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Abstract

Background: Migration is important for the metastatic capacity and thus for the malignancy of
cancer cells. There is limited knowledge on regulatory factors that promote the migration of
neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms
regulate neuroblastoma cell motility.

Methods: PKC isoforms were downregulated with siRNA or modulated with activators and
inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and
expression levels were measured with Western blot.

Results: Stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-
N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor
GF109203X and the inhibitor of classical isoforms G66976 inhibited migration while an inhibitor of
PKCp isoforms did not have an effect. Downregulation of PKCg, but not of PKCa or PKCS, with
siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using
PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways,
respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might
be involved in TPA-induced migration but not in migration driven by PKCe. TPA induced
phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS)
which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against
different PKC isoforms before stimulation with TPA did not influence the phosphorylation of
MARCKS.

Conclusion: PKCe is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the
Erk pathway nor MARCKS are critical downstream targets of PKCg but they may be involved in
TPA-mediated migration.

Background tumour metastasation [1]. The capacity of cells to migrate
Cell migration plays a central role in a wide range of dif-  is dependent on signals from the extracellular environ-
ferent biological processes, both normal and pathologi-  ment which are transduced via networks of intracellular

cal, including wound healing, inflammatory response and  signal transduction proteins. A variety of intracellular sig-
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nalling molecules including members of the protein
kinase C (PKC) family of isoforms participate in the regu-
lation of cellular migration [2-5].

PKC comprises a family of related serine/threonine
kinases that are involved in a number of cellular processes
such as proliferation and apoptosis in addition to their
roles in regulating cellular morphology, adhesion and
migration. Based on regulatory and structural properties,
the PKC isoforms can be grouped in three different sub-
families; the classical PKCs (o, BI, BII and y) are activated
by Ca?+, phospholipids and diacylglycerol (DAG), the
novel PKCs (8, €, n and 0) are activated by phospholipids
and DAG but are insensitive to CaZ* while the atypical
PKCs (¢ and 1/A) require neither DAG nor Ca2* for activa-
tion [6].

An important role for PKC in cell migration has long been
suggested for a wide range of cell types by the fact that
phorbol esters, which are general PKC activators, enhance
the motility of these cells [7-9]. Further studies have failed
to pinpoint one or a few particular isoforms as being gen-
eral regulators of migration [5]. It rather seems as if many
isoforms have the capacity to influence the migratory
behaviour and which isoform that is involved depends on
the cell type. Overexpression of PKCa has been shown to
increase motility in MCF-10 cells [10], 2C4 fibrosarcoma
cells [11] and the breast cancer cell lines MCF-7 [12] and
MDA-MB-435 [13] and PKCBI can mediate cytoskeletal
rearrangements and platelet spreading on fibrinogen [14].
Activation of PKCS with epidermal growth factor is
important for migration of fibroblasts [15] and elevated
levels of PKCS contribute to a more metastatic phenotype
of mammary tumour cells [16]. Finally, PKCe has been
suggested to be important for glioma cell migration [17]
and inhibition of PKCe leads to decreased motility of
fibroblasts [18] and head and neck squamous cell carci-
noma [19].

Neuroblastoma is the most common extracranial solid
tumour among pediatric cancers affecting approximately
1 in 7000 live births [20]. The cancer is frequently lethal
and this is coupled to widespread metastasation. It would
therefore be beneficial to understand what regulates the
migratory behaviour, which is one precondition for infil-
tration and spread, of neuroblastoma cells. This study was
designed to investigate whether PKC isoforms can influ-
ence the migratory capacity of neuroblastoma cells and to
elucidate putative pathways mediating the PKC effect.

Methods

Cell culture

Human SK-N-BE(2)C, KCN-69c and SH-SY5Y neuroblas-
toma cells were maintained in Minimal Essential Medium
(Gibco) supplemented with 10% foetal bovine serum,
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100 IU/ml penicillin and 100 pg/ml streptomycin
(Gibco).

Transfections with siRNA

Cells were transfected in 1 ml Optimem (Gibco) with 50
nM siRNA (Invitrogen) using 1.5 pl Lipofectamine 2000
(Invitrogen). The siRNA sequences are listed in Table 1.
Transfections were interrupted after 6 h by adding 1 ml
medium supplemented with 20% foetal bovine serum.
The procedure was performed for three consecutive days
after which optimal silencing was obtained as determined
by Western blot analysis. Immunofluorescence studies
have shown that the protein is downregulated to a similar
extent in all cells in the culture (not shown).

