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Abstract
Background: Breast cancer is a heterogeneous disease, presenting with a wide range of histologic,
clinical, and genetic features. Microarray technology has shown promise in predicting outcome in
these patients.

Methods: We profiled 162 breast tumors using expression microarrays to stratify tumors based
on gene expression. A subset of 55 tumors with extensive follow-up was used to identify gene sets
that predicted outcome. The predictive gene set was further tested in previously published data
sets.

Results: We used different statistical methods to identify three gene sets associated with disease
free survival. A fourth gene set, consisting of 21 genes in common to all three sets, also had the
ability to predict patient outcome. To validate the predictive utility of this derived gene set, it was
tested in two published data sets from other groups. This gene set resulted in significant separation
of patients on the basis of survival in these data sets, correctly predicting outcome in 62–65% of
patients. By comparing outcome prediction within subgroups based on ER status, grade, and nodal
status, we found that our gene set was most effective in predicting outcome in ER positive and node
negative tumors.

Conclusion: This robust gene selection with extensive validation has identified a predictive gene
set that may have clinical utility for outcome prediction in breast cancer patients.
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Background
The application of expression microarray profiling tech-
nology promises to change both our understanding of
tumor biology and our clinical practices. Expression
arrays have proven useful in a variety of fields, allowing us
to examine gene expression dynamics during complex
processes such as growth and proliferation [1], as well as
to identify gene function by expression patterns [2]. In
particular, cancer researchers have made use of this tech-
nology to distinguish distinct subsets of cancer, predict
patient outcome, and identify genes with clinical rele-
vance [3-8]. Breast cancer has been one of the diseases
most extensively studied with microarrays.

Breast cancer is a heterogeneous disease [9], making it an
ideal disease to study using microarrays since different
expression patterns can be identified within distinct
tumor groups. Expression array studies of breast cancer
have identified genes associated with histology [6], grade
[10], and estrogen receptor (ER) status [5,11]. Perhaps the
most important contribution of microarrays to breast can-
cer research has been the identification of gene sets that
are predictive of patient outcome in breast cancer [5,10-
14], with an accuracy that surpasses traditional predictive
factors. Indeed, it has been proposed that such gene sets
should be employed in clinical practice to aid in decision
making for patients. However, the genes identified in
these predictive sets have shown little overlap, making it
unclear which genes or gene sets are best. We report gene
expression profiling on a diverse panel of breast tumors
using both unsupervised and supervised methods to dis-
tinguish clinically relevant subgroups on the basis of gene
expression. Our robust gene selection and validation
demonstrates that predictive gene sets derived from
expression microarray data can perform as independent
predictive markers, and thus may have great clinical util-
ity.

Methods
Samples
Fresh frozen breast tumors were collected from patients
treated at UCSF and California Pacific Medical Centers
after institutional review board approval. Randomly
selected frozen tumor blocks were trimmed to ensure that
a minimum of 70% of the remaining cells present were
tumor. A total of 140 invasive ductal tumors, 17 invasive
lobular tumors, 4 DCIS, 1 inflammatory, and 8 normal
breast samples from reduction mammoplasties were ana-
lyzed. There were 4 DCIS, 35 Stage I, 80 Stage II, 16 Stage
III, 6 Stage IV tumors, and 21 with unknown stage. ER
negative tumors comprised 29% of the samples, and 45%
of the samples were node negative. Full clinical informa-
tion can be found as an additional file (see additional file
1). A subset of 55 samples was chosen for outcome analy-
sis, which consisted of a Good Outcome (GO) group of

tumors that had at least 7 years disease free survival, and
a Poor Outcome (PO) group of samples that were never
disease free or had distant relapse of disease within 7
years.

