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Abstract

Background: TGF is critical to control hepatocyte proliferation by inducing GI-growth arrest
through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma
protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral
hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory
potential of TGFp in disease. We asked how Rb-deficiency would affect responses to TGFf-induced
cell cycle arrest.

Results: Primary hepatocytes isolated from Rb-floxed mice were infected with an adenovirus
expressing CRE-recombinase to delete the Rb gene. In control cells treatment with TGFf3
prevented cells to enter S phase via decreased cMYC activity, activation of P|6/NK4Aand P21Cipand
reduction of E2F activity. In Rb-null hepatocytes, cMYC activity decreased slightly but P16/NK4A was
not activated and the great majority of cells continued cycling. Rb is therefore central to TGF§-
induced cell cycle arrest in hepatocytes. However some Rb-null hepatocytes remained sensitive to
TGFp-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21Cipl and P53
we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by
evaluating the consequences of disruption of p53 and p2/Cr!. Hepatocytes deficient in p53 or
p21Crl showed diminished growth inhibition by TGFB. Double deficiency had a similar impact
showing that in cells containing functional pRb; P2 1P and P53 work through the same pathway to
regulate G1/S in response to TGFp. In Rb-deficient cells however, p53 but not p2 I ¢ deficiency had
an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of
E2F activity.

Conclusion: The present results show that otherwise genetically normal hepatocytes with
disabled p53, p21Cp! or Rb genes respond less well to the antiproliferative effects of TGFf. As the
function of these critical cellular proteins can be impaired by common causes of chronic liver
disease and HCC, including viral hepatitis B and C proteins, we suggest that disruption of pRb
function, and to a lesser extend P21CiPl and P53 in hepatocytes may represent an additional new
mechanism of escape from TGF-growth-inhibition in the inflammatory milieu of chronic liver
disease and contribute to cancer development.
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Background

Transforming growth factor B (TGFB) has characteristi-
cally diverse biological effects. Depending on the cell type
and state of differentiation, TGFP can either stimulate or
inhibit proliferation, affect differentiation, promote extra-
cellular matrix (ECM) formation and epithelial-to-mesen-
chymal transition (EMT), regulate cell adhesion, promote
or inhibit cell migration and induce apoptosis (reviewed
in reference [1]). In the liver, TGFB is a critical mediator of
multiple responses to injury [2]. Liver cell death in acute
and chronic liver diseases is accompanied by inflamma-
tory cell infiltration of the parenchyma and cytokine
release including TGFB. In such settings there develops an
autocrine release of TGFp from activated stellate cells,
stimulating synthesis of ECM resulting in fibrosis [3]. At
the same time, while hepatocytes and other intrinsic liver
cells are stimulated to proliferate to compensate for cell
loss, TGF is one of the signals that limit the proliferation
of regenerating hepatocytes [4]. In advanced human liver
cancer (hepatocellular carcinoma, HCC), there is com-
monly ectopic TGFf production by the malignant hepato-
cytes in addition to that released by the non-parenchymal
cells ([5,6]), giving rise to the idea that HCC cells have
acquired a resistance to TGFp-mediated growth inhibi-
tion. Current evidence suggests there is heterogeneity of
resistance mechanisms that include decreased TGFj-
receptor Il expression in early and late stage HCC [6] or
induction of the inhibitory SMAD7 in advanced HCC [6-
8]. These two adaptations have not been found in prema-
lignant hepatocytes (dysplastic foci and regenerative nod-
ules) in the chronically diseased liver, which are
nevertheless similarly exposed to local TGFp. It is reason-
able to suppose that any resistance of pre-malignant hepa-
tocytes to the anti-proliferative effects of TGFp is likely to
provide selective growth advantage in chronic liver dis-
ease favouring expansion into dysplastic nodules that are
the precursor of HCC.

Studies in a variety of epithelial cells, including hepato-
cytes, have suggested at least two interconnected mecha-
nisms by which TGFp normally inhibits proliferation:
downregulation of c-myc in early G1 and inhibition of cyc-
lin-dependent kinase (CDK) activities by regulation of
cyclin-dependent kinase inhibitors (CDKI) (][9] and
therein) leading to the maintenance of pRb in the active
hypophosphorylated form ([10]) and inhibition of S
phase entry. These pathways point at critical proteins
whose function is often altered during hepatocarcinogen-
esis, specifically the tumor suppressor pRb and P53 and
the CDKI P21€ip! [10-13]. pRb, P53 and P21CiPlare critical
regulators of the cell cycle that have all been involved in
the antiproliferative effect of TGFp in various systems.
However, the fact that pRb phosphorylation is the main
target of the regulation G1/S progression by P53 and
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P21¢ip! makes it difficult to identify other possible path-
ways, independent of pRb.

Interestingly, both hepatitis B and hepatitis C viruses
(HBV and HCV) express proteins that decrease expression
or inhibit the function of pRb [14-16], P53 [17-19] and
P21€ip1 [20-22]. We hypothesised that such dysfunctional
pPRb, P53 and P21CPl in chronic liver disease reduce the
growth inhibitory response of affected hepatocytes to the
TGFB-rich environment of cirrhosis [5,6]. Using primary
murine hepatocytes deficient in these genes singly or in
combination we sought to determine firstly whether there
was a loss of sensitivity to TGFf-mediated cell cycle arrest
and apoptosis and also to determine the relative contribu-
tion from each of p53, p21¢ir! and Rb-deficiency.