Migration assay

Cell migration was assayed in triplicates using a 48-well
transwell setup (Neuroprobe) using polycarbonate Nucle-
opore filters with 8 um pore size. The underside of the
membrane was precoated with 20 pg/ml fibronectin
(Sigma) in PBS for 16 h at 4°C. Cells were dissociated
with trypsin (Gibco) for 5 min followed by addition of
0.1% soy bean trypsin inhibitor (Invitrogen). Cells were
centrifuged, resuspended in serum-free medium and
15,000 cells were seeded in the upper chamber of each
well. The lower chambers contained serum-free medium
supplemented with activators or inhibitors at the follow-
ing concentrations: 12-O-tetradecanoylphorbol-13-ace-
tate (TPA; Sigma), 16 nM; GF109203X and G66976, 2 uM
(both Calbiochem); LY333531, 200 nM (Alexis);
PD98059, 50 uM and LY294002, 20 uM (both Sigma).
Cells were incubated for 6 h in 37°C. Non-migrated cells
on the upper side of the membrane were removed by
scraping, while migrated cells attached to the underside of
the membrane were fixed for 10 min in methanol and
stained with Vectashield with DAPI (Vector laboratories).
Cells were examined using a fluorescence microscope and
all cells in a specified area in the middle of the membrane
were counted.

Scratch assay

Cells were seeded at a density of 450,000 cells per well in
12-well cell culture plates. After incubation for 24 hours,
the confluent cell monolayer was scraped with a pipette
tip creating a scratch in each well. Medium containing

Table I: siRNA oligonucleotides

siRNA Oligonucleotides

PKCa CCGAGUGAAACUCACGGACUUCAAU
PKCS UUUCAAAGAGCUUCUCCAGGAUGUC
PKCel CACAAGUUCGGUAUCCACAACUACA
PKCe2 GCAAGGUCAUGUUGGCAGAACUCAA
PKCe3 CCACAAGUUCAUGGCCACCUAUCUU
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serum supplemented with TPA or inhibitors was added
and cells were incubated at 37°C. For experiments with
siRNA, 70,000 cells were seeded in 12-well cell culture
plates and treated with siRNA as described and 18 hours
after the last transfection, cell monolayers were scratched.
Cells were photographed at different time points and the
scratch area was measured using Image].

Western blot

1.0 x 106 cells were seeded in 60-mm cell culture dishes
and incubated for 24 hours. Cells were pre-incubated for
1 h in serum-free medium prior to stimulation. Cells were
washed twice in PBS and lysed in RIPA buffer (10 mM
Tris-HCl, pH 7.2, 160 mM NaCl, 1% Triton X-100, 1%
sodium deoxycholate, 0.1% sodium dodecyl sulfate, 1
mM EDTA, 1 mM EGTA) containing 40 pl/ml protease
inhibitors (Roche Applied Science). Cells transfected with
siRNA were lysed in the same way 18 h after the last trans-
fection. Lysates were centrifuged for 10 min at 14,000 x g
at 4°C. Proteins were electrophoretically separated on a
10% NuPAGE Novex Bis-Tris gel (Invitrogen) and trans-
ferred to a polyvinylidene diflouride membrane (Milli-
pore). For detection, membranes were incubated with
primary antibodies against phospho-MARCKS (1:500),
phospho-Erk (1:500), Erk (1:500) (all Cell Signaling),
MARCKS (1:1000) (Upstate), PKCa (1:3000), PKCPII
(1:500), PKC3 (1:500) or PKCe (1:500) (all Santa Cruz
Biotechnology) followed by incubation with a horserad-
ish peroxidase-labelled secondary antibody (1:5000)
(Amersham Biosciences). Horseradish peroxidase was
thereafter visualised using the SuperSignal system (Pierce)
as substrate. The chemoluminescence was detected with a
CCD camera (Fujifilm).

Calculations and statistics

IC,, values were calculated by doing a curve fit analysis to
the equation y = A/(1+x/B) where A is the maximal effect
and B is the IC, value. Statistical analyses were done by
doing ANOVA followed by Duncan's multiple range test
using p < 0.05 as level of for significance.

Results

Activation of PKC stimulates migration of neuroblastoma
cells

To investigate a putative role of PKC in neuroblastoma
cell motility, the migration of SK-N-BE(2)C neuroblast-
oma cells was studied using transwell and scratch assays.