RNA isolation
RNA was isolated as described elsewhere [6]. Briefly, fro-
zen sections were placed directly in Trizol reagent (Invit-
rogen, Carlsbad, CA), homogenized, and RNA was
isolated using the manufacturer's protocol. RNA was
quantified based on absorbance at 260 nm. Quality of the
RNA was assured by measuring 260/280 ratios, and
reviewing integrity on agarose denaturing gels. Some sam-
ples that had been stored in formamide were further puri-
fied through RNeasy columns (QIAGEN, Valencia, CA)
according to the manufacturer's protocol. We saw no
effects on expression as a result of this storage or extrac-
tion compared to samples that were not processed in this
manner. A mixture of equal amounts of RNA from the fol-
lowing cell lines, all available from ATCC, was used as a
common hybridization reference sample: SW872,
WM115, NTERA2, MCF7, HEPG2, MOLT4, Hs578t,
HL60, OVCAR3, COLO205, and RPMI 8226. The same
preparation of reference pool RNA was used for all hybrid-
izations.

Expression microarray preparation
Preparation of the microarrays used in this study is
described elsewhere [6]. Briefly, clones from the Research
Genetics clone set (Research Genetics, Huntsville AL)
were PCR amplified using universal primers, band size
was verified, clones were precipitated, dissolved in 3 ×
SSC, and printed on poly-L-lysine (Sigma, St Louis, MO)
coated slides. Microarrays consisted of 32 subarrays, each
18 rows by 18 columns, for a total of 10,368 spots. Slides
were stored under vacuum. Post-processing was done as
described elsewhere [6]. Microarrays from 6 different
print runs (using the same clone preparations from the
same plates) were used in this study.

Labeling and hybridization
Labeling was done as described elsewhere [6]. Briefly, 5–
10 μg of RNA that was DNase I treated using DNAfree rea-
gent (Ambion, Austin, TX) was reverse transcribed with
superscript II reverse transcriptase (Invitrogen) in the
presence of amino-allyl modified dUTP (Sigma) using
random hexamers (Invitrogen) and Oligo dT primers
(Invitrogen). The cDNA product was coupled to free Cy3
dye (Amersham, Piscataway NJ), mixed with a Cy5
labeled reference, Cot-1 DNA (Invitrogen), and tRNA
(Invitrogen) in 25 mM HEPES, 3 × SSC, and 0.03% SDS.
Hybridization was performed at 65°C overnight in a Hyb-
Chamber (Gene Machines, San Carlos, CA). High strin-
gency washes were in 2 × SSC, 1% SDS at 65°C for 10
minutes, 2 × SSC at room temperature for 10 minutes, and
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0.2 × SSC at room temperature for 10 minutes [15]. Slides
were briefly rinsed in deionized water and dried with
compressed air. Slides were imaged on an Axon 9000B
scanner (Axon Instruments, Union City, CA).

Statistical analysis
All images were analyzed using GenePix pro v3.06 (Axon
Instruments). Raw .gpr files and the derived log2 ratios are
available as additional files. Data were corrected by subar-
ray (print tip) median centering and LOWESS smoothing
using the Bioconductor R software package [16]. The
LOWESS corrected data is available as an additional file
(see Additional file 2). Data were normalized by print
prior to unsupervised clustering using Eisen's Cluster and
TreeView [17] to avoid print specific effects (see Addi-
tional file 3). For clustering, clones were chosen based on
the entire tumor sample set; they were accepted if they
were present in at least 80% of cases and showed a log2
test over reference ratio [log2 (t/r)] of less than -2 or greater
than 2 in at least one case, resulting in a total of ~4,000
genes. All genes and arrays were median centered and nor-
malized. Samples were divided into the GO and PO
groups as described above for outcome prediction. Predic-
tion Analysis for Microarrays (PAM) [18], Significance
Analysis for Microarrays (SAM) [19], and a correlation
based technique [12] with a threshold set at 0.85 were
employed to identify genes associated with good outcome
and to classify samples on the basis of gene expression. All
genes identified in the predictive sets were sequence vali-
dated, with genes failing sequence verification excluded
from the final analysis. If multiple copies of the same gene
were identified, they were each treated as an individual
gene (i.e. replicate clones were not averaged). We have
previously validated expression data derived from these
microarrays using real-time quantitative PCR, which
showed complete agreement with the microarray data [6].
Classification of tumors for all gene sets was performed
using a leave one out cross validation analysis based on
correlation of each tumor's gene expression with the
means of the remaining "good" or "bad" outcome
tumors. To accurately estimate classification rates, gene re-
sampling was performed during each round of cross-vali-
dation [20]. Kaplan-Meier survival curves were generated
based on the good and predicted poor prognosis groups
using the survival package within Bioconductor R.

