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Abstract
Background: EGFR is frequently overexpressed in colon cancer. We characterized HT-29 and
Caco-2, human colon cancer cell lines, untreated and treated with cetuximab or gefitinib alone and
in combination with EGF.

Methods: Cell growth was determined using a variation on the MTT assay. Cell-cycle analysis was
conducted by flow cytometry. Immunohistochemistry was performed to evaluate EGFR expression
and scanning electron microscopy (SEM) evidenced the ultrastructural morphology. Gene
expression profiling was performed using hybridization of the microarray Ocimum Pan Human 40
K array A.

Results: Caco-2 and HT-29 were respectively 66.25 and 59.24 % in G0/G1. They maintained this
level of cell cycle distribution after treatment, suggesting a predominantly differentiated state.
Treatment of Caco-2 with EGF or the two EGFR inhibitors produced a significant reduction in their
viability. SEM clearly showed morphological cellular transformations in the direction of cellular
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death in both cell lines treated with EGFR inhibitors. HT-29 and Caco-2 displayed an important
reduction of the microvilli (which also lose their erect position in Caco-2), possibly invalidating
microvilli absorption function. HT-29 treated with cetuximab lost their boundary contacts and
showed filipodi; when treated with gefitinib, they showed some vesicles: generally membrane
reshaping is evident. Both cell lines showed a similar behavior in terms of on/off switched genes
upon treatment with cetuximab. The gefitinib global gene expression pattern was different for the
2 cell lines; gefitinib treatment induced more changes, but directly correlated with EGF treatment.

In cetuximab or gefitinib plus EGF treatments there was possible summation of the morphological
effects: cells seemed more weakly affected by the transformation towards apoptosis. The genes
appeared to be less stimulated than for single drug cases.

Conclusion: This is the first study to have systematically investigated the effect of cetuximab or
gefitinib, alone and in combination with EGF, on human colon cancer cell lines. The EGFR inhibitors
have a weaker effect in the presence of EGF that binds EGFR. Cetuximab treatment showed an
expression pattern that inversely correlates with EGF treatment. We found interesting cyto-
morphological features closely relating to gene expression profile. Both drugs have an effect on
differentiation towards cellular death.

Background
Epidermal growth factor receptor (EGFR) is one of the
most important cell membrane receptors expressed in
normal cells [1]. The EGFR molecular structure, common
to the other three members (ErbB2 or HER2/neu, ErbB3,
ErbB4) of the ErbB receptor [2] family, includes an extra-
cellular region, a transmembrane domain and a protein
tyrosine kinase region [3]. Tyrosine kinase phosphoryla-
tion controls the intracellular signal transduction path-
ways regulating cell proliferation and differentiation [4].
Epidermal growth factor (EGF) is a natural ligand of
EGFR. EGF binding to the EGFR ectodomain creates pro-
longed and stabilized conformation and sets about sign-
aling with the dimerization of EGFR molecules or
heterodimerization with other closely related receptors,
such as HER2/neu [5].

EGFR is abnormally activated in many epithelial tumors
and is frequently overexpressed in colon cancer correlat-
ing with poor response to treatment, disease progression,
and poor survival [6].

In the early 1980s the EGFR pathway was pointed to as a
potential target for cancer therapy [7,8] and two anti-
EGFR strategies were adopted: monoclonal antibodies
(Mabs) which bind the extracellular domain, interfering
with the natural ligand, and low-molecular-weight tyro-
sine kinase inhibitors (TKIs) which interfere with ATP for
the tyrosine kinase domain [9].

Cetuximab, a chimeric Mab, is a competitive antagonist
for EGFR. Cetuximab binds to EGFR with high affinity
and prevents the ligand from interacting with the receptor
and the receptor from adopting the conformation
required for dimerization [10-13]. Cetuximab may pro-

mote receptor internalization and degradation [14-16],
although this does not happen in all systems. The mecha-
nisms of the cetuximab-receptor complex degradation
and of cell membrane recycling of the intact receptor are
not clearly documented [15,17].

Moreover, cetuximab may elicit antibody-dependent cel-
lular cytotoxicity (ADCC), a mechanism of cell-mediated
immunity resulting in lysis of the target cells [18,19].

Gefitinib acts on the cytosolic ATP binding domain of
EGFR by inhibiting EGFR autophosphorylation [20] but it
is not strictly specific for EGFR [21] and some cross-reac-
tivity is possible between EGFR and other HER-B family
members [22]. Low-molecular-weight EGFR tyrosine
kinase inhibitors induce formation of inactive EGFR
homodimers and EGFR/HER2 heterodimers [23] which
impair EGFR-mediated transactivation of HER2 tyrosine
kinase [24-26].

These two types of agent have shown solid preclinical and
clinical activity in a variety of tumor types [27]; the clini-
cal data suggest they have different activity profiles
[28,29].

For the experimental model of our study we chose two
human colon cancer cell lines, HT-29 and Caco-2. These
enterocyte cell lines were derived from two human pri-
mary colon adenocarcinomas and are well established
models for the study of biology and drug treatment of
colon cancer [30-33]. We characterized them as having
high and moderate EGFR expression levels, respectively
(as previously shown by other authors [34]) with a view
to comparing their biological behavior after drug treat-
ment. HT-29 are smaller than CaCo-2 and are more iso-
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lated than Caco-2 which form a very crowded confluence.
The huge numbers of microvilli present in both cell lines
are shorter in HT-29 than in Caco-2.

These two cell lines were treated with gefitinib, cetuximab
and EGF. We also treated Caco-2 and HT-29 with gefitinib
plus EGF and cetuximab plus EGF. In fact the natural lig-
and may compete with the binding of cetuximab to the
receptor target or it may confer more dependency on the
targeted cell through activation of the EGFR pathway and
thus favor the activity of gefitinib [34,35].

The present work aims to compare the key factors govern-
ing the action of these three agents (cetuximab, gefitinib
and EGF) on cell morphology and proliferation of Caco-2
and HT-29 cells. We also used cDNA arrays to analyze the
changes in gene expression profiles induced by these
agents. Our work shows interesting cyto-morphologic fea-
tures possibly correlated to the clinical effects of cetuxi-
mab and gefitinib, which suggests that both drugs have an
inhibiting effect and induce extreme cell differentiation
towards cellular death. Cetuximab has opposite effects on
gene expression profiling compared to EGF alone or gefit-
inib, indicating a different action mechanism than the
other drug, even though the cell cyto-morphological
transformations are sometimes the same, possibly sug-
gesting an important role by translational regulation on
the cellular pathways.

