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Abstract

Background: In general, prognosis and impact of prognostic/predictive factors are assessed with
Kaplan-Meier plots and/or the Cox proportional hazard model. There might be substantive
differences from the results using these models for the same patients, if different statistical methods
were used, for example, Boag log-normal (cure-rate model), or log-normal survival analysis.

Methods: Cohort of 244 limited-stage small-cell lung cancer patients, were accrued between 1981
and 1998, and followed to the end of 2005. The endpoint was death with or from lung cancer, for
disease-specific survival (DSS). DSS at |-, 3- and 5-years, with 95% confidence limits, are reported
for all patients using the Boag, Kaplan-Meier, Cox, and log-normal survival analysis methods.
Factors with significant effects on DSS were identified with step-wise forward multivariate Cox and
log-normal survival analyses. Then, DSS was ascertained for patients with specific characteristics
defined by these factors.

Results: The median follow-up of those alive was 9.5 years. The lack of events after 1966 days
precluded comparison after 5 years. DSS assessed by the four methods in the full cohort differed
by 0-2% at | year, 0—12% at 3 years, and 0—1% at 5 years. Log-normal survival analysis indicated
DSS of 38% at 3 years, 10—-12% higher than with other methods; univariate 95% confidence limits
were non-overlapping. Surgical resection, hemoglobin level, lymph node involvement, and superior
vena cava (SVC) obstruction significantly impacted DSS. DSS assessed by the Cox and log-normal
survival analysis methods for four clinical risk groups differed by 1-6% at | year, 15-26% at 3 years,
and 0-12% at 5 years; multivariate 95% confidence limits were overlapping in all instances.

Conclusion: Surgical resection, hemoglobin level, lymph node involvement, and superior vena
cava (SVC) obstruction all significantly impacted DSS. Apparent DSS for patients was influenced by
the statistical methods of assessment. This would be clinically relevant in the development or
improvement of clinical management strategies.
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Background

The Cox proportional hazards model [1] has been the
standard tool for multivariate assessments of the influ-
ence of prognostic/predictive factors for censored survival
data. It may encounter serious difficulties with departures
from the proportional hazards assumption, even when
the departures are not readily detected by commonly used
statistical analytic methods [2].

As well, it has been questioned whether a standard sur-
vival analysis framework is appropriate if there is an iden-
tifiable mixture of "cured" and "non-cured" patients [3-5],
for whom there may be distinguishably different factor
effects [4,6]. Various models have been used in the con-
text of censored patient data to assess the cured fraction,
e.g. Boag log-normal with a cure-fraction parameter [7],
modified-Boag model with covariates [6], Cox model for
grouped survival data [3], logistic mixture model [4], or a
Box-Cox transformation on the population survival func-
tion that includes both the mixture cure model and the
biologic promotion time cure model [5]. Generalizability
of survival analysis may be accomplished with flexible
models that comprehensively span a range of options,
such as the transformation cure model [5], or the Pettit
model [8] which encompasses both Cox and Generalized
F models. However, increases in model complexity may
affect study conclusions, leading to non-identifiability or
instability of results [4,5,9]. Higher level statistical
(research) assessment is operationally essential for com-
plex models.

Meanwhile, there is a clinical practice movement to the
use of real-time medical decision making tools like Adju-
vant! Online [10]. Users input prognostic/predictive fac-
tor data, and are quickly provided with estimated survival,
without the need to consult a statistician or consider
underlying modeling, which is provided within the soft-
ware. Modeling is operationally becoming a new de facto
staging system, which is iteratively updated by a provider
with accumulating literature-based evidence.

Our goal here was to compare disease-specific survival
(DSS) obtained by modeling of prognostic/predictive
effects for a few simple model systems, to set the stage for
a re-examination of commonly available clinical factors
for limited-stage small-cell lung cancer, where there is a
need to develop a new staging system. Standard Kaplan-
Meier and Cox modeling were used because of their prev-
alence in clinical practice, along with two different types
of log-normal models, the Boag cure-rate [7] and log-nor-
mal survival analysis [11].

