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Abstract

Background: Deregulation of Stats in the mammary gland of transgenic mice causes
tumorigenesis. Poorly differentiated carcinoma and highly differentiated papillary adenocarcinoma
tumors evolve. To distinguish the genes and elucidate the cellular processes and metabolic
pathways utilized to preserve these phenotypes, gene-expression profiles were analyzed.

Methods: Mammary tumors were excised from transgenic mice carrying a constitutively active
variant of Stat5, or a Stat5 variant lacking s transactivation domain. These tumors displayed either
the carcinoma or the papillary adenocarcinoma phenotypes. cRNAs, prepared from each tumor
were hybridized to an Affymetrix GeneChip® Mouse Genome 430A 2.0 array. Gene-ontology
analysis, hierarchical clustering and biological-pathway analysis were performed to distinct the two
types of tumors. Histopathology and immunofluorescence staining complemented the comparison
between the tumor phenotypes.

Results: The nucleus-cytoskeleton-plasma membrane axis is a major target for differential gene
expression between phenotypes. In the carcinoma, stronger expression of genes coding for specific
integrins, cytoskeletal proteins and calcium-binding proteins highlight cell-adhesion and motility
features of the tumor cells. This is supported by the higher expression of genes involved in O-glycan
synthesis, TGF-f3, activin, their receptors and Smad3, as well as the Notch ligands and members of
the y-secretase complex that enable Notch nuclear localization. The VWnt pathway was also a target
for differential gene expression. Higher expression of genes encoding the degradation complex of
the canonical pathway and limited TCF expression in the papillary adenocarcinoma result in
membranal accumulation of -catenin, in contrast to its nuclear translocation in the carcinoma.
Genes involved in cell-cycle arrest at Gl and response to DNA damage were more highly
expressed in the papillary adenocarcinomas, as opposed to favored G2/M regulation in the
carcinoma tumors.

Conclusion: At least six metabolic pathways support the morphological and functional differences
between carcinomas and papillary adenocarcinomas. Differential gene-expression profiles favor cell
adhesion, motility and proliferation in the carcinoma. Cell-cell contact, polarity, earlier cell-cycle
arrest and DNA damage control are better displayed in the papillary adenocarcinoma.
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Background

Breast cancer comprises a series of distinct malignant
tumors that present diverse cellular features with different
stages and grades, distinct genetic changes, differing
responses to therapy and varying outcomes [1]. Tailoring
specific treatments to the disease's subtypes has tradition-
ally been performed by histopathological analysis of
tumor sections, supported by limited immunopathologi-
cal and genetic assays [2]. Gene-expression profiling of
human breast cancers has expanded our understanding of
the clinical diversity of the disease and enabled a more
accurate classification of tumors into subtypes, as well as
a determination of their response to drug treatments [3,4].
The clinical benefits gained from profiling gene expres-
sion in tumor biopsies have also provided better insight
into the development and characteristics of the disease.
For instance, the discovery of a unique set of genes that are
predictive of metastases was associated with the recogni-
tion that metastatic properties are determined in the pri-
mary tumor relatively early in development. It also
indicated that the molecular mechanism involved in bone
marrow metastasis is different from that mediating lym-
phatic spread [5-8]. Likewise, the "proliferation signature"
encompasses a universal pattern of gene expression
among tissues and predicts the outcome in patients [9]. It
also implies that the regulation of some individual cell-
cycle regulatory genes is more complex than simple
restriction of transcription to certain phases of the cell

cycle.

Indeed, progress has been made in determining the
molecular profiles of breast-tumor subtypes and their
response to treatment [5,6,10,11]. However, the distinct
contribution of defined metabolic pathways and their pri-
mary elements to the overall phenotypic and functional
diversity among tumors remains poorly understood.

In breast cancer, rate of differentiation has been negatively
correlated with the invasiveness and aggressiveness of the
disease [12]. To elucidate the molecular and cellular char-
acteristics and putative pathways that distinguish the
poorly differentiated carcinoma and the highly differenti-
ated papillary adenocarcinoma, global gene expression
analysis was performed in transgenic mouse model. The
tumors develop in about 8 to 9% of the aged, post-estro-
pausal transgenic mice expressing variants of the signal
transducer and activator of transcription 5 (Stat5) in their
mammary glands. Both tumor types are of epithelial ori-
gin, but strictly different in their pathological appearance.
The carcinoma is an undifferentiated, non-glandular
tumor, which can be distinguished by a typical structure
of sheets of neoplastic mass with solid nests of poorly
organized and discohesive cells. In contrast, the papillary
adenocarcinoma is a highly differentiated tumor of glan-
dular origin. Its microscopic structure is composed pre-
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dominantly of fibrovascular frond-like projections,
covered by epithelial cells [13,14]. Divergent protein
expression which is not associated with the type of trans-
genic Stat5 variant expressed has been defined in these
tumors, and a high degree of aneuploidy was demon-
strated exclusively for the carcinoma epithelial cells [13].

Typically, cancer cells overexpress genes that are preferen-
tially expressed in tissues other than those of the cancer's
origin [15]. Thus, the apparent differences between these
types of tumors could involve alterations in cellular and
molecular functions, some of which are difficult to pre-
dict. Global profiling of gene expression in these tumors
has revealed the nucleus-cytoskeleton-plasma membrane
axis as a target for altered gene expression which deter-
mines the diversity among these tumors.

Methods

Mouse mammary-tumor samples

Mammary tumors were developed in transgenic mice car-
rying one of two Stat5 variants on a FVB/N background:
(i) constitutively activated STATS, termed STAT5ca, com-
prising sequences from three genes: amino acids 1-750
from ovine Stat5, 677-847 from human Stat6, and
757-1129 from mouse Janus kinase (Jak) 2. and (ii) a
deleted construct, STAT5A750, prepared by introducing a
stop codon at the respective site of the native Stat5 DNA
sequence, thus eliminating the expression of its transacti-
vation domain. These constructs were inserted into the -
lactoglobulin (BLG) multiple-cloning site for mammary-
gland-specific expression [16]. Upon identification,
tumors were excised and snap-frozen for RNA isolation
and validation studies. Biopsies were taken for histologi-
cal analyses.