Methods
Compounds
EGFR-tyrosine kinase inhibitor gefitinib (ZD1839; Iressa;
kindly provided by AstraZeneca Pharmaceuticals, Mac-
clesfield, United Kingdom), monoclonal antibody anti-
EGFR cetuximab (IMC-C225; Erbitux; kindly provided by
Merck KGaA, Darmstadt, Germany), and Epidermal
Growth Factor (EGF) purchased from SIGMA Saint Louis,
Missouri, USA were used for in vitro assays.

Cell Lines
HT-29 is a cell line isolated in this case from a primary
colon adenocarcinoma grade II in a 44 year-old Caucasian
female (60th to 65th passage), while Caco-2 was isolated
from a primary colon adenocarcinoma in a 72 year-old
Caucasian male (43rd to 50th passage). These human
enterocyte lines were purchased from American Type Cul-
ture Collection (ATCC) and cultured in Dulbecco's mini-
mal essential medium (DMEM), 25 mM glucose
supplemented with 2 mM L-glutamine, antibiotics (100
U.mL-1 penicillin and 100 mg.mL-1 streptomycin) and
with 10% (v/v) heat-inactivated fetal bovine serum (Cam-
brex, Verviers, Belgium). Cells were grown in a 37°C and
5% CO2/air incubator and the medium was changed every
3 days. For all experiments cells were treated at a 70–80%
degree of confluency.

Cell-viability assay
Cell growth was determined using a variation on the MTT
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide] assay described by Mosmann [36]. HT-29 and
Caco-2 cells were counted using Trypan Blue solution 10
% in a Neubauer cell counter chamber (Brand, Wertheim,
Germany) and observing viable (nonstained) and nonvi-
able (stained) cells under a microscope [37]. Cells were
seeded into 25 cm2 tissue culture flasks (Becton Dickinson
Labware Europe Le Pont De Claix, France) at 4.0 × 105

cells per flask and incubated for 5 days. After cells had
been serum-starved for 24 h, EGF, gefitinib, cetuximab,
EGF and gefitinib, EGF and cetuximab, were added at the
concentrations indicated and the flasks were incubated for
24 h at 37°C. In order to establish the initial number of
cells treated, extra flasks of Caco-2 and of HT-29 cells were
treated with trypsin and then the cells were counted. The
concentrations were: 10 nM EGF (the most frequent con-
centration used in the literature), 1 μmol/L gefitinib (rec-
ommended concentration by Astra Zeneca), 5 and 10
nmol/L cetuximab (recommended concentration by
Merck), 1 μmol/L gefitinib plus 10 nM EGF, 5 and 10
nmol/L cetuximab plus 10 nM EGF. After drug incuba-
tion, cells were washed once with Phosphate Buffer Saline
(PBS), harvested in 0.1% trypsin-1 mmol/L EDTA in PBS,
and counted. Four independent experiments and four rep-
licates for untreated and treated cells, respectively, were
conducted.

Cell-cycle analysis
Cell-cycle analysis was performed by flow cytometry. HT-
29 and Caco-2 cells were treated in the same manner as
the cell viability assay. After detachment they were washed
twice with PBS and then resuspended in a solution con-
taining 0.1 % sodium citrate, 0.1 % Nonidet 40, 50 μg/mL
propidium iodide and 10 μg/mL RNAase. Cells were incu-
bated for 30' at 37°C in the dark.

The cell cycle profiles were determined using a Biorad
Bryte HS flow cytometry system [38] (Biorad, UK) and
analyzed by Modfit software [38]. Four independent
experiments and four replicates were conducted for
untreated and treated cells, respectively.

Immunohistochemistry
HT-29 and Caco-2 cells were seeded into Lab-Tek two
chamber glass slides (Nunc, Naperville IL) at 8 × 104 cells
per chamber and incubated for 5 days. The cells were then
treated as per the cell viability assay. They were fixed in
cold methanol for 10 min at -20°C. Fixed cells were dried
for 3–5 min under laminar flow and then kept at -20°C
until staining. Immunohistochemistry was performed
using a non-biotin amplified method (Novolink, Novo-
castra Laboratories, Newcastle UK).
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Slides were thawed for 1 min at room temperature (RT)
and immersed in a 0.5% methanol/H2O2 solution for 10
min to abolish endogenous peroxidase activity, washed 3
times in distilled water and immersed in a PBS pH 7.2–7.4
solution for 10 min. Cells were incubated overnight at RT
in a humidified atmosphere using an anti-EGFR mono-
clonal antibody (clone 31G7, Zymed Laboratories, CA,
USA) diluted 1:120. Cells were washed in PBS and proc-
essed using the Novolink system according to the manu-
facturer's suggested procedure. The reaction was
developed using a 3-3'-diaminobenzidine tetrahydrochlo-
ride 50 mg/100 ml PBS solution activated with hydrogen
peroxide for 10 minutes. Cell nuclei were counterstained
using Mayer's Hematoxylin, dehydrated to xylene and
mounted with BioMount (Bio-Optica, Milan, Italy). Two
independent experiments and four replicates for
untreated and treated cells were conducted per experi-
ment.

Semiquantitative evaluation of EGFR immunostaining
EGFR membranous and cytoplasmic immunostaining
were separately evaluated on the entire cell-line popula-
tion at 200× according to a semiquantitative score system
(Histoscore). Percentages of positive EGFR cells were
scored according to these cut-off values: < 1% = 0, > 1% <
25% = 1, > 25% < 50% = 2, > 50% < 75% = 3, > 75% = 4.
Staining intensity was graded as 0 (negative), l (weak), 2
(moderate), 3 (strong). The percentage and staining inten-
sity mean value product (0–12) gave us the final score
classified as follows: < 1 = Negative, ≥ 1 < 4 = Low; ≥ 4 < 8
= Intermediate, ≥ 8 High.

Scanning electron microscopy (SEM)
HT-29 and Caco-2 cells were seeded into Lab-Tek four
chamber permanox slides (Nunc, Naperville IL) at 4 × 104

cells per chamber and incubated for 5 days. The cells were
then treated as with the cell viability assay. Two independ-
ent experiments and two replicates for untreated and
treated cells were conducted per experiment.

SEM (Philips SEM 515, Eindhoven, The Netherlands) was
performed to examine the cell morphology.

All the slides were delicately rinsed with PBS in order not
to detach cells from the surfaces. Cells were fixed with Kar-
nowsky solution (1.5 % glutaraldeyde, 1% paraformal-
deyde, 0.1 M Cacodilate buffer) for 30 min, then the slides
with adhering cells were rinsed three times with Cacodi-
late buffer 0.1 M, postfixed for 20 min with Os2O4 1% in
Cacodilate buffer, dehydrated with ethanol and finally
dried with 2× hexamethyldisilizane (HDMS) for 15 min.

