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Background
Colorectal carcinoma (CRC) is a leading cause of cancer-
based mortality in western countries, causing some

Abstract

Background: Prostaglandin E2 (PGE2), a product of the cyclooxygenase (COX) reaction,
stimulates the growth of colonic epithelial cells. It is inferred that the abrogation of prostaglandins'
growth-promoting effects as a result of COX inhibition underlies the advantageous effects of non-
steroidal anti-inflammatory drugs in colorectal carcinoma (CRC). Despite this appreciation, the
underlying molecular mechanisms remain obscure since cell culture studies have yielded discrepant
results regarding PGE2's mitogenicity.

Methods: We have employed several alternative approaches to score cell proliferation and
apoptosis of 4 CRC cell lines exposed to PGE2 under various conditions. To investigate the role
of cAMP in PGE2's functions, activation of the cAMP pathway was assessed at different levels
(changes in cAMP levels and PKA activity) in cells subjected to specific manipulations including the
use of specific inhibitors or prostanoid receptor-selective agonists/antagonists.

Results: Our data document that the dose-response curve to PGE2 is 'bell-shaped’, with nano
molar concentrations of PGE2 being more mitogenic than micro molar doses. Remarkably,
mitogenicity inversely correlates with the ability of PGE2 doses to raise cAMP levels. Consistent
with a major role for cAMP, cAMP raising agents and pertussis toxin revert the mitogenic response
to PGE2. Accordingly, use of prostanoid receptor-selective agonists argues for the involvement of
the EP3 receptor and serum deprivation of HT29 CRC cells specifically raises the levels of Gi-
coupled EP3 splice variants.

Conclusion: The present data indicate that the mitogenic action of low PGE2 doses in CRC cells
is mediated via Gi-proteins, most likely through the EP3 receptor subtype, and is superimposed by
a second, cAMP-dependent anti-proliferative effect at higher PGE2 doses. We discuss how these
findings contribute to rationalize conflictive literature data on the proliferative action of PGE2.

500000 annual deaths worldwide. A novel avenue of inflammatory drugs (NSAIDs) leads to a

research on CRC therapy emerged some years ago as the
result of a series of population-based studies which dem-
onstrated that the long-term intake of non steroidal anti-

significantly
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reduced risk of developing colon cancer [1]. NSAIDs such
as aspirin or indomethacin are potent and selective inhib-
itors of cyclooxygenase (COX), of which two isoforms,
COX-1 and 2, exist. Cyclooxygenase catalyzes a key step in
the biosynthesis of prostaglandins (PGs), a family of bio-
active lipids that regulate as diverse biological processes as
inflammation, pain, immunity, nerve and bone homeos-
tasis among many others. Over the last few years, experi-
mental evidence stemming mostly from animal studies
has accumulated to support an important contribution of
COX-2 in the development of CRC [2-5]. Since COX cata-
lyzes the opening reaction required for the biosynthesis of
all PG subtypes, one major question regards the identity
of the lipid mediators that transduce the pro-carcinogenic
effects of COX. While studies on the function of specific
PG species in the promotion of CRC have been very lim-
ited, available evidence points to a role for the PG subtype
PGE2. [6-9]. For example, PGE2 elevates tumour inci-
dence in various murine models for CRC [10-13], and cell
culture experiments have implicated PGE2 and PGE2
receptor-dependent signalling in the stimulation of colon
epithelial cell growth (see below).

PGE2 exerts its biological functions via binding to four
types of G-protein-coupled receptors termed EP1-4
[13,14], which couple to distinct downstream second
messenger systems. EP1 is a Gg-coupled receptor that elic-
its Ca2+ and diacylglycerol signals while EP2 and EP4
receptors are coupled to Gs-proteins and raise cAMP lev-
els. The EP3 receptor, finally, which manifests in up to 8
splice variants, leads predominantly to the down regula-
tion of cAMP signalling via Gi-protein-mediated inhibi-
tion of adenylate cyclase [14-16]. Which of the multiple
pathways or which combination thereof emanating from
the various EP receptor subtypes is responsible for the pro-
carcinogenic effects of PGE2 is far from being understood.
Rodent studies have implicated EP1, EP2 and EP4 recep-
tor in intestinal tumorigenesis [13], pointing to a complex
coordination of PG effects by various receptor subtypes.

In an attempt to delineate the signal transduction proc-
esses that mediate PGE2's growth-promoting effects on
colon epithelial cells, a number of laboratories have car-
ried out cell culture experiments on a few well-character-
ized CRC cell lines. The outcome of those studies,
however, has yielded substantial discrepancies as to the
growth-promoting effects of PGE2. For instance, PGE2
has been reported to induce cell proliferation of HT-29
cells in three studies [17-19], whereas two other laborato-
ries failed to observe a proliferative effect in the same cell
line [20,21]. In fact, antiproliferative effects of PGE2 on
CRC cell lines have also been reported [21,22]. It is likely
that these incongruencies relate to differences in the
experimental protocols employed since a number of
parameters including PGE2 concentration, proliferation
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time frame and the inclusion/exclusion of serum, among
others, differ widely in the referred studies. Similarly,
there is only a limited body of partially conflictive experi-
mental data on the regulation of apoptosis in colorectal
cancer cells by PGE2 [13,22-24]. In sum there is an imbal-
ance between the appreciation of the role of COX-derived
PGs in the development of CRC and our understanding of
the mechanisms underlying the growth promoting effects
of PGs in colon epithelial cells in vitro.

We have undertaken an in-depth analysis of the cell-bio-
logical effects of PGE2 on 4 commonly employed CRC
cell lines. We document that PGE2 exerts a significant pro-
liferative effect on 3 cell lines, in a dose-dependent fash-
ion. Unexpectedly, low PGE2 dosage in the lower nano
molar range fosters CRC proliferation whilst higher PGE2
concentrations do not exhibit mitogenic potency. Of note,
we monitor cell proliferation in the complete absence of
serum, excluding the masking of PGE2's effect by more
dominant proliferative serum constituents. We further-
more present correlative and pharmacological evidence
arguing that down regulation of cAMP/PKA signalling via
EP3 receptor engagement is an important step of PGE2's
proliferative action, suggesting that this pathway acts in a
switch-like fashion to either trigger or prohibit CRC cell
proliferation driven by PGE2. We further document that
expression of Gi-coupled but not Gs/Gg-coupled EP3
splice variants is selectively up regulated following serum
deprivation, indicating that cAMP-reducing EP3 receptor
variants are regulated by the proliferative vs. quiescent sta-
tus of the CRC cell. Not least, these data illustrate that EP3
receptor down regulation represents a further means by
which the presence of serum may have obscured the abil-
ity of PGE2 to induce cell proliferation in previous stud-
ies. Over all, our data illustrate that mitogenic PGE2
signalling in colon epithelial cells is multi-faceted, and
that the ability to induce CRC proliferation may be deter-
mined by the ability to lower cAMP signalling via Gi-cou-
pled EP3 receptor variants, as opposed to other EP
receptor types. These findings help to rationalize conflic-
tive literature data on the in vitro growth-promoting effects
of PGE2.

