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Background
Hepatocellular carcinoma (HCC), the primary malignancy
of the liver, is the third most common cause of cancer-

Abstract

Background: Retinoids are used to treat several types of cancer; however, their effects on liver
cancer have not been fully characterized. To investigate the therapeutic potential of retinoids on
hepatocellular carcinoma (HCC), the present study evaluates the apoptotic effect of a panel of
natural and synthetic retinoids in three human HCC cell lines as well as explores the underlying
mechanisms.

Methods: Apoptosis was determined by caspase-3 cleavage using western blot, DNA double-
strand breaks using TUNEL assay, and phosphatidylserine translocation using flow cytometry
analysis. Gene expression of nuclear receptors was assessed by real-time PCR. Transactivation
assay and chromatin immunoprecipitation (ChIP) were conducted to evaluate the activation of
RXRa/RARP pathway by fenretinide. Knockdown of RARB mRNA expression was achieved by
siRNA transfection.

Results: Our data revealed that fenretinide effectively induces apoptosis in Huh-7 and Hep3B cells.
Gene expression analysis of nuclear receptors revealed that the basal and inducibility of retinoic
acid receptor B (RARP) expression positively correlate with the susceptibility of HCC cells to
fenretinide treatment. Furthermore, fenretinide transactivates the RXRo/RARB-mediated pathway
and directly increases the transcriptional activity of RARB. Knockdown of RAR mRNA expression
significantly impairs fenretinide-induced apoptosis in Huh-7 cells.

Conclusion: Our findings reveal that endogenous expression of retinoids receptor RARP gene
determines the susceptibility of HCC cells to fenretinide-induced apoptosis. Our results also
demonstrate fenretinide directly activates RARP and induces apoptosis in Huh-7 cells in 2 RARS-
dependent manner. These findings suggest a novel role of RARP as a tumor suppressor by
mediating the signals of certain chemotherapeutic agents.

related mortality worldwide [1]. HCC is highly resistant to
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available chemotherapy, resulting in a 5-year relative sur-
vival rate of less than 7% [2]. Thus, discovery of new and
effective therapies against HCC is much needed.
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Retinoids, the natural and synthetic derivates of vitamin A,
has a long history in clinical application in addition to its
roles as an essential nutrient. Historically, Egyptians used
roasted ox liver, which is rich in vitamin A, to treat night
blindness. Nowadays, physicians prescribe drugs contain-
ing retinoids to treat dermatological disorders and leuke-
mia. Moreover, data from experimental animal models and
preclinical, epidemiological, and clinical studies suggest
that retinoids may also have chemopreventive and antican-
cer effect. The best example of retinoid anticancer effect is
the retinoic acid (RA) differentiation therapy for acute pro-
myelocytic leukemia (APL) [3]. The use of RA has changed
the clinical course of APL from a highly lethal to a curable
leukemia, therefore establishing the prototype of retinoid-
based therapies and the rationale for the use of retinoids in
the treatment and prevention of cancer [4]. In addition,
retinoids have been used either alone or in combination
with other chemotherapeutic agents to treat other types of
cancer and precancerous lesions. The anti-proliferative
effect of tamoxifen is synergistically enhanced when used in
combination with retinoids [5].

Retinoids also show promising effects in adjuvant therapy
for HCC [6]. However, the therapeutic potentials of retin-
oids against HCC have not been extensively investigated. In
the present study, we initiated a comprehensive screening
including most commercially available retinoids on three
widely used human HCC cell lines for apoptosis induction.
Agree with previous studies [7,8], we found that fenretinide
(N-[4-hydroxyphenyl] retinamide or 4HPR) induces apop-
tosis in Hep3B cells. In addition, we found that fenretinide
also effectively induces apoptosis in Huh-7 cells. In con-
trast, HepG2 cells are resistant to fenretinide treatment. To
elucidate the mechanisms underlying the observed differ-
ential susceptibility, gene expression analysis of twelve
nuclear receptor genes were assessed by real-time PCR. Our
data strongly suggest that the susceptibility of HCC cells to
fenretinide treatment is determined by the basal and the
induced expression level of RARB. Furthermore, we showed
that fenretinide directly activates RARB in Huh-7 cells.
Finally, the RARB-deficient Huh-7 cells exhibited marked
reduction of fenretinide-induced apoptosis. Based on these
findings, we conclude that, in Huh-7 cells, fenretinide
directly activates RARB and induces apoptosis in a RAR-
dependent manner.