The slides were mounted on stubs with carbon bi-adhe-
sive film, covered with a 20 nm-thick gold-palladium film
and observed at 15 kV.

RNA Extraction, Hybridization on cDNA Arrays, DNA 
microarray screening and analysis
The experimental procedures and data are available at
http://www.ncbi.nlm.nih.gov/geo/ according to the Mini-
mum Information About a Microarray Experiment stand-
ards [accession code no. GSE8967].

Array image and data analysis
A GenePix 4000a DNA microarray scanner (Axon, Union
City, CA, USA) was used to scan the slides under dried
conditions. The laser power for scanning green and red
colours was adjusted in order to obtain a global intensity
ratio near to 1. If necessary, further washes were per-
formed to reduce the non-specific background.

Each spot was defined using the grid schema provided by
the manufacturer, with manual adjustment for the posi-
tioning of spot blocks. Spots showing no signal or obvi-
ous defects were accordingly flagged by visual inspection
and excluded from analysis.

All statistical analyses on microarray data were performed
using R software v2.5.0 http://www.r-project.org/ and the
Bioconductor software package http://www.bioconduc
tor.org/. The microarray data were initially background-
corrected using a normal plus exponential convolution
model, normalized a) within arrays using a method that
normalizes the M-values for each single microarray using
robustly fitted regression splines for each print-tip group
and an empirical Bayesian approach in order to shrink the
individual print-tip curves towards a common value, and
subsequently b) between arrays using a method which
ensures that the A-values (average intensities) have the
same empirical distribution across arrays, leaving the M-
values (log-ratios) unchanged [39].

After the normalization step the probes were pre-filtered
on the basis of empty spots and negative control intensity
distribution over all the arrays. A threshold of log inten-
sity = 6.2 was chosen. On this basis 16,443 out of 20,160
probes showing a mean intensity > 6.2 in at least one sam-
ple were considered for further analysis.

Hierarchical agglomerative clustering was performed on
the correlation distance between samples.

Separate channel analysis was applied to the dataset; a
mixed linear model was fitted to data after estimating the
correlation between the two channels for the same spot.

A moderated t statistic was computed using an empirical
Bayes method to shrink the probe-wise sample variances
towards a common value and to augment the degrees of
freedom for individual variances [40]. The Benjamini
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Hochberg method for multiple tests was used to obtain an
adjusted p value.

Pathway analysis: affected biological pathways were
defined according to the KEGG annotation [41] and map-
ping between probes and pathways was accomplished by
querying the KEGG Database via R software. For each
pathway P significance analysis was calculated consider-
ing the hypergeometric distribution [42]:

where

α = number of significant probes ∈ P.

β = number of non significant probes∈ P.

γ = number of significant probes ∉ P.

δ = number of non significant probes ∉ P.

S = number of significant probes in the array.

F = number of non significant probes in the array.

NP = number of probes ∈ P.

 = number of probes ∉ P.

The pathway P was considered significant if p ≤ 0.05.

We performed a pathway analysis which leads to more
robust, reproducible results and easier biological interpre-
tation. At the same time it represents an alternative way of
post hoc analysis, relaxing the significant threshold for
single genes without applying any severe statistical correc-
tion for multiple testing i.e. false discovery rate (FDR)
[43,44]. By this approach we can take significant collective
effects into consideration even if each gene in the group is
not particularly significant from a statistical point of view
[45,46].

Finally we defined heat maps as: graphical representations
of selected microarray data showing the expression level
of selected genes across a number of comparable cells
under different treatments.

Results
We characterized HT-29 and Caco-2 cell lines according to
their viability, cell cycle, EGFR expression and cell mor-
phology in untreated and treated conditions in order to
compare their behavior and correlate their gene expres-
sion profiles changes with experimental conditions.

Cell-viability assay
HT-29 was compared to Caco-2 regarding cell growth in
normal conditions and after 24 hours of drug treatment.
Caco-2 showed a statistically significant reduction in via-
bility between controls and all treatments; no statistically
significant differences were found in cell viability between
untreated and treated HT-29 (Fig. 1).

Cell-cycle analysis
Flow cytometry analysis was performed to determine the
influence of treatments on the HT-29 and Caco-2 cell
cycle (Table 1). There were no statistically significant dif-
ferences between treated and untreated cells for the G0/
G1 phase (with the exception of untreated vs 10 nM EGF
plus 10 nmol/L cetuximab, p < 0.05 in both cell lines and
for Caco-2 vs EGF, p < 0.05). As regards the G2/M phase,
it is remarkable that there are 2-fold differences for HT-29
and 3-fold differences for Caco-2 when cetuximab both at
5 nM and 10 nM plus EGF treatment is compared to gefit-
inib 1 μmol/L plus EGF. In particular it is interesting that
for EGF treatment there are 2-fold differences between
HT-29 (9.26 %) and Caco-2 (18.21%); besides these two
values there are the following differences compared to the
relative untreated cells: a 1.43-fold difference for HT-29
and a 0.75-fold difference for Caco-2.

Immunohistochemistry
The semiquantitative histoscore evaluation of the EGFR
immunostaining is summarized in Table 2. Untreated
cells showed a high EGFR expression for HT-29 and a
moderate expression for Caco-2 (Fig. 2a, b).

After treatment with EGF the EGFR immunostaining
shows internalization of EGFR in both cell lines as
revealed by the strong granular cytoplasmic immunos-
taining in HT-29 and, to a lesser degree, in Caco-2 cells,
without any observable membrane staining (Fig. 2c, d).
After treatment with 5 nM cetuximab the EGFR immunos-
taining shows continuous moderate to strong membrane
staining of HT-29 cells and continuous but weak membra-
nous brown staining of Caco-2 cells (Fig. 2e, f).

After combination treatment with 5 nM cetuximab plus
EGF the EGFR immunostaining shows strong and diffuse
granular cytoplasmic immunostaining in HT-29 cells, and
weak and focal cytoplasmic granular staining in Caco-2
cells (Fig. 2g, h). After treatment with 10 nM cetuximab
the EGFR immunostaining shows diffuse moderate mem-
branous staining of HT-29 cells and weak membranous
decoration of Caco-2 cells (Fig. 3i, j). After combination
treatment with 10 nM cetuximab plus EGF the EGFR
immunostaining shows strong granular cytoplasmic
staining in HT-29 cells and weak cytoplasmic granular
staining of Caco-2 cells (Fig. 3k, l). After treatment with
gefitinib the EGFR immunostaining shows diffuse and

p
S F NP NP

N
= ! ! ! !