All animals used in this study received humane care. The
study protocols are in compliance with the regulation of
the Israeli Ministry of Health and the local institutional
policies (approval no. 1L-39-03).

Microarray hybridization and data analysis

RNA was extracted from the individual tumors that were
pathologically diagnosed [13], or from mammary glands
with TRIZOL and reverse-transcribed. Each tumor or
mammary gland was excised from different mouse. Equal
amounts of cCRNA from each tumor were hybridized to an
Affymetrix GeneChip® Mouse Genome 430A 2.0 array
(Affymetrix, Santa Clara, CA), which includes approxi-
mately 14,000 annotated genes from the mouse genome.
Hybridization and signal quantitation were performed
according to Affymetrix's protocol by the Biological Serv-
ices of the Weizmann Institute of Science (Rehovot,
Israel). Briefly, 15 ug total RNA was reversed-transcribed
using a T7-oligo(dT) promoter-primer in the first-strand
DNA-synthesis reaction. Following RNase H-mediated
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second-strand ¢DNA synthesis, the double-stranded
c¢DNA was purified and used as a template for the subse-
quent in-vitro transcription reaction. This reaction was
carried out in the presence of T7-RNA polymerase and a
biotinylated nucleotide analogue/ribonucleotide mix for
complementary RNA (cRNA) amplification and biotin
labeling. The biotinylated cRNA targets were then cleaned
up, fragmented, and hybridized to the GeneChip expres-
sion array. The chip was reacted with streptavidin-phyco-
erythrin and then with biotinylated anti-streptavidin
antibody (Vector Laboratories, Burlingame, CA). Arrays
were scanned by GeneArray scanner G2500A (Hewlett
Packard, Palo Alto, CA), visually inspected for hybridiza-
tion imperfections and analyzed using Affymetrix Micro-
array Suite software version 5.0 by scaling to an average
intensity of 250. The data were analyzed with GeneSpring
(Silicon Genetics, Redwood City, CA) using the MAS5
algorithm [17].

First, values were set below the cutoff to the cut off: 0.01.
Than, Gene-expression data were normalized "per chip”
and "per gene". For "per chip" normalization, all expres-
sion data on a chip were normalized to the 50th percentile
of the measurements taken from all values on that chip.
"Per gene" normalization divide each gene in the selected
samples by the median of the gene's measurements in the
respective control group. It was performed here according
the type of comparison being made. When expression
profiles were compared between carcinoma and papillary
adenocarcinoma tumors, the expression of a given gene
was normalized to the median of the expression level of
the wild-type mammary-gland samples.

This enabled the relation of gene expression levels in the
tumor types also to that detected in the wild-type gland.
For comparison between tumors and wild-type mammary
gland, the expression of a given gene was normalized to
the median of the data obtained from the expression of all
genes an all chips. The normalized data were log-trans-
formed. The significant (p < 0.05) differences in gene
expression, based on the individual values obtained from
each tumor sample, between the two types of tumors or
between each tumor type and the wild-type mammary
gland were calculated using one-tailed t-test statistical
analysis.

Gene-ontology analysis, hierarchical clustering and
biological-pathway analysis

Genes with different levels of expression between tumor
phenotypes were categorized into Cellular component,
Molecular function and Biological process categories
using the GO Slim annotation tool in GeneSpring. Genes
assembled in each functional annotation were further sep-
arated into GO Slim terms.
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Hierarchical clustering was performed on genes exhibiting
a twofold, significant (P < 0.05) difference in their expres-
sion between phenotypes. These genes were clustered into
four groups according to their assembly in the gene tree
and condition tree and were annotated by GO using
DAVID software [18]. The rate of enrichment in the rele-
vant genes was determined for each term. The genes
exhibiting differential expression in mammary carcino-
mas vs. papillary adenocarcinomas were assembled by the
DAVID software into metabolic pathways using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis with some modifications.

Validation of array analysis

Semi-quantitative RT-PCR was applied to confirm the dif-
ferent expression patterns of selected genes in the different
types of tumors. RNA, extracted from individual tumors
and mammary glands, was reversed-transcribed and ana-
lyzed using the primers listed in Additional file 1 (data
sheet A). The number of PCR cycles was calibrated for the
exponential segment of the reaction. The DNA was blot-
ted onto a nylon membrane and reacted with the relevant
32P-labeled probe. The membranes were exposed to film
and signals were visualized and quantitated using GelPro
software.

Histopathology and immunofluorescence staining

Mammary and tumor biopsies were fixed with Bouin's
solution, dehydrated in a graded series (50 to 100%) of
ethanol, cleared in xylene and embedded in paraffin. Sec-
tions of 4 um were processed for hematoxylin & eosin
(H&E) staining. For immunohistochemical analysis of
Cav-1, sections were treated as previously described [14]
using anti-Cav-1 antibody (Cell Signaling, Danvers, MA)
diluted 1:125. Signals were generated with EnVision rea-
gent (Dako, Glostrup, Denmark) containing the HRP-
labeled secondary antibody and diaminobenzidine
(DAB) substrate (Vector Laboratories, Burlingame, CA).
For immunofluorescence analysis of B-catenin, sections
were reacted with anti-B-catenin antibody (Sigma, St.
Louis, MO, diluted 1:2,000) and signals were generated
with anti-rabbit IgG conjugated to FITC (Sigma) diluted
1:2,000. For double-staining of Cav-1 and SMA, sections
were reacted overnight at 4°C with a mixture of mouse
anti-SMA monoclonal antibody (Dako, diluted 1:200)
and rabbit anti-Cav-1. Signals were generated after incu-
bation for 1 h with a mixture of the appropriate secondary
antibodies: donkey anti-rabbit IgG conjugated to Cy™3
(Jackson Immunoresearch Laboratories. W. Baltimore
Pike, PA) or donkey anti-mouse IgG labeled with Alexa
Fluor® 488 (Molecular Probes, Eugene, OR), both diluted
1:300. Nuclear staining was performed with DAPI (Qbio-
gen, Irvine, CA). Stained sections were mounted in Fluor-
omount (DBS, Pleasanton, CA) and visualized using a
Leica fluorescent microscope (Vertrieb, Bensheim, Ger-
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many). The pathological analysis of the tumors was per-
formed by Dr. Robert Cardiff (University of California,
Davis) as previously described [13].