Methods

Reagents

The retinoids used in this study are grouped into three cat-
egories: (1) carotenoids including B-carotene, lycopene,
and lutein; (2) classic retinoids including all-trans retinol
palmitate, retinol acetate, 9-cis retinaldehyde, 13-cis reti-
nol, 13-cis retinaldehyde, 13-cis retinoic acid, and fenreti-
nide; (3) receptor-specific retinoids including all-trans
retinoic acid (ligand for RAR), 9-cis retinoic acid (ligand
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for both RAR and RXR), and TTNPB (4-(E-2-[5,6,7,8-tet-
rahydro-5,5,8,8-tetramethyl-2-naphthalenyl]-1-prope-
nyl) benzoic acid) (ligand for RAR). B-Carotene, lyco-
pene, all-trans retinol palmitate, 9-cis retinaldehyde, 13-
cis retinol, fenretinide, all-trans retinoic acid, 9-cis retin-
oic acid, and TTNPB were purchased from Sigma-Aldrich
(St. Louis, MO). Lutein was purchased from US Biological
(Swampscott, MA). Retinol acetate and 13-cis retinalde-
hyde were purchased from Toronto Research Chemicals
(North York, Canada). 13-cis retinoic acid was purchased
from BIOMOL (Plymouth Meeting, PA). Retinoids were
dissolved in dimethyl sulfoxide (DMSO) at 10 mM as the
stock solution and stored at -80°C. Retinoids were diluted
with serum-free medium to a 10 uM final concentration
immediately before use. The final concentration of DMSO
in the culture medium was 0.1% in all treatments. Because
retinoids are light sensitive, all retinoid treatments were
conducted under dim light.

Cell culture

Huh-7 cells were cultured in Dulbecco's Modification of
Eagle's Medium and HepG2 and Hep3B cells were cul-
tured in Minimum Essential Medium (Mediatech, Hern-
don, VA). The media were supplemented with 10% fetal
calf serum (FBS) (Atlanta Biologicals, Lawrenceville, GA).
Cells were cultured at 37°C in 5% CO, atmosphere with
a relative humidity of 95%. Cells were plated with approx-
imately 1 x 106 cells per T-25 flask and cultured overnight.
The next morning cells were rinsed with PBS to remove
FBS and incubated with individual retinoids (10 pM) in
serum-free media for three days or as otherwise indicated.
Fresh medium containing individual retinoids was pro-
vided every 24 hours. Cell viability was determined by
trypan blue exclusion counting with a hemocytometer.
Every sample was counted in triplicates.

Immunoblotting and antibodies

Detached cells from individual retinoid treatments were
collected every 24 hours and combined at the end of the
treatment. Cells were lysed with lysis buffer (50 mM
Tris- Cl pH 7.4, 150 mM NacCl, 2 mM EDTA, 0.1% SDS,
1% (V/V) NP-40 with protease and phosphatase inhibi-
tors (Pierce, Rockford, IL)). Equal amounts of lysates (50
ug total protein) were run on SDS-PAGE and electroblot-
ted onto PVDF membrane (Bio-Rad, Hercules, CA). The
membranes were first incubated with PBS supplemented
with 0.1% Tween 20 and 5% nonfat dry milk (PBST-milk)
for 1 hour at room temperature to block nonspecific bind-
ing sites. Immunostaining was performed by incubating
the membranes with primary antibodies for caspase-3
(Cell Signaling, Beverly, MA) or B-actin (Santa Cruz, Santa
Cruz, CA) in PBST-milk overnight at 4°C. After three
washes in PBST, membranes were incubated with the
appropriate horseradish peroxidase-conjugated secondary
antibodies for 1 hour in PBST-milk followed by three
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washes. Signal was detected using the ECL system Super-
Signal West Pico Chemiluminescent Substrates (Pierce,
Rockford, IL).

Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assay

Cells (5 x 104) were plated into chamber slides (BD, Fran-
klin Lakes, NJ) in medium supplemented with 10% FBS
and cultured overnight to attach. The next morning, cells
were washed with PBS and incubated with fenretinide (10
uM) in serum-free medium for 24 hours followed by
TUNEL staining using an in situ cell death detection kit
(Roche Applied Science, Indianapolis, IN) according to
the manufacturer's instruction.