! ! ! ! !α β γ δ
(1)

N P
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HT-29 and Caco-2 viability assayFigure 1
HT-29 and Caco-2 viability assay. Untreated (NT); 10 nM EGF (E); 5 (Cx5) and 10 (Cx10) nmol/L cetuximab; (Gb) 1 μmol/
L gefitinib; 5 or 10 nmol/L cetuximab plus 10 nM EGF (Cx5 + E or Cx10 + E); 1 μmol/L gefitinib plus 10 nM EGF (Gb + E). 
ANOVA One-way analysis of variance and Tukey's Multiple Comparison Test. Caco-2. NT vs: **E, ***Cx5, *Cx10, ***Gb, 
***Cx5 + E, *Cx10 + E, **Gb + E. *p < 0.05, **p < 0.01, ***p < 0.001. Each point represents a mean of quadruplicate values for 
each sample ± SD.
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strong membranous staining of HT-29 cells, and focal
weak immunostaining of Caco-2 cells (Fig. 3m, n). Finally
after combination treatment with gefitinib plus EGF the
EGFR immunostaining shows strong granular cytoplas-
mic immunostaining of HT-29 and focal and weak cyto-
plasmic staining of Caco-2 (Fig. 3o, p).

In summary, Caco-2 cells displayed reduced immunos-
taining for EGFR when compared to HT-29 cells, while
both cell types became negative for membrane staining
following treatment with EGF, cetuximab plus EGF or
gefitinib plus EGF.

Scanning electron microscopy (SEM)
HT-29 showed a different morphology from Caco-2. They
were generally smaller than Caco-2, their cellular bound-
aries appeared more evident (Fig. 4a and 5a) and their
microvilli were shorter than those of Caco-2 (Fig. 4a and
5a inserts).

HT-29 cells treated with EGF did not show any morpho-
logical differences from untreated cells, while Caco-2 dis-
played a lot of vesicles and microvilli reduction. Cellular
boundaries were more evident (Fig. 4b and 5b and
inserts). In Caco-2 EGFR binds EGF and the evidence of

this binding could be microvilli transformation in a lot of
vesicles.

HT-29 cells treated with 5 nM cetuximab lose their con-
tacts with other cells and show filipodi and microvilli
reduction. The Caco-2 counterparts showed microvilli
reduction. They lost their erect position and made con-
tacts with each other on their apical surface forming a star
morphology.

HT-29 and Caco-2 cells treated with 10 nM cetuximab
showed the same morphology as when treated with 5 nM
cetuximab (Fig. 4c and 5c and inserts). Both HT-29 and
Caco-2 displayed morphological transformations with
cetuximab treatment. The high microvilli reduction in
both cellular lines is an indication of EGFR-cetuximab
binding. The loss of HT-29 cellular contacts and the pres-
ence of filipodi are clear signals of differentiation toward
apoptosis. In Caco-2 the microvilli orientation changed to
form star clusters.

HT-29 cells treated with 5 nM cetuximab plus EGF lost
their contacts with other cells and showed filipodi and
microvilli reduction. Caco-2 here showed the same pat-
tern as cetuximab alone. Some vesicles were present.

HT-29 cells treated with 10 nM cetuximab plus EGF
showed some vesicles and the same morphology as seen
when treated with 5 nM cetuximab plus EGF. This finding
is also observed with Caco-2 cells (Fig. 4d and 5d and
inserts). The morphological transformations of both cel-
lular lines after this treatment showed an accumulation of
the effects of EGF and cetuximab used separately.

HT-29 cells treated with gefitinib displayed some vesicles
and a reduced number of microvilli. Caco-2 likewise
showed some vesicles and pronounced microvilli reduc-
tion. The microvilli lost their erect position and made
contacts with each other on their apical surface forming a
star morphology (Fig. 4e and 5e and inserts). Gefitinib
induced a morphological transformation in both HT-29
and Caco-2. In particular Caco-2 showed the same mor-
phology as induced by cetuximab treatment, but more
pronounced; on the contrary morphological modifica-
tions to HT-29 were less evident than for cetuximab treat-
ment.

HT-29 cells treated with gefitinib plus EGF proved to have
plasmatic membranes with lamellipodi and weak con-
tacts with nearby cells. Some vesicles were present. The
Caco-2 counterparts showed the same behavior as with
cetuximab treatment (Fig. 4f and 5f and inserts). The mor-
phological transformations of the 2 cellular lines after this
treatment presented a cumulative picture of the effects of
EGF and gefitinib used separately.

Table 1: Cell cycle distribution (%)

HT-29 G0/G1 S G2/M

NT 59,24 27,52 13,24
E 53,82 36,92 9,26
Cx5 56,97 28,55 14,48
Cx10 65,01 27,06 7,93
Gb 55,08 32,88 12,04
Cx5+E 53,24* 30,08 16,68
Cx10+E 48,41 36,03 15,56
Gb+E 54,41 37,89 7,7

Caco-2 G0/G1 S G2/M

NT 66,25 20 13,75
E 55,1* 26,69 18,21
Cx5 73,73 15,36 10,91
Cx10 72,50 15,38 12,12
Gb 70,04 18,5 11,46
Cx5+E 57,20 21,13 21,67
Cx10+E 56,01* 24,02 19,97
Gb+E 66,35 26,52 7,13

NT = untreated; E = Epidermal growth factor 10 nmol/L; Cx5 = 
cetuximab 5 nmol/L; Cx10 = cetuximab 10 nmol/L; Gb = gefitinib 1 
μmol/L; Cx5 + E = cetuximab 5 nmol/L + Epidermal growth factor 10 
nmol/L; Cx10 + E = cetuximab 10 nmol/L + Epidermal growth factor 
10 nmol/L; Gb + E = gefitinib 1 μmol/L + Epidermal growth factor 10 
nmol/L. ANOVA One-way analysis of variance Tukey's 
Multiple Comparison Test. Each point represents a mean of 
quadruplicate values.
*Statistically Significant
Page 7 of 22
(page number not for citation purposes)



BMC Cancer 2008, 8:227 http://www.biomedcentral.com/1471-2407/8/227

Page 8 of 22
(page number not for citation purposes)

Anti-EGFR immunostaining pattern in HT-29 and Caco-2 cell lines, respectivelyFigure 2
Anti-EGFR immunostaining pattern in HT-29 and Caco-2 cell lines, respectively. a, b (untreated); c, d (10 nM EGF 
treated); e, f (5 nmol/L cetuximab treated); g, h (5 nmol/L cetuximab plus 10 nM EGF treated).
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DNA microarray data analysis
The two cell lines responded to the different types of treat-
ment with changes in gene expression profiling affecting a
large number of genes that showed a fold change greater
than 2-fold (Table 3). For HT-29 gefitinib treatment
affected a greater number of genes (885 up-regulated and
1253 down-regulated) than with Caco-2 where it was EGF
treatment that affected the greater number of genes (915
up-regulated and 1134 down-regulated). The number of
at least 2-fold up-regulated genes in both Caco-2 and HT-
29 was: 124 for EGF treatment, 49 for cetuximab treat-
ment, 138 for gefitinib treatment, 10 for gefitinib plus
EGF treatment and none for cetuximab plus EGF treat-
ment. The at least 2-fold down-regulated genes were: 274
for EGF treatment, 58 for cetuximab, 113 for gefitinib, 3
for cetuximab plus EGF and 32 for gefitinib plus EGF.
Interestingly, for treatments plus EGF there were fewer
genes affected than occurred in single treatments. A com-
petition effect is possible, particularly for Caco-2 and
especially for cetuximab plus EGF treatment.