Results
Unsupervised clustering of breast samples
Hierarchical clustering of the 162 tumor and 8 normal
samples resulted in the formation of distinct tumor
groups based on gene clustering, as has been previously
described [12]. The most prominent tumor group was
related to estrogen receptor(ESR1) expression (Figure 1).
As expected, there was a strong correlation between ESR1
expression levels and ER status by immunohistochemistry

(IHC). The average expression level of the ESR1 gene in
tumors that were ER negative by IHC was 0.66 (log2 t/r),
while ER positive tumors had an average ESR1 expression
level of 3.06. For the quartile of samples with the lowest
ESR1 expression levels, 86% were classified as ER negative
by IHC, while 97% of the quartile of samples with the
highest ESR1 expression levels were ER positive. Genes
that were correlated with ESR1 expression included GATA-
3, β-MYB, BCL-2, and DPP6, all of which have previously
been shown to be co-expressed [12].

A set of 5 tumor samples clustered with the normal sam-
ples from reduction mammoplasties (Figure 1). This
group was characterized by low levels of expression of
genes associated with proliferation, such as CCNA2,
PCNA, GART, CDC2, and a number of histone genes, all
of which clustered together. The central part of this prolif-
eration cluster, including PCNA, is shown in Figure 1.
Expression of these genes was high in the ER negative
tumor group as well as a group of ER positive tumors (Fig-
ure 1).

A cluster of genes associated with ERBB2 expression was
also evident in the unsupervised clustering heatmap (Fig-
ure 1). In addition to ERBB2, the MLN64, PSMB3,
PIP5K2B, and GRB7 genes, all of which map to 17q12,
were found in this cluster as has been previously described
[21]. There was another related but distinct cluster of
genes that map to a region proximal to the ERBB2 ampli-
con. Included in this cluster were genes such as
COX11,TRAP240, PHB, UGTREL1, SUPT4H1, AKAP1,
COIL, PSMC5, GK001, RPS6KB1, CLTC, PSMC5, AKAP1,
COIL, APPBP2, DDX5, FALZ, NME1, NME2, and TOB1,
and the ESTs AA495944 and AA458968, all of which map
in the region 17q21.33-17q24.2. The treeview-cluster files
for all 4,000 genes used for the unsupervised analysis are
available as additional files (see Additional file 4).

Unlike ER status, other clinical parameters such as nodal
status, stage, and grade did not show strong correlation
with any of the tumor clusters formed by unsupervised
hierarchical clustering.

Outcome prediction
To identify genes associated with outcome, tumor sam-
ples from patients with seven year disease free survival ver-
sus patients having recurrence within seven years were
compared. Seven years was chosen as a balance between
long follow up length and a sufficient number of tumors
for analysis. The average follow-up time (disease free sur-
vival) in the GO group (34 samples) was 9.82 years, while
the average disease free survival time in the PO group (21
samples) was 2.78 years. Kaplan-Meier analysis using the
clinical parameters ER status, stage, and grade did not
result in significant associations with survival in this data
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Unsupervised hierarchical clustering of 162 breast tumor samples based on ~4,000 genes with greatest variationFigure 1
Unsupervised hierarchical clustering of 162 breast tumor samples based on ~4,000 genes with greatest variation. Tumor sam-
ples (left) are color coded according to immunohistochemical staining for estrogen receptor (ER negative, green; ER positive, 
red; reduction mammoplasties, cyan; ER status unknown, black). Gene clusters (top) are those related to estrogen receptor 
(ESR1), proliferation-associated genes, ERBB2 related genes, and genes found in a common chromosomal region of 17q21-24 
(red represents high relative expression, green low relative expression). The black bar indicates samples that clustered tightly 
with normal specimens.
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set, presumably due to sample selection criteria. However,
nodal status showed a significant correlation with disease
free survival.