Flow cytometry

Cells (1 x 10°) were plated into T-25 flasks in medium sup-
plemented with 10% FBS and cultured overnight to attach.
The next morning, cells were washed with PBS and incu-
bated with fenretinide (10 uM) for 24, 48, or 72 hours.
Medium containing fresh fenretinide were provided every
24 hours. Attached cells were collected at each time point
and processed for Annexin V-FITC and propidium iodide
double staining using Annexin V-FITC Apoptosis Detection
kit (BD Biosciences, San Jose, CA) according to the manu-
facturer's instruction. Samples were then analyzed for
Annexin V-FITC positive cells on a Fluorescence Activated
Cell Sorter (FACS) (BD Biosciences, San Jose, CA).

Total RNA preparation

Total RNA was extracted with TRIzol reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer's instruc-
tion. RNA was quantified and assessed for purity on a UV
spectrophotometer.

Reverse transcription and real-time PCR

Total RNA (1 ng) was reverse-transcribed with oligo (dT)
primer and M-MLVRT reverse transcriptase (Invitrogen,
Carlsbad, CA) for cDNA synthesis. cDNA corresponding
to 32 ng total RNA was used as the template in a 20 pl real-
time PCR reaction with the ABI TagMan Universal PCR
Master Mix (Applied Biosystems, Foster City, CA) and the
appropriate primer pair and Tagman probe. All primer
pairs and Tagman probes were designed with Primer
Express software v2.0 (Table 1). Real-time PCR was con-
ducted using the ABI Prism 7300 real-time PCR system
(Applied Biosystems, Foster City, CA). The quantification
analysis for target gene expression was performed using
the relative quantification comparative CT method [9].

Transactivation assay

Cells (1 x 105 cells per well) were cultured overnight in 24-
well plates and then transfected with different plasmids
using Lipofectamine (Invitrogen, CA) according to the
manufacturer's instruction. A luciferase reporter construct
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harboring a retinoic acid response element (RARE/DR5)
(300 ng) and expression plasmids for RXRa and RARB (50
ng) (provided by Dr. Ronald Evans, Salk Institute, CA)
were used for co-transfection. A Renilla luciferase expres-
sion plasmid (10 ng) was also included in co-transfection
for normalization of transfection efficiency. Cells were
then treated with either DMSO or fenretinide (10 uM) for
48 hours. Fresh medium containing fenretinide was pro-
vided every 24 hours. After 48 hours, cells were harvested
and firefly and renilla luciferase activities were measured
using the Dual Luciferase Reporter Assay System
(Promega, Madison, WI) in a luminometer.

Chromatin immunoprecipitation (ChIP) assay

ChIP was performed using the ChIP assay kit from
Upstate (Charlottesville, VA) and antibodies specific for
RARB (1:600, Santa Cruz, Santa Cruz, CA). Control ChIP
was performed using a normal rabbit IgG (Santa Cruz,
Santa Cruz, CA). The immunoprecipitated DNA frag-
ments were amplified by PCR with primer pairs encom-
passing the proximal RARE of human RARB or CYP26A1
gene (RARB: sense 5'-TGGGTCATITGAAGGITAG-3', anti-
sense 5'-GTTCTCGGCATCCCAGTC-3'; CYP26A1: sense
5'-CCGCAATTAAAGATGAACT-3', antisense 5'-TACAG-
GTCCCAGAGCTTGAT-3").

siRNA transfection

Scramble siRNA and pre-designed siRNA for human RARJ
gene were purchased from Ambion (Austin, TX). Huh-7
cells were transfected with siRNA (10 nM per 1 x 105 cells)
using Lipofectamine™ RNAiIMAX Transfection Reagent
(Invitrogen, Carlsbad, CA) following the manufacturer's
instruction. Cells were harvested 48 hours post-transfec-
tion for evaluation of RARB knockdown efficiency.

Statistical analysis

Data are presented as mean + S.E.M. Statistical analysis
was performed using Student's t-test or one-way ANOVA.
Significance was defined by p < 0.05.