Methods

Materials and Reagents

Prostaglandin E2 (PGE2) was obtained from Alexis Bio-
chemicals and dissolved in DMSO. Lysophosphatidic acid
(LPA), Isoproterenol, Pertussis toxin (PTX) and propid-
ium iodide were purchased from Sigma-Aldrich
(Taufkirchen, Germany). Butaprost, Sulprostone and 11-
deoxy-PGE1 were from Cayman Chemicals (Ann Arbor,
USA). EP1, 3 and 4 receptor selective antagonists were
kindly provided by Merck Frost, Canada [25]. [3H]-Thy-
midine (7 Ci/mmol) was obtained from Hartmann Ana-
lytic (Braunschweig, Germany). The Annexin V-binding
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assay kit was from BD Bioscience (Heidelberg, Germany).
Antibodies against phosphorylated PKA substrates and
PARP were obtained from Cell Signalling Technology
(Beverly, MA). Antibody to Vinculin was purchased from
BIOZOL (Eiching, Germany).

Cell culture

The human colon cancer cell lines Caco-2, Lovo and
SW480 cells were purchased from the DSMZ (Braunsch-
weig, Germany). These cells were maintained in RPMI
medium containing 10% foetal bovine serum. Early pas-
sage HT-29 cells were provided by the Institute for Nutri-
tion (FSU Jena, Germany) and cultured in DMEM
medium containing 10% foetal bovine serum. Prior to
experiments, all cells were deprived of serum for 16-18 h
unless otherwise stated.

Proliferation assays

For the assessment of [3H]-thymidine incorporation into
cellular DNA 1 x 10% HT-29, Caco-2, Lovo and SW480
cells were seeded in 24-well culture plates. 24 h later cells
were deprived of serum overnight. Cells were stimulated
with agonists or treated otherwise as appropriate. In cells
stimulated with PGE2 and other agonists dissolved in
DMSO, the final concentration of DMSO never exceeded
0.1% v/v. Once administered, PGE2-containing medium
was not exchanged for fresh medium, even for longer time
points of stimulation. Control experiments, in which
medium was replaced by fresh PGE2-containing medium
evidenced no obvious difference in the experimental out-
come, arguing against PGE2 stability as a limiting factor.
12 hr prior to quenching the samples, 0,5 nCi of [3H]-thy-
midine was added to each well. Cells were washed once
with ice-cold 5% TCA and incubated for 20 minutes in 5%
TCA on ice. Wells were washed 3 times with ice-cold 96%
ethanol, residual cell material was solubilized with (1%
SDS, 2% Na,CO;, 0,1 M NaOH) and radioactivity was
measured by scintillation counting.

For automated cell counting 1 x 10> HT-29, Caco-2, Lovo
and SW480 cells were seeded in 12-well culture plates and
cultured for 24 hours. Cells were serum-starved over night
and exposed to agonists for the indicated lengths of time.
Cells were detached from the culture dishes by trypsiniza-
tion and counted in a CASY 1 Cell Counter (Schirfe Sys-
tem GmbH, Reutlingen, Germany) using the Analyzer
System Model DT routine according to the manufacturer's
instructions.

Apoptosis assays

5 x 104 HT-29 cells were seeded in 6-well plates, cultured
for 24 hours and serum-deprived overnight. After agonist
stimulation, both attached and detached cells were col-
lected, pooled in a vial, and lysed in 1 ml ice-cold lysis
buffer A [50 mM Hepes (pH 7,5), 150 mM NaCl, 5 mM
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EDTA, 1% NP-40, 1 pg/ml pepstatin A, 2 pg/ml leupeptin,
1 pg/ml aprotinin, 100 uM PMSF, 100 pg/ml pefabloc].
Lysates were cleared by centrifugation at 20,000 g for 15
min and protein concentration was determined with the
Micro BCA protein assay kit (Pierce, Bonn, Germany).
Same amounts of cell extract were resolved by polyacryla-
mide gel electrophoresis and PARP cleavage was assessed
by Western blotting. Membranes were subsequently rep-
robed with Vinculin to evaluate protein loading.

For flow cytometric cell cycle distribution analysis HT-29
cells were seeded at a density of 5 x 105 cells/well in 6-well
culture plates for 24 hours and deprived of serum over-
night. After stimulation with the indicated concentrations
of PGE2 for further 120 hours cells were trypsinized,
washed once with phosphate-buffered saline (PBS) and
resuspended in 100 ul PBS. Annexin V-binding was deter-
mined with the assay kit following the manufacturer's
instructions. Fluorescence was measured on a FACScali-
bur flow cytometer (Becton Dickinson, Heidelberg, Ger-
many). The total number of cells analyzed for each
sample was 10000 and raw data were processed using the
CellQuestPro and WinMDI software.

cAMP measurements

2,5 x 105 HT-29, Caco-2, Lovo and SW480 cells were
seeded in 12-well culture plates and grown for 24 hours.
Cells were starved of serum overnight and treated with
500 uM 3-isobutyl-1-methylxanthine (IBMX) for 4 hr fol-
lowed by stimulation with the indicated concentrations of
PGE2 for 15 minutes. Reactions were stopped by addition
of ice cold 65% ethanol. Cells were scraped off, cell debris
was pelleted by centrifugation (20,000 g, 10 min) and the
supernatant was evaporated in a SpeedVac. Intracellular
cAMP, present in the residue, was subsequently deter-
mined using the Cyclic AMP [3H] assay (Amersham Bio-
sciences, Freiburg, Germany) exactly as described by the
manufacturer.