Results

Comparison of mammary carcinoma and papillary
adenocarcinoma tumors: Gene Ontology (GO) analysis of
differentially expressed genes

Global gene-expression profiling was performed on two
types of mammary tumors: the poorly differentiated carci-
nomas and the highly differentiated papillary adenocarci-
nomas. RNA was extracted and reverse-transcribed from
seven individual carcinoma and six individual papillary
adenocarcinoma tumors that developed in transgenic
mice expressing deregulated Stat5. RNA was also extracted
from the mammary glands of three post-estropausal mul-
tiparous wild-type females and similarly processed. For
comparison of global gene expression in the two types of
tumors, the array data were normalized to the median
gene-expression levels determined in the wild-type
glands. This also relates the tumorigenic expression of an
individual gene to its counterpart in the wild-type gland.
After normalization and filtration, 2,215 features (1,882
genes) were identified that were differentially expressed in
the carcinoma vs. papillary adenocarcinoma tumors at a
statistical significance of P < 0.05 (Additional file 1, data
sheet B). Principal-component analysis (PCA) and unsu-
pervised hierarchical clustering were performed using
Genespring to test the degree of similarity between the
expression of the deviated genes in the two phenotypes
[19]. These analyses assembled the phenotypically differ-
ent genes into two sets which separated independently of
the transgenic Stat5 variant carried by the host mice (Fig-
ure 1). Additional filtration of the genes to include only
those exhibiting an over twofold difference narrowed the
list to 865 features (773 genes; Additional file 1, data
sheet C). PCA and hierarchical clustering of these genes
overlapped with that obtained for the broader list of 2,215
features (not shown).

A perspective on the cellular components, molecular func-
tions and biological processes involved in the divergent
gene expression between phenotypes was obtained by GO
Slim classification of the set of 865 features (Figure 2 and
Additional file 1, data sheets D-F). A high number of dif-
ferentially expressed genes were associated with two cellu-
lar components: the nucleoplasm and the plasma
membrane. In contrast, a relatively low number of these
genes were associated with the cytoplasm, most of which
were tied to the cytoskeleton. Nucleic-acid binding, cata-
lytic activity and activities linked to maintaining cellular
structure were the main molecular functions involving the
differentially expressed genes. Differences in the expres-
sion of genes involved in signal-transduction activity and
transporter activity were also noted. The variance among
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the resulting biological processes was low, but a markedly
higher number of genes were found to be involved in "reg-
ulation of gene expression, epigenetic". This definition
assembles genes in a relatively wide context that involves
cytoplasmic processes that are mitotically or meiotically
heritable and do not entail a change in DNA sequence.

Clustering the differentially expressed genes

Additional information on the genes that were differen-
tially expressed in the two types of tumors was obtained
by applying an unsupervised hierarchical-clustering algo-
rithm. It organizes genes according to the similarity or dis-
similarity in expression profile, placing the cases with
similar expression profiles together as neighboring rows
in the clustergram. Based on normalization of each gene
value to the median of gene expression in the intact mam-
mary gland, this analysis assembled the genes into two
cluster pairs (Figure 3 and Additional file 1, data sheets G
and H). The analysis is Clusters 1 and 3 contained genes
that are highly expressed in papillary adenocarcinomas,
while clusters 2 and 4 included genes that are preferen-
tially expressed in the carcinoma tumors. Relatively higher
levels of gene expression, as compared to the wild-type tis-
sue as well, characterized clusters 1 and 3 relative to clus-
ters 2 and 4, respectively. This distinction allowed further
classification of gene expression within each phenotype.

Cluster 1 contained the smallest number of genes: 78 fea-
tures (72 genes) with relatively high expression levels in
the papillary adenocarcinoma compared to the carcinoma
tumors or the wild-type gland. These genes mediate
molecular functions of nuclear DNA binding, transcrip-
tion-factor activity and oxidoreductase activity. The main
biological processes involve DNA binding, transcription-
factor activity and mediating responses to DNA damage.
Cluster 3 contained 250 features (241 genes) that were
also more highly expressed in the papillary adenocarci-
noma, although at a lower level than those listed in cluster
1. In the carcinoma tumors, all of these genes were
expressed at lower levels than in the wild-type gland. Con-
trary to the nuclear activities implicated for most of the
genes in cluster 1, the genes in cluster 3 regulate cytoplas-
mic and membranal activities such as transporter activity,
ion-channel activity and cytoskeletal protein binding.
Consequently, a wide set of biological processes were
affected, including development, cellular morphogenesis
and muscle contraction.

Genes with higher expression levels in the carcinoma vs.
papillary adenocarcinoma tumors were assembled in clus-
ters 2 and 4. In cluster 2 there were 309 features (270
genes) which also showed high expression levels relative
to the wild-type mammary gland. Many of these genes
encode binding proteins: ion binding (especially calcium-
ion binding), receptor binding, cytoskeletal-protein bind-
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Principal components analysis (PCA) and unsupervised hierarchical clustering into distinct mammary-tumor
phenotypes. Mammary carcinoma and adenocarcinoma tumors were developed in transgenic mice expressing the forced
activated Stat5 (STAT5ca) or truncated Stat5 (STAT5A750). PCA (A) and unsupervised hierarchical clustering (standard corre-
lation, B) were performed on genes that were expressed at significantly (P < 0.05) different levels between phenotypes and
confirmed the distinction of the two phenotypes.
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compartments, functions and processes that account for the differences between phenotypes. Numbers above bars represent

the number of genes involved.

noma tumors into Cellular component, Molecular function and Biological process categories. Genes that were

Gene ontology (GO) classification of differentially expressed genes in the carcinoma and papillary adenocarci-
differently expressed in the two types of tumors (over twofold and at P < 0.05) were classified to elucidate the cellular sub-