Results

Fenretinide induces apoptosis in Huh-7 and Hep3B cells,
but not in HepG2 cells

Several studies have shown that retinoids have anti-prolif-
eration or apoptotic effects in certain cancer cells [4]. To
assess the effect of retinoids on HCC cells, we examined
cell viability and caspase-3 cleavage induced by individual
retinoids in three human HCC cell lines (Figure 1). As an
initial screening, 10 uM was used for all the tested retin-
oids. This dose might be high for certain retinoids, how-
ever, besides apoptosis, no obvious cytotoxicity was noted
during the 3-day treatment. In Huh-7 cells, nine out of
thirteen retinoids decreased cell viability, with fenretinide
being the most effective one (79% decrease in cell number
compared with DMSO treatment). Fenretinide also
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Table I: Real-time PCR primers and probes used in this study
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Target Gene Gene Bank Primer Sequence (5'-3") Sequences Probe Sequence (5'-3")with modification of
Acession NO. are shown for forward (F) and reverse 5' FAM/3' BHQI
(R) primers
hRARa NM_000964 F GACAAGTCCTCAGGCTACCACTATG CTGCAAGGGCTTCTTCCGCCG
R GTACACCATGTTCTTCTGGATGCT
hRARp NM_000965 F  TCTCAGTGCCATCTGCTTAATCTG CCAGGACCTTGAGGAACCGACAAAAG
R CCAGCAATGGTTCTTGTAGCTTATC
hRARy NM 000966 F GCTGCAAGGGCTTCTTTCG CGAAGCATCCAGAAGAACATGGTGTAC
R CAGTTTTTGTCGCGGTGACA
hRXRa NM_002957 F  TCCTTGGAGGCCTACTGCAA CAGCCGGGAAGGTTCGCTAAGC
R GCATTTGAGCCCGATGGA
hRXRpB NM 021976 F  AGCAGCAGGGACGGTTTG AAGCTGCTGCTACGTCTTCCTGCCC
R GCTCTAGACACTTAAGGCCAATGG
hRXRy NM_006917 F ACCTTGGAGGACCAGGTCATT TGCTTCGGGCAGGGTGGAATG
R GGAGAAAGAGGCAATCAGCAA
hNur77 NM_002135 F  AGCATTATGGTGTCCGCACAT TGAGGGCTGCAAGGGCTTCTTCAA
R TTGGCGTTTTTCTGCACTGT
hNurrl NM_006186 F TGGGATGGTCAAAGAAGTGGTT TTTAAAAGGCCGGAGAGGTCGTTTGC
R TGGGCTCTTCGGTTTCGA
hNORI NM_006981 F  ATGCCCTTGTCCGAGCTTT AACACCCAGAGATCTTGATTATTCCAGA
R AGCCTGGTCAGTGGGACAGT
hCAR NM_005122 F CACATGGGCACCATGTTTGA TTTGTGCAGTTTAGGCCTCCAGCTCATCT
R AAGGGCTGGTGATGGATGAA
SXR NM_003889 F  TCCCCAAATCTGCCGTGTAT ACAAGGCCACTGGCTATCACTTCAATGTCA
R AGCCCTTGCATCCTTCACAT
hPPARa NM_005036 F  AGCTCCCGTATCTTTTGTTATGTTG GTCTGCGCTCCAGAGAGCATCTACTGTCA
R TCGATCCGCAGGGTGACT
hB-Actin NM 001101 F CCTGGCACCCAGCACAAT ATCAAGATCATTGCTCCTCCTGAGCGC
R GCCGATCCACACGGAGTACT

induced the strongest caspase-3 cleavage in detached
Huh-7 cells and 9-cis retinoic acid caused a modest induc-
tion (Figure 1A). In HepG2 cells, although all retinoids
examined significantly decreased cell viability, only 9-cis
retinoic acid induced weak caspase-3 cleavage (Figure 1B).
In Hep3B cells, six out of thirteen retinoids decreased cell
viability, whereas another three retinoids increased cell
number (Figure 1C). 9-cis retinoic acid, fenretinide,
TTNPB, and lutein induced strong caspase-3 cleavage in
Hep3B cells (Figure 1C). These findings indicate that fen-
retinide induces apoptosis in both Huh-7 and Hep3B
cells, but not in HepG2 cells.

To further confirm the differential responses of Huh-7
and HepG2 cells to fenretinide, both cell lines were
treated with fenretinide and assessed for caspase-3 cleav-
age, DNA double-strand breaks, and phosphatidylserine
translocation in a time course study. In Huh-7 cells, cas-
pase-3 cleavage was detected at as early as 24 hours after
treatment, and the induction was sustained at 48 and 72
hours. In HepG2 cells, however, even after 72 hours treat-
ment, no obvious caspase-3 cleavage was detected (Figure
2A). DNA double-strand breaks, another hallmark of