Phosphorylation of PKA substrates

5 x 106 cells were seeded in 6-well culture plates and cul-
tured for 24 hours. After serum deprivation overnight cells
were challenged with PGE2 for 15 minutes and lysed in 1
ml cold lysis buffer A supplemented with phosphatase
inhibitors: 3,4 uM microcystin, 10 mM f-glycerophos-
phate, 100 uM Na-orthovanadate. Lysates were cleared by
centrifugation and resolved by polyacrylamide gel electro-
phoresis. Phosphorylation of PKA substrates was deter-
mined by Western blotting with an anti phospho-PKA
substrate antibody. The blots were subsequently reprobed
with Vinculin to ascertain equal protein loading.
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RT-PCR analysis of EP receptors and EP3 receptor splice
variants

For EP1-4 receptor analysis total RNA was isolated using
the Rneasy Kit (Qiagen, Germany) and 1 pg was reverse-
transcribed using TagMan Reverse Transcription Reagents
(Roche Diagnostics, Germany) following the manufactur-
ers' instructions. EP receptor cDNA was amplified by
standard PCR techniques using previously reported
primer sets for EP1, 2, 3 (subtype 1-8) and 4 [26,27].
Amplification of EP3 receptor splice variants, along with
GAPDH as an internal control in each reaction, was car-
ried out with the OneStep reverse transcription-PCR kit
from Qiagen (Hilden, Germany) according to the stand-
ard protocol with newly created primer sets for each sub-
type. All used primer sets are listed in table 1. A HA-tagged
version of human EP3 subtype 3 (cDNA was obtained
from the Missouri S&T cDNA Resource Centre) was trans-
fected by standard procedures into HT-29 cells and used
as a positive control for the PCR amplification.

Results

PGE2 stimulates colorectal cancer cell proliferation
Studies on the proliferative effect of PGE2 on CRC cell
lines have yielded conflictive results. This is likely due to
experimental variations across the various studies in a
number of parameters such as the PGE2 dose, the dura-
tion of the proliferation experiment, the presence/absence
of serum, and others. Moreover, some commonly investi-
gated cell lines manifest high heterogeneity and genetic
instability [28]. To clarify the role of PGE2 on CRC cell
growth, we investigated the influence of PGE2 on the pro-
liferation of 4 CRC cell lines under various conditions.
Cells were deprived of serum overnight and administered
variable doses of PGE2 for 48 - 72 h. 12 h prior to
quenching the samples, cell were labelled with [3H]-thy-
midine and tritium incorporation into DNA was assessed
as described in the experimental section. Of note, this
experiment was performed in the complete absence of
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serum. Under these conditions, low doses of PGE2 in the
nano molar range induced significant thymidine incorpo-
ration into DNA in all cell lines except SW480 (Fig. 1A),
whereas this response gradually got lost as PGE2 concen-
trations increased. At 10 uM or higher, PGE2 did not pro-
mote thymidine incorporation above control in any of the
cell lines. In fact, in some experiments the highest dose
tested (10 uM) lead to a diminished rate of DNA synthesis
compared to control serum-arrested cells, in agreement
with previous studies that documented an antiprolifera-
tive effect of micro molar PGE2 doses in HT-29 and other
CRC cell lines [17,21,22]. Altogether, these data pointed
to a concentration-dependent induction of proliferation
and/or the removal of an anti-proliferative block by
PGE2.

Next we monitored the time response of thymidine incor-
poration induced by a low dose of PGE2. Cells were
serum-starved and challenged with 10 nM PGE2 for vari-
ous periods of time. [3H]-Thymidine was administered 12
h prior to quenching the reactions. Induction of DNA syn-
thesis by PGE2 was apparent at 72 h or later time points
(Fig. 1B). PGE2 did not appreciably stimulate DNA syn-
thesis in any of the cell types at 48 h. Thus, in contrast to
the effect of serum, DNA synthesis in response to low
PGE2 doses was preceded by a substantial time lag.

To confirm these findings with an alternative approach,
we monitored cell proliferation by automated cell count-
ing. Cells were serum-starved followed by addition of low
(10 nM) or high (10 uM) PGE2 doses. 168 h later cell
numbers were determined with an electronic cell counter
(Fig. 1C). The results obtained by cell counting corrobo-
rated the data from the [3H|-Thymidine incorporation
experiments, that is, they illustrated a proliferative effect
only for low nano molar PGE2 doses.

Table I: List of primer pairs used in the current study for amplification of EP receptor isoforms.

EP receptor Acc. No. sense antisense fragment size in bp Ref
EPI NM_000955 CTTGTCGGTATCATGGTGGT GGTTGTGCTTAGAAGTGGCTG 322 [27]
GTC AGG
EP2 NM_000956 CCACCTCATTCTCCTGGCTA CGACAACAGAGGACTGAACG 216 [26]
EP3 subtype 1-8 NM_000957 CTTCGCATAACTGGGGCAAC TCTCCGTGTGTGTCTTGCAG 300 [27]
EP3 subtype 1-3 NM_000957 CTTAATAGCTGTTCGCCTGG GCTTAGCTGGACACTGCAG 293 (1) 224 (2) 197 (3) This study
EP3 subtype 4 NM_198716 CTTAATAGCTGTTCGCCTGG ATTTCCCCAAAATTCCTCTTG 232 This study
EP3 subtype 5 NM_198715 CTTAATAGCTGTTCGCCTGG TGCTTCTGTCTGTATTATTTCA 182 This study
T
EP3 subtype 6 NM_198716 CTTAATAGCTGTTCGCCTGG ATTTCCCCAAAATTCCTCTTG 140 This study
EP3 subtype 7 NM_198717 CTTAATAGCTGTTCGCCTGG ATTTCCCCAAAATTCCTCCTG 113 This study
EP3 subtype 8 NM_198718 CTTAATAGCTGTTCGCCTGG GTCTTTACTGTTGAGATTCTG 268 This study
EP4 NM_000958 TGGTATGTGGGCTGGCTG GAGGACGGTGGCGAGAAT 329 [26]

EP3 splice variant subtypes |—3 can only be discriminated by the different size of the amplified fragments (indicated in brackets in the corresponding

field).
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Figure | (see previous page)

Concentration-dependent induction of DNA synthesis by PGE2 in CRC cell lines. A HT-29, Caco-2, Lovo and
SWA480 cells were seeded in 24-well plates, deprived of serum overnight and challenged with 10% FCS or the indicated doses
of PGE2 for further 3 days. Proliferation was scored by [3H]-thymidine incorporation into cellular DNA. Data are mean *
S.E.M. of counts per minute (normalized values to average of control) of tetraplicates of three independent experiments. B
Time response of PGE2-induced DNA synthesis. Serum-starved cells were exposed to 10 nM PGE2 for various days and [3H]-
thymidine incorporation was monitored and plotted as in A. A more prolonged time response is shown for HT-29 cells in the
right panel. Two further experiments yielded similar results. C PGE2-dependent cell proliferation scored by automatic cell
counting. Serum-starved HT-29 cells were challenged with varying doses of PGE2 for 7 days and subjected to automatic cell
counting as described in the experimental section. Data are mean + S.E.M. of cells/well of 4 experiments with triplicate meas-
urements. D COX-2 inhibition does not affect PGE2 induced cell proliferation. Serum-starved HT-29 cells were challenged
with 10 nM PGE2 or 10% FCS alone or in combination with 10 uM NS398. 4 days later DNA synthesis was assessed as before.
Two-sample comparisons (all vs. control) were performed with Student's t test. P values ***P < 0,001, **P < 0,01, *P < 0,05.