Figure 2
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Figure 3

Unsupervised hierarchical clustering and gene ontology (GO) analysis of genes that are differentially expressed
in carcinoma and papillary adenocarcinoma tumors. Genes with statistically significant (P < 0.05) and over twofold dif-
ferences in their expression levels between the two tumor phenotypes were clustered. In each cluster, significant molecular
functions, biological processes and metabolic pathways were calculated using DAVID software. The values below the name of
the phenotype in each cluster were determined by "GeneSpring" and indicate relative range of expression compared to the
median of gene expression in the intact mammary gland. The intact mammary gland value is 1.00. Counts are the number of
genes associated with each definition in a specific cluster, which were related to the number of relevant genes in all clusters.
*Total number of relevant genes is not available.
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ing, heparin binding and GTP binding. These proteins
assemble to regulate cell adhesion, cell death and apopto-
sis, as well as cell motility. They maintain cell-cell and
cell-extracellular matrix (ECM) interactions, and comple-
ment system activity and apoptosis. Cluster 4 included
228 features (203 genes) which were also more highly
expressed in the carcinoma, but at relatively lower levels
than those in cluster 2. In the papillary adenocarcinoma,
these genes were expressed at lower levels that in the wild-
type tissue. These genes encode proteins which are
involved with the cytoskeleton and calcium-binding activ-
ities as well as IGF-1 binding and chromatin binding. They
complement the biological processes of better ECM-recep-
tor interaction and focal adhesion shown for cluster 2, but
are specifically involved in regulating actin-cytoskeleton
activities and the Notch pathway.

Assigning the differentially expressed genes to metabolic
pathways

To better understand the reasons for the differential
expression of genes in the two tumor phenotypes, we dis-
tinguished those which were affected by the tumorigenic
process in each of the two tumor types (Figure 4). Of the
2,525 or 2,419 features (2,094 or 1,983 genes, respec-
tively) that were differentially expressed in, respectively,

M.G. vs.
Carcinoma
(p=<0.05)

Features: 2525
Genes:2094

eatures:267
Genes:246

22 fold change

Features:148
Genes:139

Figure 4
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the carcinoma or papillary adenocarcinoma tumors as
compared to the mammary gland at P < 0.05, only 10 and
7%, respectively, were exclusively affected. Fifty-five and
66% of those, respectively, also showed an over twofold
difference in their expression levels. We integrated this
information in the following metabolic-pathway analysis.

Genes that were differentially expressed in the two pheno-
types were assembled into metabolic pathways (Figure 5
and Additional file 1, data sheet I). A set of genes was
identified coding for distinct integrin subunits which were
expressed at higher levels in carcinoma than in papillary
adenocarcinoma tumors. As af-heterodimers, the
integrins serve as receptors for ECM components, some of
which (laminin and thrombospondin 1 - THBS1) are also
highly expressed in the carcinoma tumors (Figure 5A).
Thus, integrin a2 or a9 interacts with integrin 1 to form
collagen (I, II, IV) receptors. Integrin a2 interacts with
integrin 1 to form laminin or THBS1 receptors, and
integrin aV interacts with integrin 3 or 5 to form RGD
as well as THBS1 receptors [20,21]. All integrins except
a6B4 are linked to the actin-based microfilament system,
which the integrins also regulate and modulate [20]. The
cytoplasmic domain of the B4 subunit is larger, connect-
ing to intermediate filaments instead of to actin [20].

M.G. vs.
Papillary ad.
(p=0.05)

Features: 2419
Genes:1983

eatures:161
Genes:146

22 fold change

Features:105
Genes:94

Comparison of genes with differential expression in tumors vs. wild-type mammary gland. Genes that are exclu-

sively affected in each phenotype were determined.
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Genes with differential expression in the carcinoma and papillary adenocarcinoma tumors were assembled
into distinct metabolic pathways. KEGG pathway analysis was performed using DAVID software. Light gray background —
significantly (P < 0.05) higher expression in carcinoma; gray background — no significant difference; black background — signifi-
cantly (P < 0.05) higher expression in papillary adenocarcinoma; frame around background — over twofold difference. The
underlined letters C (carcinoma) or P (papillary adenocarcinoma) which follow the gene name indicate an exclusive effect in
one of the two tumor phenotypes compared to the mammary gland. The direction of the arrows indicates the type of change
(up- or downregulation). One arrow — statistically significant (P < 0.05) difference. Two arrows — statistically significant and

over twofold difference.
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Interestingly, integrin 4 was not affected by the pheno-
typic deviation and integrin o6 expression was signifi-
cantly higher in the papillary tumors, mainly due to
decreased expression in the carcinoma cells as compared
to the wild-type mammary gland. This may imply that the
difference in the tumor cells' motility, discussed further
on, involves mainly the actin cytoskeleton.

Caveolin (Cav)-1 and Cav-2 are principal structural com-
ponents of the caveolar microdomain - a subcompart-
ment of the plasma membrane [22]. Cav-1 has been
reported to suppress cell transformation and its absence
promotes early steps in mammary tumor formation in
mice [22]. However, several lines of evidence have sug-
gested that Cav-1 may have oncogenic properties leading
to breast cancer [23-26]. Significantly (P < 0.05) higher
levels of Cav-1 and Cav-2 expression were detected in the
carcinoma tumors compared to their papillary adenocar-
cinoma counterparts (2.8- and 3.8-fold, respectively).
This difference resulted from an exclusive increase in Cav-
2 expression in the carcinoma tumors compared to the
wild type mammary gland which was not found in the
papillary adenocarcinomas. For Cav-1, higher levels of
expression were detected in the wild type mammary gland
compared to both types of tumors. Cav-1 expression has
been reported to be confined to the myoepithelial cells of
the mouse mammary gland [27]. Their absence in the
papillary adenocarcinoma implies other targets for
expression. Immunohistochemical and immunofluores-
cence analyses confirmed Cav-1 expression in basal-like
epithelial cells of the lactating gland and possibly in a few
myoepithelial cells which are stained by both Cav-1 and
smooth muscle actin (SMA) (Figure 6Aa,e,i). In the mul-
tiparous gland, Cav-1 expression was augmented in the
ductal epithelial cells (Figure 6Ab,fj), as has also been
observed in the breast tissue [26]. The carcinoma tumor
sections were characterized by non-overlapping expres-
sion of Cav-1 and SMA. Cav-1 was detected in the round
red-stained epithelium-like cells, but not in the green-
stained SMA ones (Figure. 6Ac,gk). In contrast, in the
papillary adenocarcinoma, Cav-1 staining was limited to
fibroblasts and endothelial cells of the fibrovascular core
(Figure 6Ad,h,1).