For all treatments we also identified the significantly
involved pathways in HT-29 and Caco-2 using the hyper-
geometric test described above (Table 4). Remarkably, for
HT-29 we found the following pathways with EGF treat-
ment: ubiquitine-mediated proteolysis and mTOR signal-
ing, strictly related to MAPK signaling. For cetuximab
treatment an interesting down-regulated pathway was cal-
cium signaling related respectively to MAPK signaling,
apoptosis and the phosphatidylinositol signaling system.
We found that genes like ITPR3 (Inositol 1,4,5-triphos-
phate receptor) and PLCD (Phospholipase C, delta 4)
were down-regulated. For gefitinib treatment we identi-

fied mTOR, the MAPK signaling, tight junction, cell com-
munication and adherent junction pathways which are
always down-regulated by this treatment.

For gefitinib plus EGF we found the Cholera-infection
relating to tight junction and calcium signaling pathways.
In Caco-2 cells, for EGF treatment we found apoptosis,
tight junction and epithelial cell signaling in Helicobacter
pylori infection. For cetuximab treatment we detected the
cell cycle pathway (related to MAPK signaling), and in
particular we found some important genes down-regu-
lated by this drug: cyclin A, cyclin H, p21 and p57 and his-
tone deacetilase 2.

For gefitinib treatment, we identified basal cell carcinoma
and cell communication pathways. For cetuximab plus
EGF we found gap junction pathways and finally for gefit-
inib plus EGF we detected the tight junction pathway.

Interestingly, for HT-29 mTOR signaling was a pathway
common to EGF and gefitinib treatments, while the cal-
cium signaling pathway was detected in cetuximab and
gefitinib plus EGF treatments. Gefitinib down-regulated
the expression of some genes that are overexpressed in
EGF treatment, like Ras suppressor protein 1, RAB2A
(member RAS oncogene family), TACSTD1 (Tumor-asso-
ciated calcium signal transducer 1), MOAP1 (Modulator
of apoptosis 1), CDC42BPB (CDC42 binding protein
kinase beta), RAB5C (member RAS oncogene family) and
RASL12 (RAS-like family 12).

Finally, the tight junction pathway was common to HT-29
gefitinib treatment, as well as Caco-2 EGF and gefitinib
plus EGF treatments. The cell communication pathway
proved to be affected in both cell lines following gefitinib
treatment, while the genes that we found activated by this
treatment were above all cytoskeleton genes, like laminin,
fibronectin, collagen and gap junction proteins.

Genes were only selected as differentially expressed if they
were at least 2-fold up- or down-regulated in both cell
lines following each treatment [see Additional file 1 at
http://www.ncbi.nlm.nih.gov/geo/, accession code no.
GSE8967].

Global gene expression analysis by hierarchical 
agglomerative cluster maps
A comparison of treatment-induced changes in the global
gene expression pattern was conducted on the two cell
lines. In particular, the hierarchical agglomerative cluster-
ing procedure identified two main groups, one including
Caco-2 and HT-29 treated with cetuximab, suggesting that
the gene expression profile induced by cetuximab treat-
ment is similar for the two lines. The other group was
composed of all the rest divided into three subgroups. The

Table 2: HT-29 and Caco-2 semiquantitative EGFR 
immunostaining evaluation (FS Cod)

HT-29 Caco-2

Membrane Cytoplasm Membrane Cytoplasm

NT Intermediate Intermediate Low Low
E Negative Intermediate Negative Low
Cx5 Intermediate Intermediate Low Low
Cx5 + E Negative Intermediate Negative Low
Cx10 Intermediate Low Negative Low
Cx10 + E Negative Intermediate Negative Low
Gb Intermediate Intermediate Low Low
Gb + E Negative Intermediate Negative Low