SK-N-BE(2)C cells were seeded in the upper wells of the
transwell assay and were allowed to migrate towards
serum-free medium supplemented with 16 nM of the PKC
activator TPA (Fig 1A). This is a treatment that does not
lead to morphological changes of the cells [21,22] This
demonstrated that TPA leads to a doubling of the number
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of migrated cells. Since TPA can influence other proteins
than PKC isoforms [23], PKC inhibitors were included
with TPA in the lower chamber to investigate if PKC activ-
ity mediates the TPA effect (Fig 1A-C). Both the general
PKC inhibitor GF109203X and the inhibitor of the classi-
cal isoforms, G66976, markedly reduced the TPA-induced
migration. The effects were concentration-dependent (Fig
1B-C) with 50% effect obtained with 310 nM for G66976
and 480 nM for GF109203X. The PKCp inhibitor
LY333531 did not influence the TPA effect at 200 nM.

To analyse whether the PKC effect is general for neurob-
lastoma cells, we investigated migration in two other neu-
roblastoma cell lines, one NMYC-amplified (KCN-69c¢)
and one without this amplification (SH-SY5Y) with the
transwell assay (Fig 2). Addition of TPA led to increased
migration of KCN-69c¢ cells, an effect that was blocked by
GF109203X whereas G66976 did not have an effect (Fig
2A). This indicates that a novel PKC isoform is important
for migration of KCN-69¢ neuroblastoma cells. However,
SH-SY5Y cells did not show a major migratory effect after
activation of PKC (Fig 2B).

To further establish the pro-migratory effect of PKC the
cell motility was analysed with a scratch assay (Fig 3).
Cells stimulated with TPA had almost completely closed
the scratch after 48 hours (Fig 3B) contrasting the still vis-
ible scratch in cells incubated in the absence of TPA (Fig
3A). Both GF109203X and G66976 reduced the migration
into the scratch (Fig 3C-D) demonstrating that the TPA
effect is dependent on the activity of PKC. The PKCp
inhibitor LY333531 did not influence the TPA effect (Fig
3E). Quantitative analyses confirmed the observations
(Fig 3F). Under basal conditions, i.e. in the absence of
TPA, the inhibitor of classical PKC isoforms, G66976,
reduced migration into the scratch while GF109203X and
LY333531 were without effect (Fig 3G).

PKCzc¢ is necessary for SK-N-BE(2)C cell migration

To establish which isoform that mediates TPA-induced
migration we used siRNA to reduce the levels of PKC iso-
forms. With this approach we could specifically reduce the
protein levels of PKCa, PKC3 and PKCe (Fig 4A). How-
ever, despite trying four different siRNAs directed against
PKCP we were not able to reduce the expression of PKCBII
in SK-N-BE(2)C cells (not shown).

SK-N-BE(2)C cells transfected with siRNAs were seeded in
the upper wells of the transwell migration chambers and
were allowed to migrate towards serum-free medium (Fig
4B) or medium supplemented with 16 nM TPA (Fig 4C).
In both cases, treatment with the PKCe siRNA resulted in
suppressed migration. Reduction of PKCa or PKC3 levels
did not significantly influence migration.
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Figure |

Activation of PKC induces migration of SK-N-BE(2)C neuroblastoma cells. (A) SK-N-BE(2)C cells seeded in serum-
free medium in the upper wells of a migration chamber. were allowed to migrate for 6 h towards either serum-free medium
without supplements (Ctrl) or towards serum-free medium with 16 nM TPA in the absence or presence of the PKC inhibitors
GF109203X (2 uM), G66976 (2 uM) or LY333531 (200 nM). (B and C) SK-N-BE(2)C cells were allowed to migrate for 6 h
towards 16 nM TPA in the presence of increasing concentrations of (B) GF109203X and (C) G66976. Data, the number of
migrated cells expressed as percent of the number of migrated cells after TPA treatment in the absence of inhibitors, are mean
1 SEM of four (A) or two (B and C) independent experiments. * denotes significant difference compared to TPA treatment in
the absence of inhibitors.
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Figure 2

Activation of PKC induces migration of KCN-69c cells but not of SH-SY5Y neuroblastoma cells. KCN-69c (A) or
SH-SY5Y (B) cells were seeded in serum-free medium in the upper wells of a migration chamber. The lower chambers were
supplemented with DMSO (Ctrl), 16 nM TPA or 16 nM TPA with 2 uM GF109203X or 2 uM G66976 and cells were allowed
to migrate for 6 h. Data, the number of migrated cells expressed as percent of the number of migrated cells after TPA treat-
ment in the absence of inhibitors, are mean + SEM of five (A) or four (B) independent experiments. * denotes significant differ-
ence compared to TPA treatment in the absence of inhibitors.
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Figure 3