CRC cell lines express COX-2 to varying degrees
[24,29,30]. Since endogenous production of PGE2 might
significantly affect the outcome of the proliferation assays,
in particular in those points treated with low concentra-
tions of exogenous PGE2, we used a COX inhibitor to
negate any possible contribution of auto/paracrine effects.
As illustrated in Fig. 1D, inclusion of the COX-2 inhibitor
NS398 did not affect DNA synthesis induced by 10 nM
PGE2 or serum. This finding indicated that endogenous
prostaglandin production is not involved in the prolifera-
tive response to exogenous PGE2, a finding that is in line
with literature data pointing to the absence of functional
COX-2 in HT-29 cells [24,29].

PGE2 has only minor effects on colorectal cancer cell
apoptosis

The lack of DNA synthesis in response to micro molar
PGE2 dosage could reflect anti-proliferative signalling by
PGE2. Alternatively, 10 uM PGE2 might induce a higher
rate of apoptosis in the CRC cell lines or reciprocally, 10
nM PGE2 could have a protective pro-survival effect under
conditions of cellular stress such as serum withdrawal. To
investigate this possibility we went on to measure apopto-
sis in HT-29 cells exposed to low (10 nM) or high (10 uM)
PGE2 concentrations (Fig. 2A). Serum withdrawal for 48
h induced a weak degree of apoptosis in HT-29 cells as
monitored by PARP cleavage. The broad-specificity kinase
inhibitor staurosporine, which reportedly drives HT-29
cells into apoptosis [31], caused substantial PARP cleav-
age at this time point. Neither low or high PGE2 doses nor
the presence of serum caused major alterations in the low
basal rate of apoptosis in cells deprived of serum for 2
days. A marked cleavage of PARP, indicative of a robust
apoptotic response, became evident only upon 144 h of
serum withdrawal (Fig. 2A). This late induction of apop-
tosis was unaltered in cells cultured in the presence of 10
nM or 10 uM PGE2 (Fig. 2A). To confirm the lack of apop-
tosis regulation by PGE2, we monitored Annexin V-bind-
ing via FACS analysis (Fig. 2B). In agreement with the

PARP cleavage data, serum removal induced a detectable
level of apoptosis in HT-29 cells, which, however, was not
affected either way by PGE2 at any dosage. We conclude
that the dose-dependent differences in DNA synthesis
were due to the engagement of proliferative and/or anti-
proliferative rather than cell-survival pathways by PGE2.

PGE2 affects cAMP levels in a dose-dependent way
Cyclic AMP is a major intracellular mediator of PGE2
effects in numerous tissues. In colorectal cancer cell lines,
cAMP has been invoked as the predominant mitogenic
signalling pathway addressed by PGE2 by some laborato-
ries [23,32,33], whereas others did not detect PGE2-
dependent changes in cAMP levels of CRC cells [20]. To
address the role played by cAMP in PGE2-driven cell pro-
liferation, we measured cAMP levels in cells exposed to
the various PGE2 doses tested previously for their prolif-
erative potency in Fig. 1A. Again, the effects of PGE2 were
strongly dependent on the agonist dose (Fig. 3A). Whilst
low nM doses of PGE2 elicited a reduction or no changes
in cAMP levels depending on the cell type, higher PGE2
dosage stimulated cAMP formation. Isoproterenol, a B-
adrenergic receptor agonist and known stimulator of ade-
nylate cyclase was used as a positive control in these
experiments.

To confirm these data with an alternative approach, we
assessed the phosphorylation of Protein kinase A (PKA)
target proteins employing an antibody that decorates the
phosphorylated PKA-consensus site on PKA substrates.
PKA is a major effector protein of cAMP and, hence, mon-
itoring PKA-dependent phosphotransfer reactions serves
as surrogate readout for changes in cAMP levels. To assess
the validity of this approach we first stimulated cells with
isoproterenol and forskolin, two well-established cAMP
raising agents. As shown in Fig. 3B, both drugs induced a
similar pattern of PKA-substrate phosphorylation. Since
the most prominent changes in phosphorylation occurred
in the region of 60-100 kD, we henceforth focused on this

Page 6 of 18

(page number not for citation purposes)



BMC Cancer 2008, 8:380

A

v 4
& O S

http://www.biomedcentral.com/1471-2407/8/380

n < Sy RS h <
S S S S D TS S D
FOTP N F O SO ONS a0 y
= o control
3 o 10 a PGE2
- ...' z‘ —PARP non cleaved — e RE IS T UM PGEZ
-  PARP cleaved — g " 10%FCS
~ &0
b =
£
.M.... et 3o
8, - il
Oh 48h 144h h 43h 144h
control 10 nM PGE2 10 uMPGE2 10%FCS Staurosporin

PI
AnnexinV-FITC »
Yo Annexin+/PI-
(early apoptotic) il 6+0 S*2 5+1 21 =1
Yo Annexan+/PI+
{late apoptotic) 241 4x1 3% 2+1 31
Figure 2

PGE2 does not ostensibly affect apoptosis of HT-29 cells. A HT-29 were cultured for varying lengths of time in the

absence of serum or in the presence of 10% FCS, 10 nM PGE2 or 10 uM PGE2. At the indicated time points cells were lysed
and PARP cleavage was assessed by western blotting. Vinculin levels were determined to ascertain equal protein loading. Stau-
rosporine was administered at | uM as a positive control to induce apoptosis. Quantification is shown as the densitometrically-
determined ratio of cleaved to non-cleaved PARP levels. Shown here is one representative experiment out of three. B PGE2
does not affect the number of Annexin V positive cells. HT-29 cells were treated with staurosporine, FCS or the indicated
PGE?2 concentrations followed by AnnexinV-FITC and propidium iodide staining and FACS analysis. The mean percentage of
cells gated in the Annexin+/PI- (early apoptotic) and Annexin+/Pl+ area (late apoptotic) + S.E.M. (n = 3) is indicated below each

panel.