Boag demonstrated more than five decades ago that a log-
normal model was appropriate for breast cancer patients
[7]- Royston [11] found that the prognosis for breast can-
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cer patients differed by up to a year, depending on
whether one utilized a Cox or log-normal assessment. Tai
et al. validated the Boag log-normal model for the estima-
tion of survival in patients with limited-stage small-cell
lung cancer (SCLC) [12]. Overduin used follow-up to
events in Tai's data to examine the goodness of fit for the
Weibull, gamma, and lognormal models [13]. The fit was
poor for both the Weibull and gamma (p < 0.001, in each
instance), while acceptable for the log-normal (p = 0.37).
Tai's updated long-term Saskatchewan patient cohort data
were used here for the model comparisons. We hypothe-
sized that there might be substantive differences in DSS
for the same limited-stage SCLC patients, if Boag log-nor-
mal (cure-rate model) [7], Kaplan-Meier [14], Cox [1],
and log-normal survival analysis [15,16] were used.

Methods

Patients

Between 1981 and 1998, 1417 cases of SCLC were diag-
nosed in Saskatchewan, Canada and entered in the Sas-
katchewan cancer electronic registry prospectively. Of
these, 244 had limited stage disease and were treated with
chemotherapy and thoracic radiotherapy delivered with
curative intent, with or without prophylactic cranial irra-
diation [12]. For the whole series, only six patients did not
have any chemotherapy. Cisplatin-containing regimen
was given to 54 patients. The remaining patients had non-
cisplatin-containing regimens.

To facilitate the comparison of the different fractionation
schemes used for radiotherapy, we calculated the biologi-
cally effective dose (BED) [17,18], using the linear-quad-
ratic model:

BED = nd><|:1+i:|
o/p

The median BED to the chest was 46.9 Gy, (range 22.6-
66.1), corresponding to a median dose of 37.5 Gy in 15
fractions within 19 days (range 20 Gy in 15 fractions
within 20 days to 60 Gy in 30 fractions within 44 days),
where Gy, is the BED when ¢/f is 10. Chemotherapy reg-
imens and radiotherapy techniques were those utilized by
clinicians during the study period. Current patient man-
agement may differ; however, the focus of this work is the
comparison of DSS assessed by different statistical meth-
ods in the same cohort of patients.

More detailed data for the current study were obtained
from the chart review for individual patients, followed to
the end of 2005 by a health record technician, and
checked by an oncologist (PT).
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Statistical Methods

Event

Death with or from lung cancer, for DSS, was the event of
interest here. The last recorded SCLC death was at 1966
days of follow-up (5.4 years), and the second last event
was at 1789 days (4.9 years). The lack of events after 1966
days precluded comparison after 5 years. Follow-up was
censored at death from other causes for the Kaplan-Meier,
Cox, and log-normal survival analyses. One patient had
unknown status at last follow-up, and was excluded from
the analyses since the Boag cure-rate model requires alive/
dead categorization for each patient, and where appropri-
ate, knowledge of type of death.

Statistical Modeling

Cox and log-normal survival analyses utilized both cen-
sored and uncensored data towards the estimation of a
common set of factor effects [19]. For these survival anal-
yses frameworks [19], we considered the values of the sur-
vivor functions at a time when few (or no) events are
expected as reasonable estimates of the proportion cured,
without specifying a cured-rate parameter [19].

Cox model

The Cox model assumes proportional hazards; this
assumption was checked graphically with plots of cumu-
lative hazard against follow-up time [19].

Log-normal models

Neither the Boag cure-rate nor log-normal survival analy-
sis require the Cox assumption of proportional hazards.
Both the Boag (log-normal) cure-rate model and log-nor-
mal survival analyses assume that the logarithm of lung
cancer survival time has a standard normal distribution;
quantiles obtained for times of SCLC cancer deaths were
utilized to check this assumption for the 2005 update
with a quantile-quantile (Q-Q) plot and a chi-square
goodness of fit test against the normal distribution.

|. Boag (log-normal) cure-rate model

Boag (log-normal) cure-rate modeling begins with the
classification of patients as being "cured" (C) or
"uncured" (1-C) at a particular length of follow-up [7], to
define four groups: Group 1 patients died of SCLC; Group
2 died without any SCLC; Group 3 were alive with no sign
of SCLC; Group 4 were alive with SCLC cancer present
either as local, regional or metastatic disease.

For the proportion who are not cured, 1-C, the survival
time T is assumed to be log-normally distributed; Y = In
(T) is normally distributed with mean p and variance 6?2
[7]- Generally, one has to jointly estimate C (>0), i, and
at some point in time when the group who will be classi-
fied as cured may include patients who are not cured,
although they have not yet had an event. Sufficiently long
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follow-up with a disease like lung cancer will minimize
misclassification, since it is well known that few lung can-
cer patients will recur after 4 or 5 years. C is estimated for
the full patient group. The focus of these investigations
was the estimation of DSS, as described below.