Genes coding for cytoplasmic proteins that are down-
stream of the integrins and implicated in cell adhesion
and motility were generally also more highly expressed in
the carcinoma tumors (Figure 5A). Among these encoded
proteins are the Rho B and Rho C small GTPases and cal-
pain 1, 3, and especially 6. The calpains are highly con-
served intracellular, non-lysosomal, calcium-dependent
proteases that prompt disassembly of focal-adhesion
structures, leading to the turnover of the integrin-depend-
ent cell-matrix adhesion needed for cell movement [28].
Interestingly, Cdc42 and its downstream N-WASP, which
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induces filopodia [29], were highly expressed in the pap-
illary adenocarcinomas.

The higher expression of actin in the carcinoma tumors is
associated with the comparable expression profile of
genes encoding cytoskeletal proteins. These genes are
listed in Table 1 and include myosins, tropomyosins, tro-
ponin and ADP-ribosylation factors. Genes encoding pro-
teins that promote Ca** sensitization such as troponin T1
(skeletal slow), calmodulin, cam kinase, caldemon and
TNF were also highly expressed in the carcinomas. In con-
trast, those promoting Ca*+ desensitization, such as the
MLCPs (Ppm1a, Ppm1g, Pp2r2d, Ppp2rla, Pppl catalytic
subunit and Cdc42), were more highly expressed in the
papillary adenocarcinoma tumors.

The Wingless-type (Wnt) pathway includes genes that are
involved in transcription and cell adhesion (Figure 5B).
The array analysis displayed a clear-cut differentiation in
Wnt-related gene activation in the carcinoma vs. papillary
adenocarcinoma tumors. Wnt5b and its Frizzled receptor
Fzd8, which activate the non-canonical pathway, were
more highly expressed in the papillary adenocarcinoma
tumors. Higher expression of downstream Dishevelled-1
(Dvl-1) and JNK, which activate the PCP pathway and
control cell movement, were also noted [30]. These
changes were associated with higher expression of genes
in the canonical pathway that encode proteins of the deg-
radation complex. Those proteins target §-catenin to ubiq-
uitination and proteolysis, rather than translocation into
the nucleus. Thus, axin, PP2A and CKII were more highly
expressed in the papillary adenocarcinoma, either due to
enhanced expression compared to the wild-type mam-
mary gland, or to downregulation of their expression in
the carcinoma.

One notable characteristic of the carcinoma tumors was
high expression of Wnt2b and Fzd9, which cause distinct
activation of the canonical pathway, leading to increased
transcription [31]. The lower expression levels of the
genes encoding the degradation complex in this pathway
could allow better migration of B-catenin into the nucleus
where it binds transcription factors, one of which is TCF.
Indeed, TCF gene expression was significantly higher in
the carcinoma than in the papillary adenocarcinoma
tumors, while expression of TAK1, which blocks its
nuclear localization and DNA binding [32], was higher in
the papillary adenocarcinomas.

Because the array data suggested differential expression of
B-catenin in the subcellular compartments of the tumor
cells, immunofluorescence analysis of B-catenin was per-
formed (Figure 6B), and nuclei expressing -catenin were
quantitated in five microscopic fields (x40) from sections
of five tumors of each type and three wild-type lactating
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Figure 6

Cellular and subcellular compartmentalization of caveolin 1 (Cav-1) and 3-catenin expression. A. Cav-1
expression. a-d — Immunohistochemical analysis of Cav-| expression in mammary gland and tumors. Cav-| is stained in epi-
thelial cells of the carcinoma tumors vs. the fibrovascular core of the papillary adenocarcinoma tumors. Arrows mark Cav-|
expression in the parenchymatic cells. Asterisk marks Cav-1 expression in fibroblasts. Bar = 20 um. Inset: 3x magnification. e-
h — Immunofluorescent green staining of Cav-| supports its differential localization in the parenchymatic cells of the carcinoma
vs. the fibrovascular core of the papillary adenocarcinoma. Bar = [0 pm. i-l — Immunofluorescence staining of Cav-1 (red) and
SMA (green) indicates differential expression in the tumor cells. Bar = 20 pm. Inset: 3x magnification. B. Imnmunofluorescence
localization of 3-catenin in mammary gland and tumor cells. Arrows mark nuclear-localized 3-catenin in the carcinoma tumors.
Arrowhead indicates lack of membranal expression of 3-catenin. Bar = 10 pm.
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Table I: Genes mediating focal adhesion and cytoskeletal activity that differ significantly (P < 0.05) in their expression levels between

carcinoma and papillary adenocarcinoma tumors.

Systematic name Comparative expression

Common name

Description

1448346_at car > pap Cfll
1417752 _at car > pap Corolc
1452651 _a_at car > pap Myll
1448394 _at car > pap Myl2
1427769_x_at car > pap Myl3
1449551 _at car > pap Myolc
1450650 _at car > pap Myol0
1422544 _at car > pap Myol0
1423049_a_at car > pap Tpml
1449577 _x_at car > pap Tpm2
1425028_a_at car > pap Tpm2
1449997 _at car > pap Tpm3
1449996_a_at car > pap Tpm3
1450813_a_at car > pap Thnil
1419606_a_at car > pap Tnntl
1418884_x_at car > pap Tubal
1416311 _s_at car > pap Tuba?7
1426427 _at car > pap Ttlll
1424768 _at car > pap Caldl
1417366_s_at car > pap Calml
1426098 _a_at car > pap Cast
1423058_at car > pap Capza2
1423057 _at car > pap Capza2
1434036 _at car > pap Mtss|
1423588_at car > pap Arpc4
1436722 _a_at car > pap Actb
1427735_a_at car > pap Actal
1456473 _x_at car > pap Arf2
1416459_at car > pap Arf2
1437331 _a_at car > pap Arf3
1423973 _a_at car > pap Arf3
1421789_s_at car > pap Arf3
1418822_a_at car > pap Arfé
1424307 _at car > pap Arhgapl
1426952_at car > pap Arhgap18
1417225_at car > pap Arl6ip5
1424021 _at car > pap Arl6ip6
1435559 _at pap > car BC029719
1422536_at pap > car Tnni3
1438608 _at pap > car Tnni2
1434588_x_at pap > car Tbca
1447964 _at pap > car Ttl
1452193 _a_at pap > car Wasl
1434074 _x_at pap > car Arf4
1431429 _a_at pap > car Arl4