region for the assessment of PGE2 effects. Serum-starved
HT-29, Caco-2, Lovo and SW480 cells were exposed to
various doses of PGE2 for 15 min and cell extracts were
analysed by Western blotting with the anti-phospho-PKA
substrate antibody. As shown in Fig. 3C, the results
obtained with this approach were qualitatively similar to
the data obtained by measuring cAMP levels. Low nano
molar doses of PGE2 caused either no change or a reduc-
tion in PKA substrate phosphorylation, while uM PGE2
concentrations lead to a stimulation of the cAMP/PKA

pathway in all 4 cell lines. Despite this major overlap,
some discrepancies were observed between both assays
for low PGE2 doses. Thus, in HT-29, Lovo and SW480
cells low nano molar concentrations of PGE2 reduced
PKA substrate phosphorylation, in the absence of any
ostensible reduction of cAMP levels. This difference prob-
ably reflects limitations of the cAMP RIA assay for the
detection of small changes in cAMP levels. Alternatively,
as documented recently for PGE1 [34], subcelularly
restricted fluctuations in cAMP levels that may escape
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Figure 3

Concentration-dependent effect of PGE2 on cAMP levels in CRC cell lines. A Serum-starved cells were exposed to
100 uM Isoproterenol or the indicated concentrations of PGE2 for 15 min. Cyclic AMP levels were determined as described in
the experimental section. B Cyclic AMP-raising agents induce phosphorylation of PKA-substrates in CRC cells. Cells were chal-
lenged with 100 uM Isoproterenol or 10 uM forskolin for 20 min and phosphorylation of PKA substrates was determined by
western blotting with an antibody directed against the phosphorylated PKA-consensus site. Vinculin levels were determined to
ascertain equal loading. C CRC cells were deprived of serum overnight and challenged with varying doses of PGE2 for |5 min.
Phosphorylation of PKA substrates was assessed as in B. A densitometric quantification of the signal for the 70—100 kD region
is shown. Two additional experiments produced essentially the same results. Two-sample comparisons (all vs. control) were
performed with Student's t test. P values ***P < 0,001, **P < 0,01, *P < 0,05.

Page 8 of 18

(page number not for citation purposes)



BMC Cancer 2008, 8:380

detection in the RIA assay, might suffice to induce activity
changes in PKA and other cAMP effector pathways. Irre-
spective of these considerations, we conclude that PGE2
can either stimulate or down regulate cCAMP signalling in
colon carcinoma cells in dependency of the PGE2 dose in
a manner that is counterintuitive for a role of elevated
CAMP levels as a mediator of PGE2's proliferative effects.

A rise in cAMP compromises while cAMP reducing agents
promote DNA synthesis in HT-29 cells

The results presented so far highlight an inverse correla-
tion between the ability of a particular PGE2 dose to
induce cAMP signalling and its mitogenic potency on
three colon carcinoma cell lines. To investigate whether
cAMP signalling is a major determinant of CRC cell prolif-
eration, we used several approaches to manipulate cAMP
levels. Lysophosphatidic acid (LPA), a cAMP reducing
agonist, induces the proliferation of epithelial cells types
via Gi-protein-dependent signalling [35]. LPA administra-
tion caused a marked increase in DNA synthesis in HT-29
cells, consistent with a role for reduced cAMP-dependent
signalling in the promotion of HT-29 cell proliferation
(Fig. 4A). On the other hand isoproterenol, a CAMP rais-
ing agonist, diminished the rate of thymidine incorpora-
tion below the basal rate of serum-deprived cells. We next
evaluated whether alterations in cAMP signalling were
involved in the proliferative action of low PGE2 doses. As
shown in Fig. 4A, induction of DNA synthesis in response
to 10 nM PGE2 in HT-29 cells was fully reverted by the
administration of the cCAMP raising agonist isoproterenol
or pertussis toxin (PTX), a specific inhibitor of heterot-
rimeric Gi-proteins. We ascertained that both PTX and
LPA exerted the predicted effects on cAMP signalling (Fig.
4B). These data strongly indicated that down regulation of
cAMP signalling was an essential component of the prolif-
erative program evoked by PGE2. In particular, the clear
effect of the highly specific reagent PTX strongly argued for
the involvement of the Gi-coupled prostanoid receptor
EP3.

Pharmacological manipulation of EP receptor isoforms
confirms a role for EP3/cAMP signalling in PGE2-
dependent HT-29 cell proliferation

To substantiate the idea that EP3 signalling mediated
most if not all of PGE2's proliferative effect, we investi-
gated the action of three prostanoid receptor selective ago-
nists on the growth of HT-29 cells. Both the EP2 selective
agonist butaprost and the EP2/4 agonist 11-deoxy-PGE1
did not elevate DNA synthesis in HT-29 cells (Fig. 5A). In
fact, both drugs rather diminished the cell count after 5
days, although this effect was not significant. By contrast,
the EP1/3 selective agent sulprostone, used at a concentra-
tion of 10 uM, induced a similar increase in DNA synthe-
sis as the proliferative dose of PGE2. To ascertain the
selectivity of the employed agonists, we measured the

http://www.biomedcentral.com/1471-2407/8/380

changes induced in cAMP levels (Fig. 5B). As predicted,
butaprost and 11-deoxy-PGE1 induced a raise in cAMP
levels, consistent with the receptor selectivity pattern. Sul-
prostone induced no detectable change in cAMP levels,
similar to the effect of 10 nM PGE2. As discussed above,
the absence of a detectable down regulation of cCAMP lev-
els by both agents at the level of cAMP is likely to result
from experimental limitations or features inherent to the
cAMP signalling system.

To confirm the results obtained with EP receptor selective
agonists, we performed complementary experiments with
EP receptor selective antagonists (Fig. 5C). 10 nM PGE2
driven proliferation was severely reduced by EP1 and EP3
specific antagonists whereas an EP4 specific blocker did
not ostensibly affect proliferation in these cells.

Taken together, these findings supported the idea that low
doses of PGE2 act via the EP3 receptor to induce cell pro-
liferation through a down regulation of intracellular
cAMP levels. In addition, the blockade of cell proliferation
by the EP1 antagonist revealed a possible contribution of
EP1 signalling to PGE2 dependent HT-29 cell prolifera-
tion.

EP1/3 agonist stimulates and EP2/4 agonists compromise
proliferation of Lovo cells

Since the experimental data presented above had centred
on HT-29 as a model cell line, we wished to investigate the
involvement of individual EP receptor isoforms in PGE2-
dependent proliferation of a second CRC cell type. Lovo
cells were serum-starved and challenged with 10 nM
PGE2 or EP receptor agonists and DNA synthesis was ana-
lysed 4 days later. As shown in Fig. 6A, sulprostone and 10
nM PGE2 induced DNA synthesis in this cell line, whereas
the EP2/4-agonists reduced the proliferative rate. As
observed in HT-29 cells all three agonists triggered
changes in cAMP that were consistent with their reported
receptor selectivity profiles (Fig. 6B). These results indi-
cate that the major role of EP3/cAMP signalling in PGE2
dependent proliferation may be a widespread phenome-
non among CRC cell lines.