There are a number of supervised methods that utilize
gene expression data for the identification of genes and
tumor classification. Several of these methods were used
to identify predictive gene sets (see Additional File 5). The
first method used the PAM software package [18] to iden-
tify a set of 142 genes that predicted class (PO vs. GO).
The leave one-out-cross validated classification rate per-
formed with gene re-sampling was 71% with this gene set
(76% of GO cases, 62% of PO cases). Interestingly,
although ER status was not a predictor of outcome in
these tumors, two copies of ESR1 and multiple copies of
the β-myb gene, which is correlated with ESR1 expression,
were included in this predictive gene set. There were also
multiple copies of ZNF217, LTF, DHRS4, NFIC, GNAS1,
and NAT1 present in this gene set.

A second approach, which used a correlation based
method similar to the one used by van't Veer et al. [12],
identified a set of 49 genes that correctly classified 75% of
the samples (79% of GO cases, 67% of PO cases). There
was a strong overlap between this gene set and that from
PAM, with 40 out of 49 genes included in the PAM set.

We also used an approach to identify a set of 49 genes that
were differentially expressed between GO and PO tumors
using SAM. The genes in this set had an estimated false
discovery rate of 10% (less than 5 genes expected to be
false positive). Of the 49 genes, 46 were also present in the
gene list derived from PAM analysis. Since this method is
not a classification technique, we did not test the predic-
tive utility of these genes in the training set.

We were interested in developing a clinically relevant pre-
dictive gene set, which necessitated a reduction in the
number of genes in the predictor, since a large number of
genes is prohibitive for clinical assays such as quantitative
rt-PCR. Thus, a fourth gene set was constructed consisting
of genes that overlapped from the three earlier gene sets,
resulting in a set of 21 genes. We used the leave-one-out
cross-validation approach with gene re-sampling during
each round of validation to classify the samples based on
these 21 genes. This gene set correctly classified 69% of
the tumors (74% of GO cases, 62% of PO cases) using the
leave-one-out cross- validation approach. The relation-
ship between the various gene sets is shown in Figure 2.

The cross-validated classification rates using the three pre-
dictive gene sets ranged from 69–75% in the training set.
It should be noted that using most traditional clinical out-
come predictors, even lower rates were achieved in this
tumor set. For example, ER status correctly predicted out-

come in 64% of cases. Only nodal status was comparable,
correctly predicting outcome in 71% of cases.

Kaplan-Meier survival curves were constructed based on
tumor classification using the leave-one-out classification
with gene re-sampling for each of the three predictive gene
sets. The results of the classification and P values from the
Kaplan-Meier survival curves for each gene set are summa-
rized in Table 1. The disease free survival of the predicted
good group was significantly better than the predicted
poor group for each gene set (see Figure 3A for survival
curve for the 21 gene classifier). In contrast, for ER (Fig.
3B), grade (Fig. 3C), and nodal status (Fig. 3D), only
nodal status showed significant differences in disease free
survival times.

To test whether classification was being driven by pheno-
type or treatment modality, we examined tumor classifica-
tion within subtypes. For phenotype analysis, tumors
were stratified by ER status, nodal status, and Grade. ER
positive, node negative, and low grade tumors were classi-
fied most successfully (Table 2). For treatment modality,
tumors were stratified into those that were treated with
radiation, chemotherapy, or hormonal therapy compared
to tumors that were untreated. In general, the patients
who did not receive radiation and/or chemotherapy were
classified more successfully, while those who received
hormonal therapy showed mixed results (Table 3).

Functional annotation of genes
To determine if there were any pathways that were over-
represented in the 21 gene set, we examined their gene
ontology categories. Two genes (DHRS4, GALK1, are
implicated in metabolism, two are transcription factors
(ZNF217, TAL1), three have roles in cell cycle regulation
(MAD2L1, YWHAQ, BRCA2), two in transport (NGB,
SLC9A3), two in development or differentiation
(CKTSF1B1, GMFB), and five have been implicated in sig-
naling (LTBR, NRG1, KIFAP3, CD3D, GNAS).