cofilin 1, non-muscle

coronin, actin-binding protein IC

myosin, light polypeptide 1, alkali; atrial, embryonic
myosin, light polypeptide 2, regulatory, cardiac, slow
myosin, light polypeptide 3, alkali; ventricular, skeletal, slow
myosin |C

myosin X

myosin X

tropomyosin |, alpha

tropomyosin 2, beta

tropomyosin 2, beta

tropomyosin 3, gamma

tropomyosin 3, gamma

troponin |, skeletal, slow |

troponin T1, skeletal, slow

tubulin, alpha |

tubulin, alpha 7

tubulin tyrosine ligase-like |

caldesmon |

calmodulin |

calpastatin

capping protein (actin filament) muscle Z-line, alpha 2
capping protein (actin filament) muscle Z-line, alpha 2
metastasis suppressor |

actin-related protein 2/3 complex, subunit 4

actin, beta, cytoplasmic

actin, alpha 1, skeletal muscle

ADP-ribosylation factor 2

ADP-ribosylation factor 2

ADP-ribosylation factor 3

ADP-ribosylation factor 3

ADP-ribosylation factor 3

ADP-ribosylation factor 6

Rho GTPase-activating protein |

Rho GTPase-activating protein 18
ADP-ribosylation factor-like 6 interacting protein 5
ADP-ribosylation factor-like 6 interacting protein 6
myosin VI

troponin |, cardiac 3

troponin |, skeletal, fast 2

tubulin cofactor a

tubulin tyrosine ligase

Wiskott-Aldrich syndrome-like (human)
ADP-ribosylation factor 4

ADP-ribosylation factor-like 4

glands. In the lactating gland, B-catenin was located in the
nuclei of 40 + 5.5% of the epithelial cells (Figure 6Ba). A
higher number of cells exhibiting visible levels of nuclear
B-catenin were observed in the carcinoma tumors (81 +
2.4% of the cell population, Figure 6Bb). In contrast, the
papillary adenocarcinoma sections were almost com-
pletely devoid of detectable nuclear B-catenin: it was
detected in the nuclei of only 0.3 + 0.1% of the cells, but
was highly expressed in the cytoplasm (Figure 6Bc).

The Notch system plays a predominant role in breast can-
cer and interacts with other pathways, including the Wnt-
signaling pathway [33,34]. Notch signaling is triggered by
the binding of one of five different membrane-bound lig-
ands to one of the Notch proteins on neighboring cells.
This interaction leads to its proteolitic cleavage and
release of the Notch intracellular domain (NICD), which
translocates into the nucleus to activate gene transcrip-
tion. In our analysis, Notch 1 expression was significantly
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higher in the papillary adenocarcinomas (Figure 5C).
However, the expression of its ligands, Jagged 2 and DII1,
was higher in the carcinoma tumors. Interestingly, the
papillary adenocarcinoma also exhibited a higher expres-
sion level of Fringe - a -1,3-N-acetylglucosaminyltrans-
ferase that modifies Notch receptors and alters their
ligand-binding specificity towards the DIl ligands [35,36].
Thus, the papillary adenocarcinoma may preferentially
adopt DIl-Notch signaling over that of Jagged. While cyto-
plasmic Notch 1 is more highly expressed in the papillary
adenocarcinoma, the members of the y-secretase complex,
PSN1 and nicastrin (NCSTN), which release its NICD,
were highly expressed in the carcinoma tumors. Nuclear
activity of the NICD depends on its binding RBP-Jk, which
was also highly expressed in the carcinomas.

The TGF-f super-family comprises TGF-Bs, bone morpho-
genetic protein (BMP) and activin. TGF-f or activin bind
type Il serine/threonine kinase-coupled receptor to further
recruit and phosphorylate the type I receptor. In turn, the
type I receptor recruits and phosphorylates the R-Smads
(for example Smad3) which dissociate and interact with
the collaborating Smad, Smad4, to affect gene expression
[37,38]. BMP ligands have a higher affinity to the extracel-
lular domain of BMPRI, which then assembles BMPRII. In
the current study, TGF-B1 and TGF-BRII were found to be
highly expressed in the carcinoma tumors along with the
downstream Smad3 (Figure 5D). Activin and its Type I
receptor were also highly expressed in these poorly differ-
entiated tumors. In contrast, Smad4, which oligomerizes
with Smad3 to form a trimeric protein complex, was more
highly expressed in the papillary adenocarcinomas and
may enhance the effect of Smad3 in these tumors.

DNA damage or abnormally structured DNA triggers mul-
tiple checkpoint pathways that arrest cell-cycle progres-
sion [39]. Failure to arrest cell-cycle progression before or
at mitosis causes aberrant chromosomal segregation,
asymmetric division, aneuploidy and cancers [40]. The
mitotic catastrophes influence regulatory protein expres-
sion. In the papillary adenocarcinoma tumors, proteins
encoded by genes involved in the early steps of the
response to DNA damage were more highly expressed
than in the carcinomas (Figure 5E). This included the Atr
which functions to recognize DNA damage and histone
H2afx - a downstream effector involved in DNA repair via
chromatin modeling [39]. The papillary adenocarcinoma
also exhibited higher expression of BRCA1 and BRCA2,
which are involved in DNA repair, Chkl and Chk2 -
highly mobile messengers which are capable of "globally"
spreading the DNA-damage-induced signal throughout
the nucleus [41], and the cyclin-dependent kinase inhibi-
tor p18(INK4c) [42]. G2/M - a later checkpoint, prevents
cells from entering into mitosis via inhibition of Cdc2/
cyclin B. Interestingly, three key proteins that regulate this

http://www.biomedcentral.com/1471-2407/8/270

checkpoint are encoded by genes that were highly
expressed in the carcinoma tumors: p21, which inhibits
Cdc2 directly, 14-3-3c, which anchors Cdc2 in the cyto-
plasm where it cannot induce mitosis, and GAdd45,
which specifically dissociates Cdc2 from cyclin B1 by co-
association with Cdc2 [39,41]. p21 regulates also G1/M,
but its involvement also in this later step together with
GAdd45 and 14-3-3c could be indicatory.