apoptosis, assessed by the TUNEL assay, were detected in
Huh-7 cells after treatment (Figure 2B). In contrast, no sig-
nificant increase in DNA double-strand breaks was
detected in HepG2 cells after treatment (Figure 2B). Some
background TUNEL staining was detected in HepG2 cells
possibly due to the endogenous peroxidase activity. In
addition, during apoptosis, membrane lipid phosphati-
dylserine translocates from the inner leaflet of the plasma
membrane to the outer leaflet, resulting in loss of cell
membrane asymmetry. Fenretinide induced phosphati-
dylserine translocation in Huh-7 cells in a time-depend-
ent manner, reaching 17-fold after 72 hours (Figure 3A).
However, fenretinide failed to induce such changes in
HepG2 cells even after a 3-day treatment (Figure 3B).
Taken together, these findings convincingly demonstrate
that Huh-7 cells are susceptible to fenretinide-induced
apoptosis, but HepG2 cells are resistant.

High basal and inducibility of RAR/3 gene expression in
HCC cells is associated with their susceptibility to
fenretinide-induced apoptosis

To determine whether nuclear receptors mediate the
apoptotic effect of fenretinide in HCC cells, the basal
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Figure |

Retinoids decrease cell viability and induce caspase-3 cleavage in HCC cells. Huh-7 (A), HepG2 (B), and Hep3B cells
(C) were incubated in serum-free medium containing individual retinoids (10 M) for three days. Viable cells were counted and
presented as a relative fold of DMSO treatment. Caspase-3 cleavage in detached cells was determined by Western blot. (* p <
0.05, ** p < 0.01 compared to DMSO treatment). Data were presented as mean * S.E.M. Cells were counted in triplicates.

Western blot results shown were representative results of two independent experiments.
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mRNA levels of twelve nuclear receptors were assessed by
real-time PCR (Figure 4A). Among the three cell lines,
Huh-7 cells have the highest basal mRNA levels of RAR,
RXRa, and an orphan nuclear receptor Nurr1 (also known
as NR4A2). Hep3B cells have the second highest mRNA
levels of RARP and Nurrl. In contrast, in HepG2 cells, the
basal mRNA level of RARB is undetectable. On the other
hand, in HepG2 cells, the basal mRNA levels of SXR (ster-
oid and xenobiotic receptor) and CAR (constitutive
androstane receptor), two xenobiotic sensors that mediate
many xenobiotic responses, are the highest among the
three cell clines.

http://www.biomedcentral.com/1471-2407/7/236

The regulation of these twelve nuclear receptor genes by
fenretinide were then evaluated in Huh-7 and HepG2
cells by real-time PCR. The induction fold was calculated
by comparing the mRNA level of each nuclear receptor
gene between DMSO and fenretinide treatment at each
time point. Only those genes that showed marked
changes in expression were presented. In Huh-7 cells, fen-
retinide caused a continuous induction of RARf mRNA
level (Figure 4B). After 48 hours of treatment, mRNA lev-
els of RARa and y were also highly induced in Huh-7 cells
(Figure 4B). In contrast, a 9-fold induction of RARP was
detected 6 hours after fenretinide treatment in HepG2
cells, and then the induction dropped down to 3-5 fold
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Fenretinide causes caspase-3 cleavage and DNA double-strand breaks in Huh-7 cells but not in HepG2 cells.
Huh-7 and HepG2 cells were treated with either DMSO or fenretinide and analysed for caspase-3 cleavage by Western blot
(A) and DNA double-strand breaks by TUNEL assay (B). TUNEL positive counting was presented as a relative fold of DMSO
treatment, and the staining was representative result of two independent experiments. Data were shown as mean + S.EM. (* p

< 0.05, ** p < 0.0] compared with DMSO treatment).
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Figure 3

Fenretinide causes phosphatidylserine translocation in Huh-7 cells but not in HepG2 cells. Huh-7 (A) and HepG2
cells (B) were treated with fenretinide and analysed for phosphatidylserine translocation by flow cytometry analysis. The per-
centage of cells with phosphatidylserine translocation was presented as a relative fold of DMSO treatment. Flow cytometry
data were representative results from three independent experiments. Data were shown as mean + S.EM. (¥ p < 0.05, ¥ p <
0.0l compared with DMSO treatment).
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later on. NOR1 (NR4A3) mRNA was induced 6-fold after
48 hours treatment in HepG2 cells (Figure 4C). Further-
more, by comparing the RARB mRNA level between Huh-
7 and HepG2 cells after fenretinide treatment, our data
revealed a dramatic difference in RARB mRNA level
between these two cell lines (Figure 4D). Taken together,
these data clearly depict a positive correlation between
RARB mRNA level and susceptibility to fenretinide-
induced apoptosis, which suggests that RARP may play an
important role in mediating fenretinide-induced apopto-
sis in HCC cells.
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Fenretinide activates RXRca/RAR-mediated pathway