Expression of the Gi-coupled prostanoid receptor subtype

EP3 is growth-dependently regulated in HT-29 cells

Since the preceding findings argued for a critical role of
the EP3 receptor in the mediation of PGE2's proliferative
effects, we wished to ascertain that HT-29 cells express this
receptor subclass. To this end we performed RT-PCR anal-
ysis on total RNA preparations from HT-29 cells using
primer pairs for all four EP receptor subtypes. In the case
of EP3, primers were designed such as to score all hitherto
described EP3 splice variants [16] (see experimental sec-
tion and table 1). The results of this analysis, shown in Fig.
7A, evidenced that HT-29 cells express EP1, EP2 and EP4
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Figure 4

Heterotrimeric Gi-protein-dependent signalling drives proliferation of CRC cell lines. A |0 uM lysophosphatidic
acid (LPA), 100 uM Isoproterenol, 100 ng/ml PTX and 10 nM PGE2 were administered alone or in combination to serum-
starved HT-29 cells. 96 h later [3H]-thymidine incorporation into cellular DNA was scored as described before. Data are mean
* S.E.M. of counts per minute (normalized values to average of control) of tetraplicates. B Effect of PTX and LPA on PKA sub-
strate phosphorylation. Serum-deprived HT-29 cells were treated as indicated in the legend and PKA-substrate phosphoryla-
tion was assessed as before.
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Effect of EP3 receptor selective agonists and antagonists on HT-29 cell proliferation. A HT-29 cells were deprived
of serum overnight and challenged with 10 nM PGE2, 10 uM butaprost, 10 pM sulprostone or 10 uM | I-deoxy-PGEI. DNA
synthesis was assessed 5 days later. Data are mean £ S.E.M. of cells/well of 3 experiments with triplicate measurements.B
Serum-starved HT-29 cells were stimulated for 20 min with the same agonists as in A and cAMP levels were determined as
before. C Serum-starved HT-29 cells were challenged with 10 nM PGE2 alone or in the presence of 250 nM each of L-818638
(EPI antagonist), L-826266 (EP3 antagonist) or MF-191 (EP4 antagonist). Proliferation was measured 4 days later by [3H]-thy-
midine incorporation. Two-sample comparisons (all vs. control) were performed with Student's t test. P values **P < 0,001,
*#P < 0,01, *P < 0,05.

Page 11 of 18

(page number not for citation purposes)



BMC Cancer 2008, 8:380

>

http://www.biomedcentral.com/1471-2407/8/380

ve)

25 1 3 seoesk
g B
E 2 E = - otk
E_Q E g 3
a B % ) E 2
8 E1s gt
'-: .E o E =
g B l E= 3 5 %
E 1 shaesk E = ; 3
T E
D5
1] n 4 L B *
control & R & lldeoxy control  10nM 10 pM 55 & 1l-deoxy
2 o B PGE1 <« B PGE1
© & B PGE2 & 2

Figure 6

Effect of EP3 receptor selective agonists on Lovo cell proliferation and cAMP signalling. A HT-29 cells were
deprived of serum and stimulated with 10 nM PGE2, 10 uM butaprost, |10 uM sulprostone or 10 uM | |-deoxy-PGE|. DNA
synthesis was monitored 5 days later. Data are mean * S.E.M. of cells/well of 3 experiments with triplicate measurements. B
Serum-starved HT-29 cells were stimulated for 20 min with the same agonists as in A followed by measurement of cAMP lev-
els. Student's t test: P values ***P < 0,001, **P < 0,01, *P < 0,05.

receptors but no EP3. This result was unexpected since the
effects of PTX and the EP receptor agonists/antagonists
shown above were clearly indicative of the action of Gi-
coupled EP3 receptors. To exclude that differences in the
experimental parameters employed for the proliferation
assays versus RT-PCR analysis could account for the lack of
EP3 detection, we investigated the effect of serum with-
drawal, since PGE2-dependent DNA synthesis was scored
in cells deprived of serum, while RT-PCR analysis was per-
formed on samples from serum-fed cultures. As shown in
Fig. 7B serum withdrawal gradually induced the expres-
sion of EP3. Importantly, EP3 expression was detectable
as early as 24 h after serum removal, that is, precisely the
conditions used for cAMP signalling analysis and prolifer-
ation assays. We confirmed the identity of the EP3 PCR
reaction product by sequencing (data not shown). These
data supported the notion that PGE2 engages the EP3
receptor subtype to convey PTX sensitive proliferative sig-
nals via a reduction of cAMP levels in HT-29 cells.

Gi-coupled EP3 receptor splice variants are specifically
regulated by serum

The EP3 receptor manifests in 8 or possibly more splice
variants, only some of which couple to cAMP reducing
heterotrimeric Gi-proteins. We wished to clarify how the
distinct isoforms did react to serum deprivation, since the
PCR primers used in Fig. 7A/B do not discriminate among
the various isoforms. Using splice variant specific primer
pairs we were able to detect EP3 subtypes 3, 5, 7 and 8 and
to exclude the expression of EP3 subtypes 4 and 6 in HT-
29 cells. Overexpression of heterologous HA-tagged

human EP3 subtype 3 prior to RT-PCR analysis was per-
fomed to discriminate subtypes 2 and 3. As a further con-
trol we used total RNA from K562 cells, which expressed
EP3 receptor subtypes 2 and 4-8. Interestingly, K562
expressed an hitherto not described variant, as evidence by
the 180 bp large fragment amplified by the primers for
EP3 subtype 1-3. EP3 type 1 was not detectable in either
HT-29 or K562 cells.

Remarkably, only the bona fide Gi-coupled species EP3
subtypes 7 and 8 (the downstream coupling pattern to
heterotimeric G-proteins by subtype 3 is as yet unknown)
[15,36-39] were induced in response to serum removal, in
agreement with the current findings pointing to a major
role for these receptors in PGE2 dependent cell prolifera-
tion as monitored here in the absence of serum.

