-translational events including phosphoryla-
tion and acetylation coincident with activation of
mitogenic signalling [36]. In the present study we found
increased levels of H3 acetylation and phosphorylation in
cancer control rats (Fig 5 lane a). In case of rosiglitazone
and cisplatin treated rats (Fig 5 lane b and c) there are

Table 2: Effect of pre-treatment of rosiglitazone with cisplatin on tumour volume (cm) in chemically induced breast cancer model

0 Day 3rd Day 6th Day 9th Day
Normal control 0+0 0+0 0+0 00
Breast cancer control 23+ 1.04 433 £0.99 585+ I.16 6.5+ 1.46
Rosi (8 mg/kg) 2.26 +0.48 1.94 £ 0.61 1.89 + 0.73%* 1.85 + 0.]9%*a
Cis (7.5 mgl/kg) 223 +0.57 1.85 + 0.44 1.62 + 0.4]%k 1.53 £ 0.35%+%
PT Rosi (8 mg/kg) + Cis (7.5 mglkg) 2.06 + 0.84 1.63 £ 0.56* 1.25 + 0.46%**a 0.98 £ 0.36%++

All values are expressed as mean + SEM (n = 8). **P < 0.001, *¥<0.01, *P < 0.05. a Vs Cancer Control. Where Rosi is rosiglitazone, Cis is cisplatin

and PT is pretreatment
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Table 3: Effect of pre-treatment of rosiglitazone in cisplatin treated rats on % tumour inhibition in chemically induced breast cancer

model
0 Day 3rd Day 6th Day 9th Day
Normal control 00 00 00 00
Breast cancer control 100 £ 45.22 188.26 + 22.86 254.34 £ 19.83 282.60 + 22.46
Rosi (8 mg/kg) 100 + 21.24 85.84 + 31.44 83.62 + 38.62** 81.85 + 10.27%*k
Cis (7.5 mg/kg) 100 £ 25.56 82.95 £+ 23.78 72.64 £ 253 %% 68.60 + 22.88**a
PT Rosi (8 mg/kg) + Cis (7.5 mg/kg) 100 + 40.78 79.12 + 34.36% 60.67 * 36.80%* 54.85 + 3].86%+

Percentage tumor inhibition is assessed by calculating the percentage of reduction in tumor volume in the respective treated groups as compared to
breast cancer control All values are expressed as mean + SEM (n = 8). ***P < 0.001, *¥<0.01, *P < 0.05. a Vs Cancer Control. Where Rosi is

rosiglitazone, Cis is cisplatin and PT is pretreatment.

decreased levels of histone H3 acetylation and phosphor-
ylation. Rosiglitazone pre-treatment showed maximum
decrease in H3 acetylation and phosphorylation in breast
cancer animals (Fig. 5 lane d). This decrease in histone H3
acetylation and phosphorylation in combination group
clearly indicates that there was decreased cell proliferation
and increased differentiation which can be well correlated
with maximum tumour reduction in combination ther-
apy. Histone H3 methylation can be equally associated
with either transcriptional activation or repression. Meth-
ylation of the lysine residue Lys4 of histone H3 (H3-K4)
correlates with activation of gene expression [20]. Cancer
control group show increased Lys4 methylation (Fig 5
lane a) that can be correlated with increased transcription
of cancer causing genes. Our combination of rosiglitazone
and cisplatin showed decreased Lys4 methylation of his-
tone H3 (Fig. 5 lane d). Suggesting that there may be
decrease in over expression of genes involved in cancer.
Indicating that combination of rosiglitazone with cispla-
tin is more efficacious than individual therapy.

Discussion

In this study, we provide evidence that rosiglitazone sig-
nificantly increases the level of PPARy in mammary
tumours, leading to significant reduction in tumour vol-
ume. Moreover, combination of rosiglitazone with cispla-
tin led to remarkable reduction in nephropathy.
Cytokines, particularly tumour necrosis factor-o (TNF-a.),
appears to contribute to cisplatin-induced renal injury
and coordinate the activation of a large network of chem-
okines and cytokines in the kidney following cisplatin
injection [9]. Agonists of the peroxisome proliferator-acti-
vated receptor-y (PPARy), such as rosiglitazone, have been
recently reported to regulate inflammation by modulating
the production of inflammatory mediators and adhesion
molecules [17].

Plasma albumin, creatinine and blood urea nitrogen
parameters are considered as an index of nephrotoxicity

[37]. Our combination of rosiglitazone pretreatment with
cisplatin significantly reduced cisplatin induced nephro-
toxicity by lowering the levels of nephrotoxicity markers,
BUN and creatinine. Histopathological examination also
supports that rosiglitazone pre-treatment prevents cispla-
tin nephrotoxicity which is clearly evident from the
reduced glomerular thickening and vacuolation. In line
with the protective effect of rosiglitazone on cisplatin
induced nephrotoxicity rosiglitazone pre-treatment also
showed significant decrease in TNF-a level. TNFa leads to
activation of NFkB which further activates phosphoryla-
tion and consequent degradation of inhibitory protein
IxBa, leading to release of inflammatory mediators [8].
Thus, reduction in TNFa levels confirms the protection
observed in nephrotoxicity and supports our biochemical
and histopathological data.

PPARy is a transcription factor belonging to the nuclear
receptor superfamily and forms functional heterodimers
with the retinoid x receptor [38,39]. Recently, it has been
shown that activation of PPARy by J2 series cyclopenten-
one prostaglandins (cyPGs), especially 15-deoxy-D12:14-
prostaglandin J2 (15d-PGJ2) or synthetic agents, such as
antidiabetic thiazolidinediones, causes anti-proliferation,
apoptosis, differentiation, and anti-inflammation of cer-
tain types of cancer cells [40]. In breast tissue, agonists of
PPARy have been shown to inhibit cell growth, reduce
oestrogen production by adipose tissue, inhibit oestrogen
receptor (ER) activity and play a role in tumour regression
[41,42]. In our study, the PPARy agonist rosiglitazone acti-
vated PPARy and inhibited progression of breast cancer.
Moreover, pretreatment of rosiglitazone with cisplatin
showed maximum increase in PPARy expression which
was well correlated with maximum percentage of tumour
inhibition.