Comparison to published predictive gene sets
Since we did not have an adequate number of additional
specimens with long term follow-up to test our predictive
gene set, we turned to other published data sets. There
have been several other predictive gene sets for breast can-
cer that have been reported [10,12,14,22]. We compared
the predictive genes in several of these sets to our predic-
tive gene lists. Sorlie et al. identified a set of 534 genes (the
"intrinsic" gene set) that separated breast tumors into dis-
tinct subtypes which predicted outcome [11] and subse-
quently showed that this gene set was predictive in several
other breast tumor data sets [14]. There were 402 genes in
their intrinsic set that were also present in our data set.
PAM was used to classify their tumors based on these 402
genes, and our tumors were fit to the different subtypes.
Page 5 of 13
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Forty three of our tumors were classified as Luminal Type
A, zero classified as Luminal Type B, 5 ERBB2 positive, 4
Basal-like, and 3 Normal-like. The tumor groups showed
significantly different survival, with P = 0.019 (Hazard
Ratio = 1.17).

There were 11 genes in common between our data set and
that of Sotiriou [10], including two genes involved in gua-
nine nucleotide binding (GNAS1, GNAL), the insulin
receptor, and the MAD2-like 1 homolog. There were 4
genes in common between the van't Veer predictive set
[12] and ours, including survivin (BIRC5) and STK15. The
only gene common to all three sets was MAD2L1. More
recently, a smaller 21 gene set has been developed [22],

based on a combination of genes selected from published
microarray work and traditional clinical markers. Of these
21 genes, 16 have predictive utility, while the remaining 5
are reference genes. Our gene sets had 7 genes in common
with the 16 predictive genes, namely STK15, BIRC5,
MYBL2, MMP11, ERBB2, GSTM1, and ESR1.

We tested the performance of our 21 gene set in the tumor
sets of van't Veer et al. and Sotiriou et al. using PAM clas-
sification. The gene set classified 65% of the specimens
correctly in the van't Veer tumor set, and resulted in signif-
icant differences (P < 0.005, Hazard Ratio = 2.76) in sur-
vival between good and poor prognosis tumor groups in
Kaplan Meier analysis (Figure 4A). The performance of the

Relationship between PAM, SAM, Correlation, and overlapping gene setsFigure 2
Relationship between PAM, SAM, Correlation, and overlapping gene sets. Degree of overlap between the 142 (PAM), 49 
(SAM), and 49 (correlation) gene sets which results in the 21 gene set.
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Kaplan-Meier survival curves for UCSF breast tumors based on our predictive gene setsFigure 3
Kaplan-Meier survival curves for UCSF breast tumors based on our predictive gene sets. Surviving fraction of predicted good 
(solid lines) and poor (dashed lines) groups is shown. A) separation based on 21 gene set (P < 0.0001). B) separation based on 
ER positive (dashed line) vs. ER negative (solid line) (P = 0.18). C) separation based on grade 1+2 (solid line) vs. grade 3 (dashed 
line) (P = 0.19). D) separation based on node positive (dashed line) vs. node negative (solid line) (P = 0.005).
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Table 1: Classification Rates and Survival Differences for identified gene sets

Gene Set Genes (N)1 Classification Rate2 Survival P 3

PAM 142 71% < 0.00001
Correlation 49 75% < 0.00001
Overlap 21 69% < 0.005

1 Number of genes identified from each of the predictive sets
2 Leave-one-out cross-validation classification rate using gene re-sampling based on known outcome of 55 tumor samples
3 Kaplan-Meier log rank survival difference using disease-free survival time based on good and poor predicted groups from leave-one-out 
classification
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gene sets in the Sotiriou tumor set was similar, with a clas-
sification rate of 62%. As with the van't Veer data set, this
resulted in significant differences (P < 0.01, Hazard Ratio
= 2.37) in survival of the good and poor prognosis groups
(Figure 4B).