2. Log-normal survival analysis model

For all patients, the survival time T is log-normally distrib-
uted if Y = In (T) is normally distributed with mean p (= o
+ zf3), and variance 62, where z are covariate(s). A patient
without an event is censored at the last follow-up time for
that patient. There is no specific parameter to estimate the
proportion cured, but one is not needed since the survivor
function provides an estimate of the proportion cured at
any point in time, with the estimate improving as follow-
up time increases to a period when few (or no) events are
expected. The survivor function, S(t), is given by S(t) =1 -
@ [(In(t) - n)/o], where @ is the standard normal cumula-
tive distribution.

Statistical Analyses

Estimates of DSS using the Boag cure-rate model and Kap-
lan-Meier methods are based on outcomes in defined
(sub)groups of patients. Thus, to maintain maximal
power here, estimation with the Boag and Kaplan-Meier
methods required the full cohort of patients. We reported
DSS at 1-, 3- and 5-years and 95% confidence limits for all
patients, using the four methods: Boag log-normal, Kap-
lan-Meier, Cox, and log-normal survival analysis.

The following clinical factors were assessed for effect on
DSS in step-wise forward model building with both Cox
and log-normal survival analysis: gender, age, site of pri-
mary, side of lung cancer, lymphadenopathy, pleural effu-
sion, bronchial obstruction, superior vena cava
obstruction, surgical resection, performance status, weight
loss greater than 5% in 3 months, and hemoglobin level.
Continuous factor values were used where possible, along
with full patient follow-up.

Best medical practice in Saskatchewan, under the Cana-
dian National Health system was employed throughout
accrual of the patient cohort. In clinical practice, the
administration of more aggressive therapy to higher risk
patients may mask therapeutic benefit. Changing chemo-
therapy and radiotherapy management schema and the
small size of this cohort precluded investigations by cur-
rent practice categorizations: type of chemotherapy (plat-
inum vs. non-platinum), wuse of radiotherapy,
radiotherapy dose/schedule, lactic dehydrogenase (LDH)
or other lab results. Incomplete or no surgical resection in
230 (94%) of the 244 patients prevented the assignment
of TNM stage. We did not systematically collect smoking
history nor clinical history about prior malignancies or
other co-morbid diseases in the database. However, the
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extensive clinical follow-up for this cohort was useful for
the investigation's focus on survival analyses.

Boag log-normal analysis was performed with an Excel
programme [12], a computerization of Boag's original
spreadsheet, with some macros that improve efficiency of
the iterative maximization; it is available from PT on
request. Multivariate regressions and residual checks for
log-normal survival analyses were performed with
Dynamic 7.0 version of the Biomedical Data Package |20,
same as BMDP-XP: program 2L, for log-normal
("accel=lnormal.")]. All other analyses were performed
with SAS Version 9.1.3.

Cox and log-normal step-wise forward multivariate
regressions involved the addition of a factor if there was a
significant likelihood ratio test statistic (p <0.05 fora y?
test), and factors are reported here if p < 0.10 in both Cox
and log-normal survival analyses. Cox-Snell residual
checks were used to assess the final models for both Cox
and log-normal survival analyses, and standardized resid-
ual checks were made for the log-normal model.

When the same factors were indicated as significantly
affecting DSS with both the Cox and log-normal models,
categorizations of these factors were used to specify sets of
clinical characteristics of interest, for quantitation of DSS
by the two model-types. DSS was determined quantita-
tively at 1-, 3-, and 5- years, and graphically demonstrated
with survivor plots across the entire time period.

Results

The median follow-up of those alive was 9.5 years. One
hundred and eighty-four (75.7%) of the 243 patients died
from lung cancer: by 1 year, 42 of 238 (17.6%); by 3 years,
173 of 230 (75.2%); and by 5 years, 186 of 223 (83.4%).
There was no substantive evidence against the assumption
of proportional hazards. The times of lung cancer deaths
were reasonably consistent with the log-normal model
both in the Q-Q plot and by the chi-squared test (p =
0.42).