It is known that RARP induces it own expression upon
stimulation by RAR ligands [10]. Since fenretinide is a
synthetic retinoid whether it can directly activate RARP
remains to be tested. So we examined whether fenretinide
activates RARP. We first tested whether fenretinide can
activate the RXRa,/RARB-mediated pathway by transacti-
vation assay (Figure 5). Fenretinide caused a marked
induction of luciferase activity in Huh-7 cells (43-fold)
and in CV-1 cells (13-fold) (Figure 5A and 5B). In con-
trast, fenretinide did not significantly increase luciferase
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RARJ expression in HCC cells positively correlates with the susceptibility to fenretinide. (A) Basal expression
profile of twelve nuclear receptor genes in Huh-7, HepG2, and Hep3B cells. (B) Fenretinide induced nuclear receptors RARa,
3, and y mRNA in Huh-7 cells. (C) Fenretinide induced RAR[3 and Norl mRNA in HepG2 cells. (D) Comparison of RARf
mRNA level between Huh-7 and HepG2 cells after fenretinide treatment (relative fold of RARP level between Huh-7 and
HepG2 cells). Data from two independent experiments were presented as mean + S.E.M.
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Fenretinide transactivates RXRo/RARB-mediated
pathway in Huh-7, CV-I cells, but not in HepG2 cells.
Huh-7 (A), CV-1 (B), and HepG2 (C) cells were transfected
with a luciferase reporter harboring RARE (DR-5) and
expression plasmids for RXRa and RARB. Firefly luciferase
activity was normalized by co-transfected Renilla luciferase
activity. The histograms depict the relative fold of normalized
luciferase reporter activity between fenretinide treatment
and DMSO treatment. Data from triplicates were presented
as mean * S.EM.

activity in HepG2 cells (Figure 5C). These data indicate
that fenretinide can transactivate RXRa,/RARB-mediated
pathway in Huh-7 but not in HepG2 cells. As shown in
Figure 4C, a modest induction of RARB mRNA was seen in
HepG2 cells 6 hours after fenretinide treatment, but no
sustained induction at 48 hours. Consistently, no signifi-
cant increase in luciferase activity, which was measured 48
hours after fenretinide treatment, was detected in HepG2
cells.

Fenretinide increases the transcriptional activity of RARS
in Huh-7 cells

The most direct evidence of RARP activation is the
increased binding of RARB to the response elements in

http://www.biomedcentral.com/1471-2407/7/236

retinoid target genes. It is known that RARP binds to the
RARE in its own promoter upon RA treatment [10,11].
One of the classic RAREs, a 5-bp spaced direct repeat
(DR5), was found in the promoter of RARB [10]. Another
well established retinoid target gene is cytochrome P450
26A1 (CYP26A1), an enzyme that catalyzes the break-
down of retinoic acid to more polar metabolites [10]. Two
RARESs have been found in the promoter of CYP26A1, one
in the proximal region and the other in the distal region
[12]. Using chromatin immunoprecipitation (ChIP)
assay, the direct binding of RARB to the RAREs in RARB
and CYP26A1 upon fenretinide treatment was revealed.
Fenretinide increased the binding (14-fold) of RAR to its
own promoter compared with DMSO treatment (Figure
6A). An even higher increase (27-fold) of RAR binding to
the CYP26A1 promoter was also noted (Figure 6B).
Together, these results demonstrate that fenretinide
directly activates RAR.

Knockdown of RAR mRNA expression by siRNA reduces
fenretinide-induced apoptosis in Huh-7 cells

To determine the role of RARP in mediating fenretinide-
induced apoptosis, the endogenous RARB mRNA expres-
sion in Huh-7 cells was knocked down using siRNA. The
knockdown efficiency of RARP by three sequence-inde-
pendent siRNA oligonucleotides was evaluated by real-
time PCR. Three siRNAs silenced RARP gene expression to
different extents, the most efficient knockdown being
86% (siRNA #4124) compared with scramble siRNA, fol-
lowed by 81% (siRNA #3935) and 68% (siRNA #4030)
(Figure 7A). The apoptotic effect of fenretinide was then
evaluated in these RARP-deficient cells. Our results
showed that DNA double-strand breaks induced by fen-
retinide were markedly reduced in RARB-deficient Huh-7
cells (Figure 7B). Consistent with RARB knockdown level,
the greatest reduction of apoptosis (88.6%) was seen in
the cells with the lowest endogenous RARB mRNA level
(cells transfected by siRNA #4124 with 86% knockdown
of RARB mRNA), followed by 83.1% in cells transfected
by siRNA # 3935 with 81% knockdown of RAR mRNA,
and 70.7% in cells transfected by siRNA # 4030 with 68%
knockdown of RARB mRNA. These data clearly demon-
strate that fenretinide-induced apoptosis of Huh-7 cells is
RARP dependent.