As a further validation, we compared the performance of
the van't Veer predictive gene set and the Sotiriou predic-
tive gene set in our tumors. We were able to identify 89
genes (115 clones) that were present on our microarrays
from the full set of 231 predictive genes from van't Veer et
al. [12]. These genes correctly classified 64% of our tumor
samples, but did not result in significant separation in
Kaplan Meier analysis (P = 0.108, Hazard Ratio = 2.00). A
subset consisting of 70 clones (68 genes) was found to be
optimal by van't Veer et al. for outcome prediction. We
were able to identify only 22 genes (25 clones) from our
data set that corresponded to genes from their 68 gene set.
This gene set classified 73% of the UCSF samples cor-
rectly, but did not result in significant separation of GP
and PP groups by Kaplan-Meier survival analysis (P =
0.14, Hazard Ratio = 1.99), likely due to almost all sam-
ples being classified as belonging to the good outcome
group. Sotiriou et al. identified a predictive gene set of 424
genes (485 clones) derived using a panel of breast tumors
with a variety of stages [10]. We were able to identify 318
genes (452 clones) from their predictive gene set that were
present on our arrays. This gene set classified 64% of the
UCSF samples correctly, but did not achieve significance
in separating good and poor prognosis patients in our
data set (P = 0.10).

Discussion
Expression microarray technology promises to change
phenotypic characterization of tumors, leading to better
diagnosis, prognosis, and ultimately treatment of cancer.
Expression profiling has been used to identify predictive
gene sets in a diverse set of cancers, including lymphomas
[7,23,24], prostate cancer [25], and breast cancer [3,5,10-
12,26]. These gene signatures are more robust than indi-
vidual prognostic genes that have been identified. Unlike
single gene predictors, gene sets are less likely to be influ-
enced by variation in expression of one or two genes when
classifying tumor specimens, since they use the entire set
of genes to classify samples, not just one or two. Further-
more, tumors that are indistinguishable using traditional
clinical parameters can be classified into good and poor
outcome groups using predictive gene sets, and thus these
sets may have the ability to outperform the traditional
markers. However, the identities of genes within classifi-
ers differ widely even for the same tumor types, despite
the fact that the association of specific expression patterns
with tumor phenotypes is clear. Robust gene selection
techniques and extensive validation are required to iden-
tify the gene sets which best predict patient outcome.

We identified multiple gene sets based on several predic-
tive models, then validated them with an independent
tumor set. We used three methods to identify potential
predictive gene sets, all of which resulted in significant dif-
ferences in survival of the predicted good and poor prog-
nosis groups in both the test and validation tumor sets.
We reasoned that the most robust gene set was one which

Table 2: Classification Rates by Clinical Subtype1

Gene Set ER Neg N = 15 ER Pos N = 40 Node Neg N = 25 Node Pos N = 29 Grade 1 N = 7 Grade 2 N = 24 Grade 3 N = 20

PAM 53% 78% 88% 55% 100% 71% 60%

Correlation 60% 80% 92% 59% 100% 83% 55%

Overlap 60% 72% 84% 59% 86% 71% 65%

1 Correct leave-one-out cross-validation classification rates with gene re-sampling into good and poor outcome groups in 55 tumors

Table 3: Classification Rates within Treatment Subgroups1

Gene Set Radiation 
treated N = 30

No Radiation N 
= 25

Chemo treated 
N = 27

No Chemo N = 
28

Hormone 
therapy N = 40

No Hormone N 
= 15

PAM 67% 76% 56% 86% 75% 67%

Correlation 73% 76% 59% 89% 72% 73%

Overlap 67% 72% 59% 79% 75% 60%

1 Correct leave-one-out cross-validation classification rates with gene re-sampling into good and poor outcome groups in 55 tumors
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consisted of all of the overlapping genes from the three
selection methods, consisting of 21 genes. As with the
other 3 gene sets, this predictive set resulted in significant
differences in survival for the good and poor prognosis
groups.

Multivariate analysis of the 21 gene set indicated that it
was not an independent prognostic marker when used in
combination with nodal status or stage for prediction of
outcome in our tumor set (data not shown). However,
because of the small number of events in the data set, we
had limited power for determining the predictive ability
of the gene set in a multivariate model.