Table 1 shows the patient characteristics for this patient
cohort. Quantitative estimates of DSS were determined
for all patients using the Boag log-normal, Kaplan-Meier,
Cox, and log-normal survival analysis, and are listed in
Table 2. DSS assessed by the four methods in the full
cohort differed by 0-2% at 1 year, 0-12% at 3 years, and
0-1% at 5 years. Log-normal survival analysis indicated
DSS of 38% at 3 years, 10-12% higher than with other
methods; univariate 95% confidence limits were non-
overlapping.

Four factors were found to significantly affect DSS in both
multivariate Cox and log-normal survival analyses: surgi-
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cal resection (p = 0.01, with Cox; p = 0.001, with log-nor-
mal), hemoglobin level (p = 0.02, with Cox; p = 0.005,
with log-normal), lymph node involvement (p = 0.02,
with Cox; p = 0.04, with log-normal), and superior vena
cava (SVC) obstruction (p = 0.06, with Cox; p = 0.10, with
log-normal). These factors then became the focus for char-
acterizing patients and reporting DSS.

Categorizations of the four significant factors were used to
specify four sets of clinical characteristics which were
given ad hoc labels according to risk level:

1) Group A, low-risk: complete resection, hemoglobin >
100 for both sexes, no lymph node involvement, no SVC
obstruction;

2) Group B, intermediate risk #1: incomplete or no resec-
tion, hemoglobin > 100 for both sexes, no lymph node
involvement, no SVC obstruction;

3) Group C, intermediate risk #2: incomplete or no resec-
tion, hemoglobin < 100 for both sexes, no lymph node
involvement, no SVC obstruction;

4) Group D, high-risk: no resection, hemoglobin < 100
for both sexes, lymph node involvement, SVC obstruc-
tion.

(Please note: A hemoglobin cut-point of 100 is a medical
intervention level for both males and females. It is a value
that transfusion is generally recommended at during treat-
ment, irrespective of sex. Also, "incomplete or no resec-
tion" for groups B and C includes patients with no
surgery, or partial resection, who had residual disease after
surgery, and were treated with a combination of chemo-
therapy and radiotherapy.)

DSS by clinical risk groups, estimated using Cox and log-
normal models, is reported in Table 3. DSS assessed by the
Cox and log-normal survival analysis methods for 4 clini-
cal risk groups differed by 1-6% at 1 year, 15-26% at 3
years, and 0-12% at 5 years (Table 3). The multivariate
95% confidence limits for the year 1-, 3-, and 5-year esti-
mates of DSS with Cox and log-normal survival models
overlap in all instances.

The log-normal survivor plot (Figure 1) contains a
smooth modeling of DSS. The discontinuities observed in
the Cox plot (Figure 1) arise because DSS is adjusted at the
time of events.

These subgroup effects for the four factors indicated by
multivariate analyses, with both Cox and log-normal sur-
vival analyses, could not be considered here in a Kaplan-
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Table I: Patient characteristics (N = 244)
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Total number of patients 244
Sex:
Male 144
Female 100
Age: median 63.72 (range: 38.4-82.0)
Surgery:
Complete 14
Partial 3
no surgery 227
ECOG Performance Status:
75
| 150
2 Il
3 5
4 3
Weight loss:
> 5% 164
Unknown 21
Hemoglobin:
Male 128 low, 6 normal, 10 unknown
Female 66 low, 26 normal, 8 unknown

Chemotherapy cycles: median
Chest Biological Effective Dose: median

6 (range: 0 — 27)
46.9 Gy, (range: 22.6-66.1)

Gy o, biologically effective doses calculated using the linear-quadratic formula using an o/ = 10 for tumor tissue.

Meier framework. The subgroups contained a total of 8
patients and 4 events.

Discussion

Patient management decisions are made on the basis of
prognosis, or prediction about tumor responsiveness to
particular therapeutic regimens. Long-term evidence has
supported the relevance of TNM staging or other readily
ascertainable clinical characteristics. Kaplan-Meier plots
and Cox modeling have been standard assessment tools
for decades. Infrequently, other models like the Boag log-
normal or log-normal survival analysis have been utilized.
SCLC is a disease site for which it might be advantageous
to develop a new staging system since the requirement of
complete excision to define elements of TNM staging is
frequently not met; 94 percent of the patients in this

Table 2: DSS for full cohort of lung cancer patients (N = 243)

cohort did not have complete resection. We presented
here a case study that illustrates differences in DSS
obtained using the same patients and the above four
methods, each of which has underlying assumptions
which may be imperfectly met in any particular data.