Activation of PKC reduces the wound closure time of SK-N-BE(2)C neuroblastoma cells. A confluent SK-N-
BE(2)C cell monolayer was scraped with a pipette tip. (A-E) Cells were incubated in medium supplemented with serum (Ctrl)
(A) or medium supplemented with serum and 16 nM TPA (B), or with the additional supplementation of PKC inhibitors
GF109203X (2 uM) (C), G66976 (2 uM) (D) or LY333531 (200 nM) (E). Cells were incubated at 37°C for 48 hours and images
of the scratches were captured. (F and G) Quantification of migration in the presence (F) or absence (G) of TPA. Data are pre-
sented as relative values where the 24 h timepoint for cells incubated in the absence of TPA is 100% and are mean + SEM of
four (F) or five (G) independent experiments. * denotes significant difference compared to absence of inhibitors.
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To further confirm the role of PKCe we transfected cells
with two other siRNA oligonucleotides against PKCe (g2
and €3), which both reduced the expression of PKCg (Fig
5A). A scratch assay with cells transfected with the differ-
ent siRNA oligonucleotides against PKCe and with a PKCS
siRNA oligonuclotide as control was thereafter performed
(Fig 5B-D). Cells were incubated with medium supple-
mented with serum alone (Fig 5B) or with serum and 16
nM TPA (Fig 5C). After 24 hours control cells and cells
transfected with siRNA against PKC8 had migrated to the
same extent. However, cells treated with either siRNA
against PKCe had a reduced ability to close the scratch
both in the absence and presence of TPA although the
effects of the individual PKCe oligos differed somewhat
(Fig 5D). These results clearly indicate that PKCe is neces-
sary for migration of SK-N-BE(2)C neuroblastoma cells.

Neither the PI3K pathway nor the Erk pathway is involved
in PKC&induced migration

The PI3K pathway and the Erk pathway have previously
been shown to regulate the migration of neuroblastoma
cells [24,25]. In particular PI3K is required for motility in
many cell types suggesting a more universal importance of
this signalling pathway for migration. It is therefore not
unlikely that a basal activity of these pathways may be of
importance for the migratory effect of TPA. To address this
issue, we investigated whether activity in one or both of
these pathways is important for the TPA-induced migra-
tion of SK-N-BE(2)C neuroblastoma cells using both tran-
swell and scratch assays. Neither LY294002, a PI3K
inhibitor, nor PD98059, an inhibitor of the Erk pathway,
had an effect in the transwell assay (Fig 6A) whereas the
there was a tendency towards reduced TPA-induced
migration in the scratch assay in the presence of the MEK
inhibitor (Fig 6B). The PI3K inhibitor had only a minor
effect on migration into the scratch.

The fact that the PD98059 caused a tendency to reduced
migration in the scratch assay led us to investigate
whether Erk is a mediator of the pro-migratory effect of
PKCe. However, TPA induced Erk phosphorylation to the
same extent in control cells as in cells with downregulated
PKCe (Fig 6C), indicating that Erk is not a crucial media-
tor of the PKCe effect.

PKC-mediated phosphorylation of MARCKS

MARCKS is a PKC substrate which, depending on phos-
phorylation status, can bind F-actin and sequester phos-
phatidylinositol 4,5-bisphosphate and consequently
regulate the cortical microfilaments [26]. To investigate
whether MARCKS is phosphorylated during PKC-induced
migration, SK-N-BE(2)C cells were treated with TPA and
PKC inhibitors and the phosphorylation of MARCKS was
analysed (Fig 7A). Stimulation with TPA for 1 h led to
increased phosphorylation of MARCKS, which was sup-
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pressed by pre-treatment with PKC inhibitors (Fig 7A).
G066976 and the PKCP inhibitor LY333531 reduced
MARCKS phosphorylation to levels seen in untreated cells
and the general PKC inhibitor GF109203X suppressed
them even further.

Cells were also transfected with siRNA oligos against
PKCa, PKC8 and PKCe and stimulated with TPA for 1 h
followed by analysis of MARCKS phosphorylation (Fig
7B). TPA treatment led to increased phosphorylation of
MARCKS under all conditions indicating that several iso-
forms phosphorylate MARCKS in SK-N-BE(2)C cells.