Glycosylation is an important post-translational modifi-
cation of many biologically relevant molecules. A change
in the structure of the glycans added to glycoproteins and
glycolipids is a common feature of malignancy [43]. O-
glycosylation is initiated by the transfer of GalNAca- to
threonine or serine residues of the polypeptide backbone,
where eight O-glycan core structures can then be synthe-
sized [44]. In the current study, the genes encoding the N-
acetylgalactosaminyltransferases that are involved in the
generation of core structures 1, 5, 6, 7 and 8 were highly
expressed in the carcinoma tumors (Figure 7 and Addi-
tional file 1, data sheet I). The extension of core 1 to form
the disalyl-T antigen is mediated by sialyltransferase
(Siat5). The expression of the gene encoding this enzyme
was also higher in the carcinoma cells, as were the expres-
sions of Siat7d and Siat9, which mediate sialylated glyco-
conjugates involved in sphingolipid metabolism (not
shown).

Validation of Affymetrix data by semi-quantitative reverse
transcriptase-polymerase chain reaction (RT-PCR)

To confirm the differences in gene-expression profiles
measured by gene-array analysis in the poorly differenti-
ated carcinoma tumors vs. the highly differentiated papil-
lary adenocarcinomas, semi-quantitative RT-PCR analysis
was performed (Figure 8). We amplified selected genes'
expressions in individual RNA samples extracted from
normal mammary glands of aged multiparous females, as
well as from tumors of the different phenotypes. Compa-
rable relative expressions of these genes in carcinoma and
papillary adenocarcinoma tumors were calculated for the
RT-PCR and array analyses.

Discussion

The number of clearly differentiated phenotypes observed
among breast tumors suggests that diversity is an inherent
feature of the disease, involving complex but quantifiable
parameters. A considerable number of the genes involved
in the diversity between the poorly differentiated carci-
noma and highly differentiated papillary adenocarcinoma
tumors are associated with the nucleoplasm and the
plasma membrane. Thus, nuclear dictates expressed by
DNA- and RNA-binding activities, and communication
processes between cells and their microenvironment, are
involved in determining the phenotypical differences
between the tumor types. The diversity in genes mediating
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Higher expression of genes involved in O-glycan synthesis in the carcinoma compared to the papillary adeno-
carcinoma tumors. KEGG pathway analysis was performed using DAVID software. Light gray background — significantly (P <
0.05) higher expression in carcinoma; gray background — no significant difference; frame around background — over twofold dif-
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type of change (up- or downregulation). One arrow — statistically significant (P < 0.05) difference. Two arrows — statistically sig-

nificant and over twofold difference.

structural and molecular activities completes the nucleus-
cytoskeleton-plasma membrane axis that comprises most
of the phenotypical and functional differences between
these tumors.

A comparable number of genes were either upregulated or
repressed in the carcinoma vs. papillary adenocarcinoma
tumors, but only ~10% of these were expressed at higher
levels in the papillary adenocarcinoma than in the wild-
type gland. Most of these genes encode nuclear proteins
that are involved in regulation of the cell cycle and
responses to DNA damage and their differential expres-
sion may mark the transition from a normal to neoplastic
state. As discussed further on, the unique assembly of
genes with this type of expression may reflect the signifi-
cance of genes regulating cell sensitivity to G1 arrest in the

papillary adenocarcinoma in determining the diversity
among the two types of tumors.

Genes that are relatively more highly expressed in the pap-
illary adenocarcinoma, but at lower levels, encode cyto-
plasmic proteins, many of which are specific to
mammary-gland development and cell differentiation. A
representative of these genes, which could potentially
serve as a target for therapeutic intervention, is the proges-
terone receptor (PR) which was expressed at over fourfold
higher levels in the papillary adenocarcinoma compared
to the carcinoma. The stronger expression of genes
involved in transporter activity and ion channels in the
papillary adenocarcinoma could reflect the maintenance
of cell-cell contact in this loosely adhesive cell population.
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Figure 8

Validation of the gene-array analysis. Expression of selected genes in the mammary gland of aged multiparous mice and
tumors was analyzed by semi-quantitative RT-PCR. After blotting and hybridization to the relevant probes, signals (on the left)
were quantitated and their average intensities + SEM are presented (Middle panels). The relative expressions of the individual
genes in the carcinoma vs. papillary adenocarcinoma were calculated and compared to those obtained from the microarray
data (right panels).
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The nuclear activity characterizing the highly expressed
genes in the papillary adenocarcinoma was not found in
the carcinoma tumors. On the other hand, many of the
highly expressed genes in the latter tumors encode
cytosolic binding proteins: cytoskeletal binding proteins,
heparin-binding proteins, GTP-binding proteins, and cal-
cium ion-binding proteins. The stronger expression of
these regulatory genes may complement the better inter-
actions of the carcinoma cells with the ECM, as depicted
by the higher expression of genes coding for several key
integrins. Interestingly, genes with higher expression in
the carcinoma tumors, but with a generally lower level of
expression, are the backbone of the favored actin-cytoskel-
eton activity.

Categorization of the genes according to their involve-
ment in particular metabolic functions served to highlight
several pathways. Genes involved in ECM-receptor inter-
actions and the focal-adhesion pathway encode proteins
of the cell-adhesion sites that are involved in cell detach-
ment and actin-cytoskeleton activities. Most of these
genes were more highly expressed in the carcinoma
tumors, implicating a higher potential for cell adhesion,
membrane protrusion, spreading and migration in these
tumors [45]. Since tumors developed in mouse models
rarely metastasize [46], the expression profile of these
genes may unveil the cryptic motility and metastatic
potential of the carcinoma tumors. The stronger expres-
sion of N-acetylglucosaminyltransferases and sialyltrans-
ferases in the carcinoma tumors potentially augments the
anti-adhesive effect of Mucl and Muc 4, and contributes
to tumor progression [44,47].