Further, SCLC is a particularly good cancer site in which to
consider a cure rate framework as very few events are
expected after 5 years. The long accrual period (approx. 18
years) may be a limitation; however, the study population
is representative of patients treated in this era. With a
median follow-up of 9.5 years for these patients, the 5-
year DSS estimates should be stable, and the estimates by
the four methods differed by only 1%, to be 19 or 20%.
This is a survival rate that would be anticipated from the
literature.

Estimated disease-specific survival probabilities (in per cent, with 95% confidence intervals, Cl) at I, 3, and 5

years by different methods'

Methods: | 3 5

Boag 81 (79.,83) 28 (26,30) 19 (17,21)
Kaplan-Meier 82 (78,87) 26 (20,31) 19 (14,25)
Cox 82 (77,87) 26 (20,31) 19 (14,25)
Log-normal survival analysis 80 (76,83) 38 (33,43) 20 (17,24)

IBy | year, 42 of 238 (17.6%) of patients died from lung cancer; by 3 years, 173 of 230 (75.2%); and by 5 years, 186 of 223 (83.4%).
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Table 3: DSS by patient characteristics with Cox and Log normal analysis'

Group A — Low risk characteristics:

(complete resection, hemoglobin: = 100 for both sexes, no lymph node involvement, no SVC obstruction)

Estimated disease-specific survival probabilities (in per cent, with 95% confidence intervals, Cl) at I, 3, and 5

years by different methods

Methods: | 3 5
Cox 94 (87,97) 65 (38,82) 58 (31,78)
Log-normal survival analysis 98 (87,99.9) 82 (46,97) 64 (26,92)

Group B — Intermediate risk #1: (incomplete or no resection, hemoglobin: > 100 for both sexes, no lymph node involvement, no SVC obstruction)

Estimated disease-specific survival probabilities (in per cent, with 95% confidence intervals, Cl) at I, 3, and 5

years by different methods

Methods: | 3 5
Cox 91 (85,95) 52 (33,68) 45 (26,62)
Log-normal survival analysis 95 (77,99) 67 (32,91) 45 (16,78)

Group C — Intermediate risk #2: (incomplete or no resection, hemoglobin: < 100 for both sexes, no lymph node involvement, no SVC obstruction)

Estimated disease-specific survival probabilities (in per cent, with 95% confidence intervals, Cl) at I, 3, and 5

years by different methods

Methods: | 3 5
Cox 78 (31,95) 16 (0,67) Il (0,62)
Log-normal survival analysis 84 (55,97) 42 (14,76) 23 (5,56)

Group D — High risk characteristics: (no resection, hemoglobin: < 100 for both sexes, lymph node involvement, SVC obstruction)

Estimated disease-specific survival probabilities (in per cent, with 95% confidence intervals, Cl) at I, 3, and 5

years by different methods

Methods: | 3 5
Cox 66 (19,90) 5 (0,48) 3(0,41)
Log-normal survival analysis 67 (27,93) 22 (4,40) 9 (1,38)

I The subgroups contained a total of 8 patients and 4 events.

The survival rates and confidence limits are those which
could be reported for the four model-types, although
reports usually consider at most 1 or 2 methods. Formal
direct statistical tests are not possible between frame-
works, e.g. between the semi-parametric Cox and two par-
ametric log-normal models, nor even between Boag log-
normal cure rate and log-normal survival analysis. How-
ever, 95% confidence limits are provided for DSS
obtained by each method. DSS at 3 years was 38% with
log-normal survival analysis, 10-12% higher than with

other methods. Univariate 95% confidence limits for log-
normal survival analysis did not overlap with those
obtained for any of the other methods. In the breast can-
cer setting, Royston [11] observed that prognosis by
model-type differed by up to a year depending on whether
a Cox or log-normal model was used, and Chapman, et al
[16] found up to 8% absolute difference by model-type.
Large differences in survival estimates appear possible
according to whether one uses a Cox or log-normal
model.
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Cause-Specific Mortality
Log-Normal Model versus Cox Model
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Cause-specific mortality by log-normal and Cox models. 1) Group A, low-risk: complete resection, hemoglobin = 100 for both
sexes, no lymph node involvement, no SVC obstruction; 2) Group B, intermediate risk #1: incomplete or no resection, hemo-
globin > 100 for both sexes, no lymph node involvement, no SVC obstruction; 3) Group C, intermediate risk #2: incomplete or
no resection, hemoglobin < 100 for both sexes, no lymph node involvement, no SVC obstruction; 4) Group D, high-risk: no
resection, hemoglobin < 100 for both sexes, lymph node involvement, SVC obstruction.