Discussion

While the beneficial action of NSAIDs in preventing color-
ectal cancer progression in humans is generally accepted,
the molecular mechanisms underlying the pro-carcino-
genic effects of its likely targets, COX and PGs, remain
obscure. The present study was conducted to provide a
comprehensive view of the proliferative action of PGE2
on 4 CRC cell lines in vitro. The four cell lines differ in
their grade of malignancy as well as in their mutational
status [40-43] and are commonly used model cell lines for
mechanistic studies. Our data evidence that PGE2 elicits
DNA synthesis and net proliferation in three (HT-29,
Caco-2, Lovo) out of the four cell lines. PGE2 driven cell
proliferation, as measured in the absence of serum by 2
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Figure 7 (see previous page)

Expression of prostanoid receptors in HT-29 cells. A RT-PCR analysis of EP1-4 receptor expression in serum-fed HT-29
cells. See methods section and table | for details. Note that the primer pair employed in this experiment detects all known EP3
splice variants. B Serum-starvation induces EP3 mRNA levels. HT-29 cells were either kept in serum or serum was removed
for the indicated number of days. EP3 expression was determined as in A. RT-PCR for GAPDH was run in parallel to control
for equal loading. C Expression and regulation of EP3 splice variants. HT-29 cells were either kept in serum or deprived of
serum for 24 h prior to performing RT-PCR on total RNA preparations. Primer pairs for individual EP3 splicing isoforms are
listed in table I. RT-PCR on total RNA from K562 cells was run as a control for EP3 isoform expression. As a further control
HA-tagged EP3 subtype 3 was transfected into HT-29 cells prior to RT-PCR analysis. Note that EP3 subtypes 1-3 cannot be
discriminated by use of different primer pairs but on the basis of the different size of the amplified fragments. A fragment ampli-
fied by the EP3 type 1/2/3 primer set of about 180 bp size that cannot be attributed to any known splice variant is marked by
an asterisk. Control lane indicates an RT-PCR run using water as a template.

independent approaches, is low compared to the
mitogenic effect of serum and proceeds only after a sub-
stantial lag of 48 h in all 3 cell types. Strikingly, the dose-
response curve is bi-phasic with lower concentrations of
PGE2 exerting proliferation while micro molar doses are
ineffective or, in the case of SW480 cells, even anti-prolif-
erative. A similar bell-shaped response to PGE2 has been
reported by Qiao and co-workers in the adenocarcinoma
cell line SW1116 [17]. Similarly the related PG subtype
PGE1 induces proliferation of HT-29 cells at nano molar
concentrations whereas it stalls proliferation at higher
dosage [44]. Along these lines, high levels of exogenously
administered prostaglandins reportedly inhibit tumour
cell growth or tumorigenic parameters in cell culture stud-
ies [45,46]. Yet other researchers have documented a stim-
ulation of colon cancer cell proliferation by low
concentrations of PGE2 in the nM range [17,47,48], in
agreement with our own results. All these data point to a
bi-faceted action of PGE2 as a stimulus (at low concentra-
tions) and inhibitor (at high dosage) of CRC cell growth.

Since the proliferative effects of PGE2 were obtained in
the absence of serum, it was important to determine
whether or not the increased cell count reflected a bona
fide mitogenic effect of PGE2 or, alternatively, a pro-sur-
vival effect that becomes evident under situations of cellu-
lar stress, such as conceivably induced by serum
withdrawal. In line with this possibility, a number of
reports have illustrated anti-apoptotic effects of PGE2 in
CRC lines [22,23]. Two independent apoptosis assays,
however, did not provide any indication for a pro-survival
effect of low PGE2 doses or a pro-apoptotic effect of
higher PGE2 concentrations, indicating that the effects
documented herein reflect true proliferative signalling by
PGE2.

Beyond raising intriguing speculations on the mechanism
of action of PGE2 on colorectal cancer cell growth, the
reported concentration and time dependence of PGE2's
proliferative action may help to rationalize previously
reported, partially conflictive findings. Cassano et al.

failed to detect any effect of PGE2 on the proliferation of
HT-29 cells [20]. In their study they monitored the effect
of various concentrations of PGE2 on HT-29 proliferation
24 h or 48 h after PGE2 administration. However, as doc-
umented herein, an effect of PGE2 on HT-29 proliferation
becomes evident not earlier than 72 h post-stimulation.
Along the same lines, Parker et al. reported an anti-prolif-
erative effect of micro molar PGE2 doses on HT-29 [21]
but the same authors observed no induction of HT-29 cell
proliferation by lower PGE2 dosage, in apparent discrep-
ancy with our observations. One possible explanation
could be that Parker and co-workers monitored the effect
of PGE2 on HT-29 cell proliferation in the presence of
10% serum, which according to our findings is expected
to obscure the proliferative effect of PGE2. On the other
hand, nano molar doses of PGE2 are mitogenic for HT-29
cells kept in 2% serum [19], indicating that the amount of
serum present in the assay is a critical factor when it comes
to detect proliferative effects of PGE2. One parameter
worth considering at this point is the regulation of the EP3
receptor by serum, as documented in the current study. In
particular, the possibility that different concentrations
and/or batches of serum may affect EP3 receptor subtype
levels to different extents is a factor that could have a large
impact on the responsiveness of CRC cell lines to PGE2.
In conclusion, our data indicate that future cell-culture
studies on the growth-promoting effects of prostaglandins
should evaluate longer time points of PGE2 administra-
tion and a broader range of PGE2 concentrations under
serum-free or low-serum conditions.

In an attempt to decipher the signalling pathways
involved in PGE2's proliferative effects we have focused
on the cAMP pathway. Cyclic AMP is one major second
messenger system addressed by prostaglandins in numer-
ous tissues [49]. However the role of cAMP as a potential
mediator of PGE2's promotion of cell growth has been
controversially discussed. Several studies document that
PGE2 engages proliferative or anti-apoptotic pathways via
an increase in cAMP levels [33,50]. On the other hand,
down regulation of cAMP levels has been linked to PGE2-
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driven cell proliferation in other reports [51,52], while
some laboratories have been unable to detect any PGE2-
dependent changes in cAMP levels in HT-29 and other
CRC cell lines, at all [20]. A recent study documents that
forced signalling via the EP4 prostanoid receptor, which
results in increased levels of cAMP, does not result in
increased cell proliferation of HT-29 cells [53]. We find
that PGE2 affects cAMP levels in all four colorectal cancer
cell lines investigated here in a strictly dose-dependent
fashion. Intriguingly, changes in cCAMP levels in response
to particular PGE2 doses inversely correlate with their pro-
liferative potency (compare Figs. 1A and 3A): Thus,
mitogenic PGE2 doses either down regulate or do not
ostensibly affect CAMP levels whereas anti or non-prolifer-
ative PGE2 concentrations do in all cases elevate cAMP.
Importantly, a second experimental readout for cAMP lev-
els, the phosphorylation of substrates of the cCAMP target
PKA, yielded qualitatively the same results, but in several
cases it evidenced a more dramatic reduction of cAMP/
PKA signalling in response to mitogenic PGE2 doses than
those disclosed by the RIA assay. For example, in HT-29
cells 1 nM, 10 nM and 100 nM PGE2 all lead to a reduced
phosphorylation of PKA substrates, indicative of a reduc-
tion in cAMP levels, while only 10 nM PGE2 induces a
detectable drop in cAMP levels as measured by the radio-
immunoassay. As discussed above, several effects could
account for this discrepancy. For example, PGE1 elicits
cAMP accumulation at discrete sites within cells [34], sug-
gesting that locally confined, modest changes in cAMP
levels, which may be arduous to detect via RIA, may suf-
fice to mediate changes in the activity of downstream
effectors such as PKA. Moreover, since cAMP measure-
ments are preceded by the administration of phosphodi-
esterase inhibitors in order to block cAMP degradation,
the RIA assay may more accurately reflect raises in cAMP
than a reduction in those levels. We suspect that a drop in
cAMP levels, as reflected by a marked reduction in PKA
substrate phosphorylation e.g. by 1 or 100 nM PGE2 in
HT-29 cells (Fig. 3C) did largely pass undetected in the
cAMP measurements. In conclusion, we hypothesize that
a reduction in cAMP levels may be a general outcome to
the administration of low PGE2 concentrations that
relates to the proliferative action of nano molar PGE2
doses.