We tested the performance of our gene sets in the tumor
sets of van't Veer et al. and Sotiriou et al. There are several
caveats with such an approach. First, it has been observed
that there is often disagreement between microarray
results profiled on different platforms [22,27]. Part of this
may be attributable to different probe regions represented
(i.e., splice variants), different hybridization, washing,
imaging, and data normalization and analysis methods,
and the use of different (or no) reference samples.
Another problem comparing microarray results is that
there are often genes missing from one platform that are
identified as being predictive using the second gene set.
Obviously, these cannot be included in the comparative
analysis, so the model is weakened by the absence of core

predictive genes. Finally, as in our data, there is a differ-
ence in the way tumors were selected, so that genes that
are predictive in a diverse set of tumors such as ours may
not perform as well in a more homogeneous tumor set
such as that of van't Veer. Indeed, we found that the per-
formance of our gene sets was not as good in the tumor
sets of van't Veer et al. and Sotiriou et al., but still resulted
in significant differences in survial with Kaplan Meier
analysis. Furthermore, the performance of our predictive
gene sets was comparable to those of van't Veer and Sotir-
iou in our tumor sets, although none of their gene sets
resulted in significant differences in survival with Kaplan-
Meier analysis when used on our tumor set. In particular,
the failure of the van't Veer predictive set to correctly clas-
sify our tumors likely reflects the fact that more than half
of their predictive genes were missing from our microar-
rays.

It worth noting that each predictive gene set performed
best within the tumor set from which it was derived. This
is not surprising, since there is an inherent bias introduced
by testing genes on the tumors from which the genes were
selected. Thus, it is important to validate the predictive
utility of genes in independent data sets, which requires
making such data sets publicly available. Ideally, a com-
mon platform will come into use so that investigators will
be able to make easy comparisons between experiments,
without having to exclude potentially important genes

Kaplan-Meier survival curves based on the 21 gene set in independent data setsFigure 4
Kaplan-Meier survival curves based on the 21 gene set in independent data sets. A) van't Veer et al. data set; B) Sotiriou et al. 
data set. Surviving fraction for predicted good (solid lines) and poor (dashed lines) groups in the validation tumor sets are 
shown (P < 0.0005).
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from their validation analyses. This would also allow a
comprehensive meta-analysis of genes in common to the
predictive gene lists under investigation to identify those
with the strongest prediction of breast cancer outcome. To
date, the best solution to these problems has been the
development of more rigorous statistical techniques and
better laboratory practices, which improve concordance
in cross-platform comparisons [28].

One striking observation is the minimal overlap between
genes in the predictive gene sets developed by us and
those of van't Veer et al. and Sotiriou et al. Sotiriou
reported that their predictive gene set had 15 genes in
common with the van't Veer set [10]. We had 4 genes in
common with the van't Veer predictive gene set, and 11
genes in common with the Sotiriou predictive gene set. All
three sets had 1 gene in common (MAD2L1). However, it
is interesting to note that of 16 predictive genes utilized in
a more recent study [22], seven were also found to be pre-
dictive in at least one of our gene sets. While the overlap-
ping genes are likely to be important in outcome
prediction, it may be inappropriate to focus entirely on
these genes. The comparisons between the three different
microarrays are by no means comprehensive. For exam-
ple, almost 100 of the genes identified by van't Veer as
being predictive were not present on our arrays. Thus, the
lack of overlap between the predictive sets may reflect the
lack of overlap of the arrays in general. A recent study
examining poor overlap in predictive gene sets derived
from separate studies in breast cancer [29] indicated that
the poor gene overlap was due to the fact that a number of
genes showed correlation with survival, but that these
associations vary greatly between subsets of patients.

Interestingly, while the overlap between the gene sets is
minimal, there is some evidence that similar families of
genes are found within the different classifiers. Thus, it
may be possible to identify a set of genes, each of which is
interchangeable with the other members of that gene set
with respect to their predictive abilities. For example, we
found that high levels of ESR1 and the MYB gene, which
has been shown to be coordinately expressed with ESR1
[5,26], were both predictive of outcome in our data set.
Neither the van't Veer nor Sotiriou predictive gene sets
contained these genes, but the predictive set of Sotiriou et
al. [10] included GATA3, a gene which has also been
shown to be coordinately expressed with ESR1. Thus, it is
possible that ESR1, GATA3, or MYB may be surrogates for
one another in predicting outcome.