Membrane = Membrane immunostaining Histoscore; Cytoplasm = 
Cytoplasmic immunostaining Histoscore; FS Cod = Final Score coded 
according to cut-off values (see Material and Methods).
NT = untreated; E = Epidermal growth factor 10 nmol/L; Cx5 = 
cetuximab 5 nmol/L;
Cx10 = cetuximab 10 nmol/L; Gb = gefitinib 1 μmol/L; Cx5 + E = 
cetuximab 5 nmol/L + Epidermal growth factor 10 nmol/L; Cx10 + E 
= cetuximab 10 nmol/L + Epidermal growth factor 10 nmol/L;
Gb + E = gefitinib 1 μmol/L + Epidermal growth factor 10 nmol/L.
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Anti-EGFR immunostaining pattern in HT-29 and Caco-2 cell lines, respectivelyFigure 3
Anti-EGFR immunostaining pattern in HT-29 and Caco-2 cell lines, respectively. i, j (10 nmol/L cetuximab treated); 
k, l (10 nmol/L cetuximab plus 10 nM EGF treated); m, n (1 μmol/L gefitinib treated); o, p (1 μmol/L gefitinib plus 10 nM EGF 
treated). HT-29. Continuous moderate to strong membrane staining is present in untreated and cetuximab or gefitinib treated 
cells. Strong granular cytoplasmic immunostaining was present for all treatments plus EGF, without any observable membrane 
staining. Caco-2. Continuous weak to moderate membrane brown staining is present in untreated as well as in cetuximab 5 
nmol/L and gefitinib 1 μmol/L treated cells. Weak membrane immunostaining was present in cetuximab 10 nmol/L treated cells. 
The cytoplasmic immunostaining pattern was granular in EGF 10 nM, diffuse in gefitinib 1 μmol/L plus EGF 10 nM and a mixture 
of the two (granular and diffuse) in cetuximab 5 and 10 nmol/L plus EGF 10 nM treated cells.
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SEM ×4000 (bar 2 μm)Figure 4
SEM ×4000 (bar 2 μm). HT-29 and inserts (×8000) (bar 1 μm). a. untreated cells. Evident cellular boundaries. Insert: short 
microvilli are present. b. EGF treated cells. Same morphology as untreated cells. c. 10 nmol/L cetuximab treated cells. Filopodi 
are evident. Insert: microvilli reduction is evident. d. 10 nmol/L cetuximab plus 10 nM EGF treated cells. Filipodi and some ves-
icles are evident. Insert: microvilli reduction is evident. e. 1 μmol/L gefitinib treated cells. Some vesicles are evident. Insert: 
microvilli reduction is evident. f. 1 μmol/L gefitinib plus 10 nM EGF treated cells. Lamellipodi, some vesicles and weak contacts 
with nearby cells are evident. Insert: microvilli reduction is evident.
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SEM ×4000 (bar 2 μm)Figure 5
SEM ×4000 (bar 2 μm). Caco-2 and inserts (×8000) (bar 1 μm). a. untreated cells. A large number of microvilli are evident. 
The cellular boundaries do not appear. Insert: long microvilli are present. b. EGF treated cells. A lot of vesicles are evident. 
Insert: a small number of microvilli are present. c. 10 nmol/L cetuximab treated cells. The microvilli diminish in number and 
lose their erect position. Insert: microvilli make contacts forming a star morphology. d. 10 nmol/L cetuximab plus 10 nM EGF 
treated cells. Same morphology as 10 nmol/L cetuximab treated cells. e. 1 μmol/L gefitinib treated cells. The microvilli diminish 
in number and lose their erect position. Insert: microvilli make contacts forming a star morphology. f. 1 μmol/L gefitinib plus 10 
nM EGF treated cells. Same morphology as 1 μmol/L gefitinib treated cells.
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most interesting subgroups were the one where Caco-2
treated with cetuximab in combination with EGF was
associated with Caco-2 treated with gefitinib plus EGF and
the subgroup where HT-29 treated with gefitinib was
linked with HT-29 treated with gefitinib plus EGF. These
associations may in the global view indicate a prevalence
of cell-line specificity with respect to the treatment effects
on gene expression profiles (Fig. 6).

Cluster hierarchical Heat maps
For each treatment, we selected genes with p-values < 0.05
and a fold change above 2 or below 1/2 in both cell lines,
while a comparative global heat map was constructed
using an unsupervised hierarchical clustering method
with a correlation distance between all the samples and
between the genes selected. The EGF heat map shows that
in both lines cetuximab treatment switched on genes that
are switched off by EGF and, more weakly, by gefitinib,
and vice versa. The cluster distribution deriving from these
genes is interesting. Selection of the EGF gene target shows
the matching of each type of treatment for the two cell
lines, indicating that the kind of treatment accounted for
more differences than the type of cell.

In the treatments with cetuximab or gefitinib plus EGF
there is possible competition between one of the two
drugs and EGF, because the genes appeared to be less
stimulated than in the case of single drug treatment (Fig.
7). In the cetuximab heat map the Caco-2 line treated with
cetuximab or gefitinib in association with EGF exhibits
exactly the same pattern as in the EGF heat map but in a
weaker fashion. The other group is mixed for treatment
and cell line, indicating a weak stimulation, but with the
opposite behavior in terms of gene on/off switching fol-
lowing cetuximab treatment (Fig. 8).

The gefitinib heat map shows that in the EGF heat map
the same groups displayed a similar behavior, though it
was more evident (Fig. 9).

Caco-2 and HT-29 cell lines treated with cetuximab
showed a similar behavior in terms of on/off switched

genes; while treatments with EGF or gefitinib showed the
opposite pattern of expression for each heat map, indicat-
ing a different modulation of intensity induced for each
cell line, depending on which gene was being considered
in each heat map.

Discussion
"EGFR is a pleiotropic signaler. The integrated biological
response to EGFR activation varies from mitogenesis to
apoptosis, migration, differentiation or de-differentiation
even in the same cell depending on the context, which
includes cell density, type of matrix, other cytokines, and
even the position within a cell colony" [47]. ErbB ligands
are numerous and classified into three major groups
based on their direct binding to a particular erbB family
member [3]. EGF, transforming growth factor-alpha and
amphiregulin bind exclusively to erbB1[3].

In the present study we chose EGF among the natural lig-
ands of EGFR. EGFR may also bind growth factors secreted
by the epithelial cells themselves in an autocrine loop
[48], which has been demonstrated for amphiregulin in
the case of HT-29 [49] as well as Caco-2 [50] cells. The
existence of autocrine loops was not considered in the
present study and might be investigated in further works,
but other authors [51] have used a fluorescence resonance
energy transfer (FRET)-based method to measure the
autonomous phosphorylation of HT-29 and Caco-2, and
found that HT-29 showed FRET efficiencies over 50% and
Caco-2 close to 30%.

To better study the possible responses after stimulation
with EGF and the anti EGFR molecules cetuximab and
gefitinib, we began by characterizing the two human
colon cancer cell lines utilized (HT-29 and Caco-2) as
working models.

First, we evaluated their level of EGFR expression about
which the literature is broad-ranging but conflicting [51-
55]. By immunohistochemistry we observed that HT-29
presents a higher level of EGFR expression than Caco-2,
which proves weak to moderate by comparison.

Table 3: Number of genes altered as a function of the treatment type

Treatment type E Cx10 Gb Cx10 + E Gb + E

Down Up Down Up Down Up Down Up Down Up

HT-29 855 544 465 287 1253 885 217 459 799 582
Caco-2 1134 915 541 731 577 868 238 57 226 64
Intersection 274 124 58 49 113 138 3 0 32 10

E = Epidermal growth factor 10 nmol/L; Cx10 = cetuximab 10 nmol/L; Gb = gefitinib 1 μmol/L;
Cx10 + E = cetuximab 10 nmol/L + Epidermal growth factor 10 nmol/L; Gb + E = gefitinib 1 μmol/L + Epidermal growth factor 10 nmol/L; Down = 
1/2 fold; Up = 2 fold.
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Table 4: Pathways significantly represented in the single lines

Treatment type p-val Pathway affected

HT-29
E 0,0127 Parkinson's disease

0,0216 Bisphenol A degradation
0,027 Nucleotide sugars metabolism
0,028 ECM-receptor interaction
0,029 Ubiquitin mediated proteolysis
0,03 Neurodegenerative disorders
0,03 Prion disease
0,03 mTOR signaling pathway