Discussion

A major problem in curing cancer is the capacity of cancer
cells to migrate, invade tissues and subsequently seed
metastases in other organs. This is also the case for neu-
roblastoma, a pediatric cancer derived from the peripheral
sympathetic nervous system. The mechanisms determin-
ing the migratory capacity of neuroblastoma cells are not
fully understood. Several reports indicate that growth fac-
tors, such as IGF-1 [27] and PDGF [25], and integrins [28]
can stimulate neuroblastoma cell motility. In this study
we demonstrate that a direct activation of PKC is sufficient
to induce migration of neuroblastoma cells and PKC thus
arises as an interesting target to suppress the motility of
these cells.

Activation of PKC stimulated migration of two different
neuroblastoma cell lines, SK-N-BE(2)C and KCN-69¢,
whereas the SH-SY5Y cell line did not increase its motility
in response to PKC activators. This is not due to a poor
migratory capacity of these cells since they migrate in
response to other stimuli [25,27,28]. However, in terms of
PKC effects SH-SY5Y cells are unique in that they differen-
tiate upon treatment with TPA [29] which may explain
why they do not migrate upon PKC activation. Another
possible explanation is the fact that SK-N-BE(2)C and
KCN-69¢, but not SH-SY5Y cells, carry an NMYC amplifi-
cation which results in more aggressive tumours [30]. The
amplification may be associated with the presence of a
pathway that transduces a PKC signal to increased motil-
ity. However, a larger panel of neuroblastoma cells is nec-
essary to corroborate such a hypothesis.

PKC comprises a family of ten related isoforms, eight of
which are TPA-sensitive, and of these, neuroblastoma cells
generally express PKCa, PKCBII, PKC3 and PKCe [31].
Reducing the levels of PKCg, but not of PKCa or PKC3,
with siRNA inhibited migration both under basal condi-
tions and when cells were stimulated with TPA. This is not
due to off-target effects since three different siRNA oligo-
nucleotides against PKCg all led to a reduced migration.
Despite transfecting the cells with siRNA for three consec-
utive days we were not able to reduce the levels of PKCg
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Figure 5

PKCs is necessary for migration of SK-N-BE(2)C neuroblastoma cells. (A) Cells were transfected with three differ-
ent siRNA oligonucleotides against PKCe and the expression levels of PKCe were detected with Western blot. (B and C) Cells
seeded in 35-mm cells culture wells were transfected with the PKCe siRNA oligonucleotides, one oligonucleotide against
PKCS or with an equal amount of water (Ctrl). Cells were incubated for |8 h after the last transfection and thereafter the con-
fluent cell monolayer was scraped with a pipette tip. Medium with serum (B) or 16 nM TPA (C) was added to the wells. Data
are presented as relative values of the migration of control cells after 24 h and are mean + SEM of three independent experi-
ments. (D) Data are presented as relative values where TPA at the 12 h time point is 100% and are mean + SEM of three inde-
pendent experiments. * denotes significant difference for all PKCe siRNAs compared to control conditions (B and C) and
significant difference compared to absence of TPA (D).
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Neither the Erk pathway nor the PI3K pathway is involved in PKCe-mediated migration of SK-N-BE(2)C cells.
(A) Cells were allowed to migrate for 6 h towards the lower chambers which were supplemented with DMSO (Ctrl) or 16 nM
TPA in the absence or presence of the PI3K inhibitor LY294002 (20 uM) or the MEK inhibitor PD98059 (50 uM). Data, the
number of migrated cells expressed as percent of the number of migrated cells after TPA treatment in the absence of inhibi-
tors, are mean + SEM of three independent experiments. (B) Confluent monolayers of SK-N-BE(2)C cells were scraped with a
pipette tip. Cells were incubated in serum-containing medium (ctrl) and 16 nM TPA with or without 20 uM LY294002 or 50
pM PD98059. Data, migration into the scratch area, are presented as relative values where DMSO at the 24 h timepoint is
100% and are the mean + SEM of three independent experiments. (C) Cells were transfected with 50 nM of siRNA oligonucle-
otide against PKCg (€) or an equal amount of water (0) before stimulation with 16 nM TPA for different time periods. Thereaf-
ter cells were lysed and analysed by Western blotting using antibodies against phosphorylated Erk (p-Erk) and total Erk (tot-
Erk).
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completely which raises the possibility that even more
suppressive effects could be obtained if PKCe could be
depleted from the cells. A role of PKCe is in line with the
suppression of the TPA effect obtained by the general PKC
inhibitor GF109203X. However, in contrast to PKCe
siRNA treatment, the kinase inhibitor did not affect
migration under basal conditions. PKCe has been shown
to induce morphological effects, induction of neurites
[32] and dismantling of stress fibres [33], independently
of its kinase activity. Our results indicate that also some of
the promigratory effects of PKCe may be exerted inde-
pendently of its catalytic activity.