Unsupervised clustering of the entire data set resulted in
separation of the tumors based primarily on their ER sta-
tus. This has been observed previously by several groups
[5,26], and is a strong factor driving unsupervised cluster-
ing in breast cancer. There was a strong correlation

between ESR1 expression and ER status as measured by
IHC. While promoter methylation and chromatin con-
densation of ESR1 gene seems to be the predominant
mechanism for ablation of ER protein expression [30], the
finding that a number of ER negative tumors had higher
than average levels of ESR1 gene expression suggests that
some tumors may be ER negative due to post-transcrip-
tional events.

The putative transcription factor ZNF217 was identified
within our predictive gene sets, and overexpression was
associated with poor outcome in our breast cancer
patients. This gene was originally identified as a potential
target oncogene from the 20q13 region, which is com-
monly amplified in breast and other cancers and has been
associated with poor prognosis [31,32]. Subsequent anal-
ysis of ZNF217 has shown that it is capable of immortal-
izing human mammary epithelial cells [33]. Interestingly,
in addition to ZNF217, we observed that high levels of
expression of several genes from the 20q13 region were
associated with poor prognosis in the breast cancer
patients. Included in this region were STK15, which has
recently been suggested to be a candidate low-penetrance
tumor susceptibility gene in breast cancer [34] and
MYBL2, which has been shown to be overexpressed along
with STK15 and ZNF217 in prostate cancer [35]. Overex-
pression of STK15 and MYBL2 was found to be associated
with metastases in these prostate tumors [35], and in our
data set high levels of expression of all three genes were
associated with poor prognosis. Interestingly, both
MYBL2 and STK15 were found to be predictive by Paik et
al. [22], and STK15 was found to be predictive by van't
Veer et al[12].

Generation of predictive gene sets has been done prima-
rily in mixed tumor sets (e.g., ones that include both ER
negative and ER positive, and with the exception of van't
Veer et al, in node negative and node positive samples).
By examining the classification rate within the tumor sub-
groups, it is evident that our predictive gene sets tend to
perform better in ER positive, Stage I and II, and node neg-
ative tumors. Similarly, the gene prediction classifier
tended to perform better in patients who did not receive
chemotherapy or radiation. Together, these results are
encouraging, since these tumors tend to have better prog-
nosis in general and thus it is difficult to determine which
patients are at highest risk. Future studies to identify pre-
dictive gene sets within clinically homogeneous sub-
groups of breast cancer may further improve outcome
prediction based on genetic signatures.

Conclusion
Our gene sets may have potential clinical utility since they
demonstrated predictive ability in both our breast cancer
tumor sets and, to a lesser extent, in two independent
Page 10 of 13
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tumor sets. At this time, however, it is unclear how predic-
tive gene sets will be applied in clinical practice. Tests rely-
ing on diagnostic expression chips would likely require
fresh frozen material from which intact RNA could be
extracted, which could be a limitation. PCR based tests
may be possible from archival paraffin material, but
would likely be limited to small predictive gene sets simi-
lar to the 21 gene set we have identified. Diagnostic breast
cancer tests based on expression are already being offered
commercially, although it is unclear which specific sets
are superior, due to minimal gene overlap between pre-
dictive sets. Indeed, the ideal diagnostic test sets may be
composed of genes with the best predictive ability from
several different gene sets. Clinical implementation of
such a gene set would require regulatory and other issues
to be resolved, including finalization of an ideal diagnos-
tic set and use of a common platform to allow standardi-
zation, manufacturing, and quality control. Furthermore,
while these diagnostic genes may accurately predict which
patients will fare better, we still have not determined how
to best treat patients with a poor prognosis signature.
These complex issues will need to be fully addressed in
order to successfully apply these gene classifiers to clinical
practice.
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