Cx10 0,0001 Ribosome
0,0288 Calcium signaling pathway
0,0467 Prion disease

Gb 0,0056 T cell receptor signaling pathway
0,0115 mTOR signaling pathway
0,0163 Natural killer cell mediated cytotoxicity
0,0187 Pentose and glucuronate interconversions
0,0202 Tight junction
0,0214 Starch and sucrose metabolism
0,0242 Insulin signaling pathway
0,0293 Long-term potentiation
0,0332 GnRH signaling pathway
0,0352 TGF-beta signaling pathway
0,0402 MAPK signaling pathway
0,0482 D-Glutamine and D-glutamate metabolism
0,0497 Cell Communication

Cx10 + E 0,0001 Oxidative phosphorylation
0,0211 Benzoate degradation via hydroxylation
0,0254 Chronic myeloid leukemia
0,0277 Antigen processing and presentation
0,0319 Ribosome
0,0461 Notch signaling pathway

Gb + E 0,0002 Cholera – Infection
0,0003 PPAR signaling pathway
0,0075 Tyrosine metabolism
0,0090 Fluorene degradation
0,0126 Benzoate degradation via hydroxylation
0,0197 Insulin signaling pathway
0,0205 Fatty acid metabolism
0,0208 Calcium signaling pathway
0,0225 Neuroactive ligand-receptor interaction
0,0338 Oxidative phosphorylation
0,0351 Glycerolipid metabolism
0,0385 Glioma
0,0428 Urea cycle and metabolism of amino groups
0,0442 Neurodegenerative disorders
0,0442 Styrene degradation
0,0442 Fatty acid biosynthesis
0,0445 1- and 2-Methylnaphthalene degradation

Caco-2
E 0,0022 Epithelial cell signaling in Helicobacter pylori infection

0,0034 Tight junction
0,0133 Adherent junction
0,0152 Dentatorubropallidoluysian atrophy (DRPLA)
0,0179 Apoptosis
Page 14 of 22
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The G0/G1 cell-cycle phase for untreated cells is equal to
or over 60 %, indicating a high general level of differenti-
ated cells at the beginning of experiments.

As regards the morphology of HT-29 and Caco-2, we char-
acterized them by scanning electron microscopy. The
enterocytes are characterized by tight junctions between
adjacent cells and by the brush border on the apical cell
surface consisting of organized microvilli. Each microvil-
lus contains a bundle of actin filaments associated with
proteins like villin, fimbrin, etc., and is anchored to the
subjacent filamentous terminal web. In colon cells the
microtubules control vesicle-trafficking between the Golgi
network and the plasma membrane. The cytoskeleton
dynamically reorganizes the cell shape during cell life [56-
64]. We here show important differences between these
two lines. In particular, two important features lend them-
selves to evaluating the effects of drug treatment: 1) cellu-
lar adhesion between adjacent cells (more evident in
Caco-2 than in HT-29); 2) the abundant presence of
microvilli which are shorter in HT-29 than in Caco-2. The
drug treatment concentrations recommended by the phar-
maceutical industries were able to act on the phenotype
within 24 hours, especially on the cellular plasma mem-
brane and cytoskeleton arrangement. Generally, in Caco-
2, where the EGFR is weak to moderately expressed, the
efficacy of treatments is stronger. We may explain this

behavior by the different levels of basal EGFR phosphor-
ylation in the absence of exogenous growth factor, which
was shown to be weaker in Caco-2 than in HT-29 cells
[34]. For EGF treatment on Caco-2 an apoptotic effect
might be suggested by the statistically significant cell
reduction number and by sub-microscopic transforma-
tions (clear cellular boundaries and plasma membrane
reshaping). This is also confirmed by the microarray data
where the hypergeometric test displays apoptosis, tight
junction and adherent junction pathways. For HT-29 we
focused our attention particularly on ECM receptor inter-
action, mTor signaling and ubiquitine-mediated proteol-
ysis pathways which might confirm EGFR internalization
and degradation following this course (as shown by
immunohistochemistry and from the vesicles displayed
by SEM).

As regards the G2/M phase, the different EGF effect on the
two cell lines could be inversely correlated to the different
level of autophosphorylation of HT-29 and Caco-2 [34].
Interestingly in HT-29 cells immunohistochemistry mem-
brane staining is negative, whereas cytoplasmic staining
stays intermediate in all treatments with EGF (untreated
cells have intermediate staining in both the cytoplasm
and the membrane). It is difficult to explain this finding,
which could suggest EGFR degradation of the cytoplasm
along with or rather than internalization of it.

0,0422 Methionine metabolism
0,0436 D-Glutamine and D-glutamate metabolism
0,0445 Selenoamino acid metabolism
0,0481 Glycan structures – biosynthesis 2
0,0496 Toll-like receptor signaling pathway

Cx10 0,0008 Oxidative phosphorylation
0,0134 Ribosome
0,0179 Cell cycle
0,0193 Metabolism of xenobiotics by cytochrome P450
0,0356 Glycan structures – biosynthesis 1
0,0489 O-Glycan biosynthesis

Gb 0,0001 Ribosome
0,0106 Basal cell carcinoma
0,0135 Cell Communication
0,0308 Valine, leukine and isoleukine degradation
0,0394 Fatty acid metabolism

Cx10 + E 0.0141 Gap junction
0.0163 GnRH signaling pathway
0.0169 ECM-receptor interaction
0.0364 Vitamin B6 metabolism

Gb + E 0,0183 C5-Branched dibasic acid metabolism
0,0369 Tight junction

E = Epidermal growth factor 10 nmol/L; Cx10 = cetuximab 10 nmol/L; Gb = gefitinib. 1 μmol/L;
Cx10 + E = cetuximab 10 nmol/L + Epidermal growth factor 10 nmol/L; Gb + E = gefitinib 1 μmol/L + Epidermal growth factor 10 nmol/L. The 
pathways were considered significant if P ≤ 0.05.

Table 4: Pathways significantly represented in the single lines (Continued)
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Following cetuximab treatment, HT-29 showed some
apoptosis features (loss of boundary contacts and the
presence of filipodi). HT-29 and Caco-2 show a sizable
reduction in microvilli: this acquired feature is likely to
invalidate any microvilli absorption function.