Deregulated growth signaling pathways and acquired
resistance toward apoptosis constitute two hallmarks of
most, if not all, human tumours [43]. Activity of MAPki-
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Figure 2

Histopathological changes in kidney after pre-treatment with rosiglitazone. Transverse section of normal control
rat kidney (A), rosiglitazone treated kidney (B), cisplatin treated (C) and pre-treatment of rosiglitazone (D). Sections were
stained with Mayer's hematoxylin counterstained with eosin and observed under magnification of 40% as described in Section 2.
(E) Quantitative analysis of histopathological studies in kidney where; control rat kidney (a), rosiglitazone treated kidney (b),
cisplatin treated (c) and pre-treatment of rosiglitazone (d).
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Effect of rosiglitazone pretreatment on mammary tumour histopathology. (A) Breast cancer control group, (B)
Mammary tumour after treatment with Rosiglitazone: pronounced cell pleomorphism and a low grade of differentiation are
demonstrated by multinucleated giant cells, (C) Cisplatin treated mammary tumour. Note the decreased cell density and higher
level of fibrosis as sign of a therapeutic effect, (D) Rosiglitazone pre-treated mammary tumour for five days. Note the glandular
structure as indicator for a functional differentiation, (E) Quantitative analysis of histopathological studies in mammary tumour
where; Cancer control (a), rosiglitazone treated mammary tumour (b), cisplatin treated mammary tumour (c) and rosiglitazone
pretreated mammary tumour (d).
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Figure 4

Western blot of PPARy and MAP kinase p38 in mammary tumours. Western blot of PPARy and MAP kinase p38 lev-
els in mammary tumours after treatment with Rosiglitazone and Cisplatin in DMBA induced breast cancer rats. Where, lane a:
Cancer Control, lane b: Rosiglitazone, lane c: Cisplatin and lane d: Rosiglitazone pre-treatment. Results were normalized with

respect to Actin. Similar results were obtained in three independent set of experiments. All the values were represented as
Mean £ S.E.M. (n = 3), ¥P < 0.01; * P < 0.05; a Vs Cancer Control and b Vs Cisplatin.

nase p38 is regulated through Akt and is deregulated
partly due to Akt activation in human cancer. Activation
of Akt antagonizes p38 activation while inactivation of
Akt results in p38 activation [33]. Mice deficient in p38a
are prone to cancer development using carcinogen or
oncogene-induced cancer models. p38a can suppress cell
proliferation by antagonizing the JNK/c-Jun pathway,
which is an important regulator of proliferation and
apoptosis [32]. Our data indicates a significant decrease in
expression of p38 in breast cancer control animals. How-
ever, increase in p38 expression by pretreatment of rosigl-
itazone, suggests an increase in apoptosis of breast cancer
cells.

Post-translational modification of histones alters chroma-
tin structure, facilitating the binding of nuclear factors

that mediate DNA repair, transcription, and other proc-
esses. The modification of the lysine groups of core his-
tones by multiple post-translational events including
phosphorylation and acetylation coincident with activa-
tion of mitogenic signalling [36]. Increase in acetylation
and phosphorylation of histone H3 in cancer cells shows
increased cell proliferation and decreased cell differentia-
tion. Breast cancer control animals showed increased
phosphorylation and acetylation of histone H3. But ros-
iglitazone pre-treatment prevented an increase in acetyla-
tion and phosphorylation of histone H3. This is first
report which shows that rosiglitazone directly or indi-
rectly can induce change in histone H3 modification.
Phosphorylation of histone H3 is known to be involved in
cell proliferation. Decrease in histone H3 phosphoryla-
tion and acetylation by cisplatin and rosiglitazone pre-
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Figure 5

Western blot of histone modifications in mammary tumours. Western blot of acetylation, phosphorylation and meth-
ylation levels of histone H3 in mammary tumours after treatment with Rosiglitazone and Cisplatin in DMBA induced breast
cancer rats. Where, lane a: Cancer Control, lane b: Rosiglitazone, lane c: Cisplatin and lane d: Rosiglitazone pre-treatment.
Results were normalized with respect to total histone H3. Similar results were obtained in three independent set of experi-
ments. All the values were represented as Mean + S.EM. (n = 3), **P < 0.01; * P < 0.05; a Vs Cancer Control and b Vs Cispla-

tin.

treatment therapy supports our earlier data of maximum
tumour volume reduction in the combination therapy.
Lys4 methylation of histone H3 is found to be increased
in cancer cell which leads to transcription of various onco-
genes, our data also showed high level of Lys4 methyla-

tion of histone H3 in cancer control animals. However,
pretreatment of rosiglitazone with cisplatin showed
decreased level of lys4 methylation of histone H3 which
suggests that there is decrease in transcription of proto-
oncogenes in mammary tumours.
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Conclusion

Combination of rosiglitazone pretreatment with cisplatin
leads to reduced nephrotoxicity with a significant increase
in antineoplastic activity. Thus this combination can lead
to development of new therapeutic regimen with low
nephrotoxicity and high antitumour activity against
breast cancer. Despite the preponderance of both drugs as
sole agents for anti-neoplastic effect, the combinatorial
aid of both drugs seems to abate the tumour volume by
reducing cell proliferation to an appreciable extent.

Abbreviations
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