Gi-Proteins rank among heterotrimeric G-protein sub-
classes with the highest mitogenicity, although cell-type
dependent variations do surely exist. This status is
reflected by the oncogenic nature of various components
of Gi-protein signalling pathways such as autotaxin, an
extra cellular phospholipase A2 that generates lysophos-
phatidic acid (LPA), an agonist of Gi-protein coupled
receptors [54], or transforming mutants of the Gia-subu-
nits themselves [55]. In line with this notion, we docu-
ment herein that the Gi-protein coupled receptor agonist
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lysophosphatidic acid is a strong mitogen in HT-29 cells.
This shows that Gi-protein dependent signals elicit CRC
cell proliferation, as corroborated by the ability of PTX to
block PGE2 or LPA induced proliferation (Fig. 4B and
data not shown). The major intracellular effect of Gi-pro-
tein signalling is a down regulation of cCAMP levels via the
inhibition of adenylate cyclase, suggesting that inhibition
of cAMP signalling is an important component of the pro-
liferative signal elicited by low PGE2 doses. Indeed, sev-
eral findings reported here argue for a role of reduced
cAMP dependent signalling in this context: Firstly, the Gi-
protein activator LPA induces, whilst the Gi-protein inhib-
itor PTX inhibits CRC cell proliferation. Secondly,
mitogenic doses of PGE2 down regulate cAMP/PKA sig-
nalling. Thirdly, the cAMP-raising agent isoproterenol
abolishes proliferation induced by LPA and 10 nM PGE2,
and finally, the pharmacological profile of PGE2 depend-
ent mitogenesis, based on the use of receptor specific ago-
nists and antagonists, strongly points to a major role for
the down regulation of cAMP levels via Gi-proteins in
PGE2 driven proliferation.

While these data all point to a role of cAMP, it is impor-
tant to note that Gi-proteins can activate mitogenic path-
ways independently of their effect on cAMP levels. For
example, LPA and other agonists of Gi-protein coupled
receptors activate the Ras/Erk pathway in fibroblasts and
epithelial cells independently of their effect on cAMP [56].
Several groups have documented an activation of Ras and/
or its downstream target Erk by PGE2 in CRC cells
[18,57,58], although the extent of those effects was weak
if compared to the consequences of Gi-protein-driven
Ras/Erk activation in fibroblasts or epithelial cell lines of
other origin. It has been proposed that transactivation of
the EGFR mediates both Ras/Erk pathway activation and
stimulation of cell growth by PGE2 in CRC cell lines
[18,59,60]. We have been unable to detect a significant
stimulation of Ras or Erk activity by PGE2 in the cell lines
studied here, even at longer time points of stimulation up
to 3 h (data not shown). As a matter of fact, the cell lines
studied here and in the studies referenced above do all
harbour oncogenic K-Ras or B-Raf and a high constitutive
activation of Erk (data not shown). In conclusion, we pro-
pose that PGE2 induces cell proliferation in CRC cells at
least partly via the modulation of cAMP levels.

The prostanoid receptor subtype EP3 reportedly couples
to heterotrimeric Gi-proteins and thus represents a candi-
date mediator of the effect of PGE2 on CRC cell prolifera-
tion. We document that HT-29 cells do express the EP3
receptor but EP3 expression appears to be tightly regu-
lated. Removal of serum leads to the induction of EP3
expression whereas EP3 was virtually undetectable in cells
kept in serum. Strikingly, among the four EP3 receptor
splice variants detected in HT-29 cells, only those linked
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to Gi-proteins were up regulated in response to serum
withdrawal, raising the question as to why CRC cells
should choose to up regulate expression of G1-coupled
receptors in the absence of proliferative signals. In this
regard it will be intriguing to investigate how PGE?2 itself
regulates the expression of the distinct EP receptor iso-
forms and splice variants. A distinct profile of EP receptor
subtypes could also explain the behaviour of SW480 cells,
the only among 4 CRC cell lines studied here that did not
respond to nano molar doses of PGE2 with enhanced pro-
liferation. Interestingly, EP3 receptor levels are down reg-
ulated in colon cancer mucosa in comparison to healthy
tissue [26], indicating that EP3 expression may not be
compatible with a high proliferative rate in those cells. We
are intrigued by the possibility that EP3 expression may be
generally linked to the proliferative state of the cell and
could serve as a lever to finely adjust the proliferative rate
of CRC cells. According to such a scenario, and within the
context of colon cancerogenesis, PGE2 signalling via EP3
could be a priming step for CRC cell mitogenesis that
becomes shut off at later time points as aberrant prolifer-
ation takes over.

Conclusion

The present study illustrates a complex behaviour of PGE2
as regulator of CRC cell in vitro proliferation and rational-
izes previous conflictive findings on the growth promot-
ing effects of PGE2. The strictly concentration-dependent
effects of PGE2 documented herein strongly argue for two
counter-regulatory effects of low versus high PGE2 doses
on the regulation of CRC cell growth. Our findings argue
for a down-regulation of cAMP signalling, most likely via
the EP3 prostanoid receptor, as a hallmark of PGE2-
driven CRC cell proliferation and provide a framework for
future in vitro studies on the mechanism of action of pros-
taglandins on CRC cells.
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