Discussion

Retinoids have emerged as important signaling molecules
in the regulation of cellular homeostasis. During the past
decade, the knowledge on the mechanisms of retinoids
action has been greatly expanded due to the discovery and
characterization of retinoid receptors and the consensus
RAREs in retinoid target genes [13]. Retinoid receptors are
ligand-dependent transcription factors that regulate
expression of retinoid target genes upon activation [10].
One retinoid receptor, RARB, has been speculated as a
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Figure 6

Fenretinide increases the transcriptional activity of
RAR(. Huh-7 cells were treated with fenretinide for 24
hours followed by ChlIP assay. (A) RARP and (B) CYP26AI
promoter fragments (harboring RARE) bound by RARf were
immunoprecipitated with a specific antibody against RARB
and amplified by PCR. Representative PCR results from two
independent experiments were shown. The histograms
depict the relative fold of PCR band intensity (after normal-
ized to the corresponding input) between fenretinide treat-
ment and DMSO treatment.

tumor suppressor in several studies. Decreased RARf
expression was found in head and neck squamous cell car-
cinoma [14], premalignant oral lesions [15], and esopha-
geal squamous cell carcinoma [16]. Suppression of RARP
causes resistance to retinoic acid-associated growth arrest
in breast and prostate cancer cells [17] and in F9 teratocar-
cinoma cells [18]. Induced RARP expression sensitizes
non-small cell lung cancer cells and colorectal cancer cells
to the anticancer effects of retinoids [19]. However, how
RARP exerts its role as a tumor suppressor is largely
unknown.

http://www.biomedcentral.com/1471-2407/7/236

In the present study, we identified fenretinide from a
panel of retinoids and carotenoids as the most effective
one in inducing apoptosis in HCC cells. We further iden-
tified RARP as the key nuclear receptor in mediating the
effect of fenretinide. Moreover, evidence from this study
clearly demonstrates that fenretinide directly activates
RARP and that RARP is required for fenretinide-induced
apoptosis in Huh-7 cells. Thus, the novel finding of the
current study is the identification of a positive correlation
between RARP expression and the susceptibility of HCC
cells to fenretinide. This finding suggests a role of RARp in
determining the sensitivity of HCC cells to certain chem-
otherapeutic agents, which may also hold true for other
types of tumor cells.

In fenretinide-resistant HepG2 cells, not only the basal
RARPB mRNA level was low, but also the induction of
RARB mRNA by fenretinide was modest and discontinu-
ous. It was known that the promoter of the RARP gene is
frequently hypermethylated in acute myeloid leukemia
and cholangiocarcinoma [20,21]. Using DNA methyl-
transferase inhibitor, the basal RARB mRNA level in
HepG2 cells did not increase (unpublished data) suggest-
ing promoter methylation might not account for the sup-
pressed RARPB mRNA expression in HepG2 cells.

Similar to the expression pattern of RARf mRNA in HCC
cells, the basal expression of Nurrl is much higher in
Huh-7 than in HepG2 cells suggesting Nurrl might also
contribute to the observed differential susceptibility. The
basal expression level of Nur77 in Huh-7 and HepG2 cells
also correlates with the sensitivity of the cell line to fen-
retinide-induced apoptosis. Nur77 was shown to enhance
RARE activity in transactivation assay [22]. Furthermore,
recently studies suggest that Nur77 translocates to mito-
chondria and interacts with Bcl-2 to promote apoptosis
[23,24]. Therefore, the role of Nur77 in fenretinide-
induced apoptosis warrants further investigation.

Another major difference regarding the nuclear receptor
basal expression pattern is that HepG2 cells express higher
basal levels of CAR and SXR mRNA than Huh-7 cells. It is
known that activation of CAR or constitutive activation of
SXR induces hepatomegaly in mice [25-27]. Whether the
high levels of CAR and SXR contribute to the resistance of
HepG2 cells to fenretinide-induced apoptosis should be
investigated.