Cetuximab on Caco-2 affects the cell cycle pathway, as
indicated by down-regulation of cyclin A, cyclin H, p21
and p57 and histone deacetilase 2, while in HT-29 the cal-
cium signaling pathway, correlated with EGFR activation
[65], proved down-regulated as confirmed by the genes
ITPR3 (Inositol 1,4,5-triphosphate receptor) and PLCD
(Phospholipase C, delta 4). Interestingly, in both cell
lines, cetuximab treatment activates the expression of
TP53BP2; this gene encodes a member of the ASPP (apop-
tosis-stimulating protein of p53) family of p53 interacting
proteins, which is down-regulated in EGF treatment.
Moreover many genes involved in oxidative phosphoryla-
tion such as many subunits of ATP syntase (ATP5J2,
ATP5L, ATP5E, ATP5G1, ATP5G2) and many subunits of
NADH dehydrogenase (NDUFA10, NDUFB1, NDUFB4,
NDUFB8, NDUFC2, NDUFS2, NDUFS7, NDUFV1) are
down-regulated, suggesting a prominent role by cetuxi-
mab in impairing mitochondrial function. Remarkably,
the only two genes that are up-regulated are COX10 which
is related to cytochrome c, and a lysosomial subunit of

ATP syntase (ATP6V1G2). Mitochondria have a major role
in apoptosis and cancer and there is some evidence that
the impairment of respiratory function (but without a
lack of cytochrome c release) is associated with increased
sensitivity to apoptosis [66]. There is also evidence in the
literature of the role of tyrosine kinase signaling in the reg-
ulation of mitochondrial oxidative phosphorylation [67].

The hierarchical agglomerative clustering procedure con-
firms that the gene expression profile induced by cetuxi-
mab treatment is similar for Caco-2 and HT-29. The EGF,
gefitinib and cetuximab heat maps show cetuximab treat-
ment switching genes on and off with an exactly inverse
pattern to EGF treatment.

Monoclonal antibody cetuximab generally affected fewer
pathways than gefitinib, in both cell lines. This too is con-
sistent with the rationale behind this drug, which is a spe-
cific target of EGFR, whereas gefitinib is a non-specific
tyrosine kinase inhibitor.

Gefitinib treatment showed the same immunohistochem-
ical picture as untreated cells, which was to be expected
from its molecular anti-EGFR strategy. In both cell lines
SEM unexpectedly reveals a sizable reduction of the
microvilli which in Caco-2 lose their erect position: prob-
ably these acquired features indicate a cellular defect in
absorption function.

Remarkably gefitinib down-regulates the expression of
some genes that are overexpressed in EGF treatment, like
Ras suppressor protein 1, RAB2A (a member of the RAS
oncogene family), TACSTD1 (Tumor-associated calcium
signal transducer 1), MOAP1 (modulator of apoptosis 1),
CDC42BPB (CDC42 binding protein kinase beta), RAB5C
(a member of the RAS oncogene family) and RASL12
(RAS-like family 12) although the gefitinib heat map
shows a lot of groups displayed in the EGF heat map with
the same behavior.

For cetuximab and gefitinib plus EGF treatments it is
remarkable that in the G2/M cell cycle phase there are 2-
fold differences for HT-29 and 3-fold differences for Caco-
2 when cetuximab plus EGF treatment is compared to
gefitinib plus EGF. We could explain this behavior by
some summation of single effect treatments, exactly the
same as for the morphological transformations data of the
2 cellular lines after these treatments, in agreement with
the microarray data analysis where the affected genes are
fewer in number than the genes involved in single treat-
ments. A competition effect is possible, particularly for
Caco-2 and especially for cetuximab plus EGF treatment.

Interestingly, with EGF treatment we found that in Caco-
2 cells one pathway affected is epithelial cell signaling in

Unsupervised agglomerative hierarchical clustering dendro-gramsFigure 6
Unsupervised agglomerative hierarchical clustering 
dendrograms. Genes were selected for p-values < 0.05 
adjusted for multiple testing by Benjamini and Hochberg's 
method. The clustering is based on the correlation distance 
between samples.
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Genes up-regulated with an expression ratio (comparing treated to untreated) greater than 2-fold and genes down-regulated with a ratio < 0.5 and p-values < 0.05, in HT-29 and Caco-2Figure 7
Genes up-regulated with an expression ratio (comparing treated to untreated) greater than 2-fold and genes 
down-regulated with a ratio < 0.5 and p-values < 0.05, in HT-29 and Caco-2. All heat maps were obtained by using an 
unsupervised hierarchical clustering method with a correlation distance between all the samples and between the selected 
genes. Heat map of genes selected from 10 nM EGF treated samples.
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Helicobacter pylori infection, while with gefitinib plus
EGF treatment the HT-29 Cholera-infection pathway is
affected. These findings, along with the microvillous sub-
microscopic alterations evidenced by SEM with cetuximab
or gefitinib treatments, indicate the possibility that the
side effect of diarrhea, which may be present in patients

treated with gefitinib, and to a far lesser extent in patients
treated with cetuximab, could be related to microvillus
alterations, although our experimental model is not rep-
resentative of in vivo changes occurring in normal entero-
cytes exposed to these drugs and the point requires further
investigation. This is the first study that has brought to

Heat map obtained from 10 nmol/L cetuximab treatmentFigure 8
Heat map obtained from 10 nmol/L cetuximab treatment.
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Heat map of the 1 μmol/L gefitinib treatmentFigure 9
Heat map of the 1 μmol/L gefitinib treatment.
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light these cellular microvilli alterations and this result
could be correlated with the finding that Enteropatho-
genic Escherichia coli (EPEC) induces a severe watery
diarrhea through a process linked with the loss of absorp-
tive microvilli [68].

In our experimental model it is difficult to correlate the
global gene expression profile and tumor sensitivity or
resistance to treatment with the EGFR inhibitors. Some
authors have "found an inverse correlation between EGFR
expression and activity and argue against post-transla-
tional regulation of EGFR expression. The observed
inverse correlation of EGFR activity with EGFR expression
suggests a negative feedback loop between EGFR activity
and expression in colorectal cancer cell lines"[69]. In the
case of heat map analysis, we selected only the genes
affected by EGFR and found a strict correlation and specif-
icity of gene expression responsiveness to the drugs, sug-
gesting that this method is useful when analyzing the
dynamics of gene profiles.

Conclusion
EGF and EGFR inhibitor treatments generally cause an
apoptotic effect on HT-29 and Caco-2.

Cell viability, cell cycle, SEM and microarray analysis data
confirm the extreme differentiation process towards cellu-
lar death. Caco-2 proves more reactive to treatments than
HT-29, maybe owing to the lesser degree of autophospho-
rylation. The gene expression profile of cetuximab treat-
ment is similar for the two cell lines, unlike EGF and
gefitinib. Microvillous submicroscopic transformations
found after drug treatment could be considered important
features for studying a possible absorption alteration of
enterocytes. Finally for cetuximab and gefitinib plus EGF
treatments it is interesting to have found a possible joint
effect of single agents, suggested by cell cycle, SEM and
microarray analysis data.
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