Cav-1 is also involved in cell adhesion [48] and was
expressed at higher levels in the carcinoma tumors than in
the papillary adenocarcinomas. Its external expression in
the membrane of the basal epithelial cells comprising the
neoplastic mass of the carcinoma vs. its internal localiza-
tion within the papillary fibrovascular core exemplifies
the possible involvement of intracellular compartmental-
ization of gene expression in the determination of tumor
phenotypes.

The differential expression of the genes comprising the
Wnt pathways led to augmentation of B-catenin in the
cytoplasm of the papillary adenocarcinomas as compared
to its nuclear translocation in the carcinoma tumors.
Accumulation of B-catenin in the cytosol of the mammary
tumor cells and formation of cadherin-catenin complexes
have been reported to induce cell polarity, survival and
more controlled cell proliferation. Those factors are man-
datory for assuming a specific shape within the tissue [49]
and most likely induce the unique shaping of the papil-
lary adenocarcinoma. High expression of VASP and
formin-binding protein in the papillary adenocarcinoma

http://www.biomedcentral.com/1471-2407/8/270

triggers long unbranched filaments termed filopodia,
which are frequently observed in cell-cell contacts [50].
When the cadherin-catenin complex is less engaged, such
as in the carcinoma, cell death and increased proliferation
occur, as well as enhanced migration [49,50].

The Notch pathway regulates the development of postna-
tal and adult tissues [33]. It has been suggested that its
tumor-promoting activity results from its involvement in
restricting differentiation towards alternate fates and
thereby allowing self-renewal and survival of relatively
undifferentiated cells. However, Notch may also exert an
anti-proliferative effect via the activation of p21 [51]. Our
array analysis indicated distinct expression patterns for
genes involved in the Notch pathway in the two types of
tumors. The carcinomas exhibited higher expression of
the Jagged and DII1 ligands, as well as of members of the
y-secretase complex which allow their nuclear transloca-
tion, and increased Wnt signaling towards cell prolifera-
tion [34]. In the papillary adenocarcinoma, however,
stronger expression of the Notch-1 receptor was observed
and the higher expression of Fringe favors its activation by
the DIl rather than Jagged ligand. The role of this pattern
of gene expression in specific properties of the papillary
adenocarcinoma tumors has yet to be determined. Simi-
larly, the higher expression of Smad4 in the papillary ade-
nocarcinoma tumors as potential compensation for the
better expression of members the TGF-3-Smad3 pathway
in the carcinomas has to be elucidated.

Differences were also demonstrated in the regulation of
cell-cycle activity in the two tumors. Genes involved in G1
arrest and DNA repair were more highly expressed in the
papillary adenocarcinoma. In contrast, G2/M arrest,
mainly via Cdc2/cyclin B, was favored in the carcinoma
tumors. The earlier induction of genes involved in DNA
damage, repair and senescence in the papillary adenocar-
cinoma may account for this tumor's less aggressive phe-
notype [52].

Our results provide evidence that the poorly differentiated
mammary carcinoma and highly differentiated papillary
adenocarcinoma represent biologically distinct disease
entities. Both types were developed in transgenic mice
expressing either the constitutively active Stat5 or its C-ter-
minally truncated counterpart. Manipulation of Stat5 lev-
els and activity during the fertile period in transgenic
females may leave a mark on the gene-expression profile
in the developing tumors [14]. Together with accumu-
lated microenvironmental and genetic effects, it contrib-
utes to the establishment of unique tumor phenotypes. To
this end, our analysis suggests that specific differences in
gene expression profiles and resulting metabolic path-
ways contribute to maintaining the carcinoma and papil-
lary adenocarcinoma tumor phenotypes, regardless the
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transgenic Stat5 variant which was involved in inducing
the tumors.

The clinical relevance of our findings is an important
issue. To the best of our knowledge, no corresponding
comparative study has been performed in breast tumors
that would allow direct alignment with our data. How-
ever, information suggests that the poorly differentiated
DCIS (grade III) is more likely to be associated with inva-
sive human disease than its well-differentiated (grade I)
counterparts [12,53-55]. This may be reflected in the
higher motility implied by the analysis of the poorly dif-
ferentiated carcinoma compared to the highly differenti-
ated papillary adenocarcinoma. On an individual gene
basis, our data match the results presented in a study
determining gene-expression profiles during the transi-
tion of breast tumors to invasive stages [56]. The mouse
and human lists shared over 30 genes or close family
members with higher expression in the high-grade, less
differentiated tumors. These include proteosome 26 sub-
unit (PSMD), topoisomerase (TOP), reticulon 4 (RTN4)
and CDK, among others. Gene-expression profiles have
also been compared in human papillary thyroid carcino-
mas at different levels of differentiation [57]. In the
aggressive, less differentiated groups, a similar increase in
the expression of genes encoding the collagen proteins
was noted, as well as in those encoding CDC7, TOP2,
UBE2 and Rho. In contrast, ESP8 and members of the ker-
atin family were downregulated. The above studies pro-
vide lists of genes that were affected by the degree of
tumor differentiation. Our data link these genes to a
mechanistic base and involve putative pathways that may
enable more successful therapeutic intervention.

Conclusion

Gene-expression profiling in the carcinoma and papillary
adenocarcinoma tumors pinpointed distinct molecular
functions and major metabolic pathways that are imple-
mented in each tumor to preserve its unique structure and
functions. The array data associated the papillary adeno-
carcinoma with increased expression of genes involved in
cell-cell contact and cell-cycle control at an early cell-cycle
stage. The carcinoma tumors, on the other hand, dis-
played increased expression of pathways whose genes are
involved in mediating cell-ECM interactions, detachment,
motility and spreading. Only a fraction of the genes com-
posing a particular pathway were affected. This suggests a
dominant role for their encoded proteins in determining
specific tumor properties at this basic gene-expression
level. Additional proteomic analysis is expected to com-
plement this study by linking a catalytic activity, mediated
by post-transcriptional modifications, to the differential
expression of these genes.

http://www.biomedcentral.com/1471-2407/8/270
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