Fenretinide seems to be a rather stable compound. Phar-
macokinetics studies have shown that fenretinide has a
much longer elimination half-life than all-trans and 13-cis
retinoic acid [28]. In another study, the tissue concentra-
tion of fenretinide and its main metabolite N-(4-methox-
yphenyl) retinamide (4-MPR) were determined after a 3-
day treatment by HPLC [29]. The data showed that the
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siRNA #3935
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RARp knockdown by siRNA diminished fenretinide-induced apoptosis. (A) Establishment of RARB-deficient Huh-7
cells. Silencing of RARP was achieved by transfecting Huh-7 cells with individual pre-designed RAR[ siRNAs (#3935, #4030,
and #4124) or scramble siRNA as the negative control. The knockdown efficiency of RARP (i.e. RARB mRNA level reduction)
by each siRNA was presented as the percentage of RAR mRNA level in scramble siRNA-transfected cells 48 hours post-
transfection. (B) Scramble or RARP siRNA transfected Huh-7 cells were treated with either DMSO or fenretinide for 24
hours followed by TUNEL assay. TUNEL staining was representative result from two independent experiments. The histo-
grams depict the relative fold of TUNEL positive cells between fenretinide and DMSO treatment in individual siRNA trans-
fected Huh-7 cells. TUNEL positive cell counting was presented as mean + S.E.M. from four independent countings (* p < 0.05,
compared with DMSO treatment of scramble siRNA-transfected Huh-7 cells; # p < 0.05, compared with fenretinide treatment

of scramble siRNA-transfected Huh-7 cells).

concentration of fenretinide was 5-fold higher than that
of 4-MPR in various mouse tissues including liver. So it is
unlikely that the observed apoptotic effect is mediated
through fenretinide metabolites. In addition, in the
present study, we used cell culture, in which the metabo-
lism rate might not be as efficient as in the liver. To avoid
accumulation of the metabolites of fenretinide during
treatment, fresh retinoids were provided every 24 hours.

So it is highly likely that the observed apoptotic effect was
caused by the parent compound rather than the metabo-
lites of fenretinide.

During fenretinide treatment, the other two RARs, RARa
and y, were highly induced after 48 hours (25-fold and 17-
fold, respectively) in Huh-7 cells implicating the involve-
ment of these two RARs at the late stage of apoptosis in
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Huh-7 cells. As some studies have shown, RARa and RARy
may be involved in apoptosis induction in immortalized
keratinocytes and leukemia cells [30,31]. In HepG2
cells, however, NOR1 (also known as NR4A3), was
induced 6-fold after 48 hours. This induction may con-
tribute to the resistance of HepG2 cells to fenretinide as
NORI1 has been suggested to have pro-survival functions
in some cell types [32].

Another novel finding is the direct activation of RARB by
fenretinide. It has been shown that fenretinide induces
apoptosis in many types of cancer cells including neurob-
lastoma cells, breast, lung, head and neck, cervical and
ovarian cancer cells [8,33,34]. However, the underlying
mechanisms are poorly understood. Some studies suggest
that the effects of fenretinide are mediated through reac-
tive oxygen species (ROS) and caspase-3 [35], whereas
other studies indicate the involvement of ceramide [36]
and the NF-xB pathway [37]. Both retinoid receptor
dependent and independent mechanisms have been pro-
posed for fenretinide anticancer effects [34]. Our results
obtained from transactivation assay and ChIP assay
clearly demonstrate that fenretinide directly activates
RARP in Huh-7 cells. Knockdown of RARB mRNA expres-
sion by siRNA provides a direct proof that RARp is
required for fenretinide-induced apoptosis. To the best of
our knowledge, this is the first study to report that nuclear
receptor RARB mediates the apoptotic effect of fenretinide
in HCC cells. Our findings strongly suggest a potential
role of RARP as a tumor suppressor by mediating the sig-
nals of certain chemotherapeutic agents. However, there
are still unbridged gaps between RARP activation and
apoptosis execution. Exploration of RARR target genes will
provide helpful insights into these molecular links.

Conclusion

Our findings reveal that endogenous expression of retin-
oids receptor RARP gene determines the susceptibility of
HCC cells to fenretinide-induced apoptosis. Our results
demonstrate fenretinide directly activates RARB and
induces RARB-dependent apoptosis in Huh-7 cells. These
findings suggest a novel role of RAR as a tumor suppres-
sor by mediating the signals of certain chemotherapeutic
agents.
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