The inhibitor of classical PKCs, G66976, also suppressed
migration, indicating a potential role for these isoforms in
migration. However, G66976 influenced migration both
in the absence and presence of TPA contrasting the effect
of GF109203X, which did not have an effect under basal
conditions. G66976 has been shown to exert effects that
are unrelated to and independent of PKC inhibition [34-
36]. Furthermore, neither inhibition of PKCa with siRNA
nor of PKCP with LY333531 suppressed migration. This
makes it more conceivable that PKCe is the primary
promigratory PKC isoform in neuroblastoma cells and
that G66976 inhibits motility by some other actions.

There are several different mechanisms through which
PKCe may mediate its effects on cellular motility.
Integrins are receptors for extracellular matrix compo-
nents and are critically involved in the regulation of cell
motility. PKCe has been shown to both regulate the recy-
cling of integrins [18,37] and participate in down stream
signalling following integrin clustering [17]. One of the
putative PKCe targets is Erk which is targeted to focal
adhesions following direct activation of PKC [38] or to
focal complexes during HGF-mediated cell movement
[39]. Both of these events are mediated via PKCe but our
data do not support a critical role of Erk in PKCe-mediated
migration of neuroblastoma cells. Although there was a
tendency towards suppression of the wound healing by
PD98059, it had no effect in the transwell assay and
downregulation of PKCe to levels that cause a reduced
migration did not influence TPA-stimulated Erk phospho-
rylation.

In addition to regulating other signalling proteins, PKC
can also phosphorylate several proteins, such as MARCKS
and ERM proteins [11,40], that more directly regulate the
structure of the cytoskeleton. There was indeed a substan-
tial PKC-mediated increase in MARCKS phosphorylation
concomitant with TPA-stimulated migration indicating a
role for MARCKS in the PKC-mediated motility of neurob-
lastoma cells. An involvement of MARCKS in PKC-regu-
lated migration has been suggested in many other cell

http://www.biomedcentral.com/1471-2407/8/365

types [15,41,42] and our data would further support the
general importance of this pathway.

However, experiments with siRNA showed that the phos-
phorylation of MARCKS was not altered when any of the
isoforms PKCa, PKCS or PKCe was downregulated. Since
downregulation of PKCeg leads to suppressed migration it
does not seem as if MARCKS is specific and critical in the
PKCe pathway. Instead it is conceivable that several iso-
forms phosphorylate MARCKS upon addition of TPA.
This is further supported by the finding that the inhibitor
of classical isoforms, G66976, partially reduces the phos-
phorylation whereas the general PKC inhibitor
GF109203X has an even larger effect. MARCKS has been
shown to be a high affinity substrate for both novel and
classical PKC isoforms in vitro and in intact cells [43,44]
supporting our finding that several PKC isoforms can
phosphorylate MARCKS in SK-N-BE(2)C cells.

A TPA

SF DMSO GF109203X G66976 LY333531

p-MARCKS »

tot-MARCKS —+»

B

SF TPA SF TPA SF TPA SF TPA

p-MARCKS »

tot-MARCKS —+»

Figure 7

Activation of PKC induces phosphorylation of
MARCKS. (A) SK-N-BE(2)C cells were incubated in serum-
free medium for | h followed by pre-treatment with 2 uM
GF109203X, 2 uM G66976 or 200 nM LY333531 for 5 min
and thereafter stimulation with 16 nM TPA. Cells were lysed
and analysed with Western blot using antibodies detecting
phosphorylated (p-MARCKS) and total MARCKS (tot-
MARCKS). (B) Cells were transfected for three consecutive
days with 50 nM of siRNA oligonucleotides against PKCa,
PKCS3 and PKCe or an equal amount of water. 18 h after the
last transfection cells were incubated with serum-free
medium and thereafter stimulated with 16 nM TPA for | h.
Cells were lysed and analysed by Western blotting using anti-
bodies against phosphorylated and total MARCKS.
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Conclusion

In conclusion, we show for the first time that PKCe is nec-
essary to promote migration of SK-N-BE(2)C neuroblast-
oma cells making it a possible target for blocking the
motility of these cells.
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