The much narrower range in confidence limits for the
Boag model reflects that the DSS estimates are for those
who have died, while the other three methods incorporate
the uncertainty from censored survival times. Further, the
Boag model fits an extra parameter, C, for the proportion
cured. The estimate of proportion cured, at a time when
few or no events are expected, is derived directly with the
survivor function for the Cox and log-normal survival
analysis models.

The assessments in this cohort for both the Boag and Kap-
lan-Meier were limited to those with the full patient group
due to the size of the SCLC patient cohort which pre-
cluded subgrouping with the four factors indicated by
multivariate analyses, while more extensive modeling was
possible for specific patient characteristics with both Cox
and log-normal survival analysis. Apparent differences in

DSS of up to 26% at 3-years were seen between these latter
two model-types, although all the multivariate 95% con-
fidence limits for the 2 methods overlap. The variability
will reflect patient heterogeneity, the imprecise nature of
the particular clinical factors investigated, inadequacy of
the Cox and log-normal modeling, and sample size. More
precise molecular or genomic factors would eventually
provide better precision, but could still involve the same
assessment methods. Again, large differences between
apparent prognosis with the Cox and log-normal survival
models have been seen by others: up to a year's difference,
by Royston [11]; and up to 8% absolute difference, by
Chapman et al. [16]. Absolute differences at 5-years varied
less: respectively, 5, 0, 12, and 6%, for patient Groups A-
D.
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The Cox plot presents discontinuous estimates of DSS, as
would the Kaplan-Meier, as DSS is adjusted at events. The
Boag model requires the estimate of one more parameter,
the cure fraction, which while reasonable in a lung cancer
population might not be appropriate for many other can-
cers with short or medium follow-up. Royston [11]
described the log-normal model as a pragmatic tool that
provides a continuous estimate. Where the model-type is
concordant with the data, smooth log-normal survival
analysis may be advantageous over the semi-parametric
proportional hazards model. The Cox adjustments at
events may unduly alter estimates of DSS at the end of the
study period when there are few patients left. In this
instance, with few lung cancer deaths expected after 5
years, the DSS estimates should approximate the propor-
tion of patients who are likely 'cured'.

In this study, Groups A to D represent examples of combi-
nations of clinical characteristics for which DSS was deter-
mined based on modeling for all patients, rather than
subgroup analyses. The main objective of the study was to
illustrate the use of different statistical methods to analyze
the effects of prognostic/predictive factors on DSS at dif-
fering time points. The data used for these investigations
accrued from an eighteen year Provinicial cohort of data,
recognized externally for its excellence. Unfortuneately,
only 244 of the 1417 patients had limited stage disease,
and were considered to have received curative manage-
ment, so they were eligible for these DSS investigations.
These investigations are hypothesis generating, requiring
external validation in a much larger series. However, fol-
low-up to 5 years was complete for 223/243 (92%) of
patients. The reason for considering estimates of 5 year
rates was that this would provide the best estimate of the
"cured fraction".

Different factors may have been described from addi-
tional studies because of the exclusion of factors, small
numbers of patients, different patient population, extent
of disease and follow-up. Newer factors mentioned in
studies include: neuron-specific enolase (NSE) [21],
Cyfra21-1 [22], integrin betal [23,24], p53 [21], and cyto-
plasmic MAPK [25].

Conclusion

In conclusion, among different factors tested, surgical
resection, hemoglobin level, lymph node involvement,
and SVC obstruction were found to have significant effects
on DSS, regardless of model-type. When one attempts to
re-evaluate available data aiming towards the formation
of a new staging system, different statistical methods are
available. Estimation of DSS for patients was influenced
by the statistical assessment method. Parametric models
should be considered more frequently for survival analy-
sis to assess prognostic and predictive effects; like Royston
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[11] and Chapman et al. [16], we found here that the log-
normal was an appropriate parametric model choice.
Multiple methods may be clinically relevant in the devel-
opment or improvement of clinical management strate-
gies; a software tool might provide estimates with several
survival models.
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