Methods

Hepatocyte culture

Mouse primary hepatocytes (male, 6-12 weeks old), were
isolated by a standard two-steps retrograde perfusion pro-
cedure [23] and purified using percoll gradient [24]. The
obtained hepatocytes were cultured in supplemented
serum-free medium selecting against survival of non-
parenchimal cells [25,26]. Where appropriate, hepato-
cytes cultured for 24 hours were treated daily with 160 pM
of TGF-B1 (TGFp) for the indicated time.

Mice were produced by crossing p53-/- [27] with Rb-floxed
mice (homozygous for exon 19 of Rb flanked by LoxP
sequences) [28] and p21Cirl-null mice (p21-/-) [29] as pre-
viously described [30]. Rb-deficient isogenic cells were
obtained by deletion of the Rb-floxed alleles in vitro by
infection with an adenovirus expressing Cre-recombinase
(Ad-Cre) using a multiplicity of infection of 10 [30]. Con-
trol cells, infected with a replication-deficient adenovirus
(Ad-D170) are phenotypically wild-type. All animals used
in this study received humane care. The study protocols
are in compliance with the UK Home Office regulation
and the local institutional policies.

Proliferation

In the present isolation and culture conditions, isolated
hepatocytes are more or less synchronous, with the major-
ity of cycling wild type cells entering S phase 72 hours
after plating and going into mitosis around 96 hours after
plating [25,31]. As TGFp inhibits proliferation via G1
block, we assessed changes in proliferation by quantifying
the number of hepatocytes undergoing replicative DNA
synthesis (S phase) by immunodetection of BrdU incor-
poration. Briefly, hepatocytes were incubated with 40 uM
BrdU for 6 hours and fixed in 80% ethanol. Immunode-
tection was performed using Rat anti-BrdU IgG (SeraLabs,
Sussex) 1/100 dilution and rabbit anti-rat IgG HRP-conju-
gate 1/100 dilution. Slides were counter-stained with hae-
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matoxylin and light-green. Negative controls omitted
BrdU.

To compare the effect of TGFp in hepatocytes of different
genotypes, we calculated the percentage of inhibition of
proliferation by TGFp for 2 (for p53p21-/- and TRPL) to 6
independent experiments: proliferation was integrated
between 48 and 96 hours after plating (i.e. cells treated or
not with TGF for 24 to 72 hrs) using Kaleidagraph (Syn-
ergySoftware) giving the "mean proliferation" between
these time points. The inhibition of proliferation was cal-
culated as 100-(100*(mean proliferation of TGFf-treated
cells/mean proliferation of untreated cells)).

Immunofluorescence

Hepatocytes were fixed in acetone/methanol (1:1 v/v).
Immunodetection was performed using anti-P53 mouse
monoclonal antibody (1:1000) (AB-1, OncogeneScience
UK), rat anti-P16INK4A polyclonal (AB3004, Chemicon),
monoclonal mouse anti-human-P21¢ir! (SX118, Dako),
mouse monoclonal anti-P27KIP1 (BD-Pharmingen), the
appropriate Alexafluor (Molecular Probes) secondary
antibody (1/200), followed by Topro-3 nuclear counter-
stain. Quantification was performed by manual counting
on 25 representative fields (x40) photographed with a
Zeiss confocal microscope. Scanning was performed using
multitracking, and settings constant throughout the
experiments.

E2F and MYC transcriptional activity

Hepatocytes in culture for 48 hours were transfected using
TFx-50 (Promega) reagent (ratio 1/5 w/w DNA/lipid)
[32]) with p-TA-Luc (control reporter), p-E2F-TA-Luc (E2F
reporter), or p-myc-TA-Luc (c-myc reporter) (all from Path-
way Profiling System4, Clontech). All drive the firefly luci-
ferase gene (Luc) (for detailed map see [33]). Thirty hours
after transfection, luciferase activity was quantified using
Luciferase Assay reagents according to the manufacturer's
instructions (Promega) and corrected for the quantity of
protein (Biorad assay). The data are given relative to the
expression in untreated control cells.

Gene expression

Total RNA was isolated at indicated times using QIAGEN
RNeasy mini Kit according to the manufacturer's instruc-
tions. RNA quality was determined with a Bioanalyzer
(RNA6000 NanoLabChip kit, Agilent 2100 Bioanalyzer,
USA). Expression analysis was performed using the GEAr-
rayQ Series Mouse Cell Cycle Kit, (Superarray, USA)
where each gene is represented by 4 independent spots.
The cDNA was prepared from total RNA using Superarray
AmpoLabeling-LPR Kit, USA and labelled with Biotin-16-
dUTP (Rocha).
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Images of the arrays were obtained using a Versadoc detec-
tor (BioRad, UK) and converted into raw data using Scan-
lyzer (Michael Fisen, Lawrence Berkely Bation Lab, USA).
The data was analysed using the GEArrayAnalzer Software
(Version 1.0) with background subtraction (using plas-
mid DNA PUC18 as negative control) and normalisation
with the housekeeping gene Ppia (cyclophlinA). The nor-
malization removes differing intensity scales from the
experimental readings, allowing comparison between
experiments.

Statistical analyses

Data and statistical analyses were done with Minitab 13.0
and Spotfire Decision site softwares. The proportion of
affected cells was arcsine transformed to normalise the
distribution, and differences between means were evalu-
ated with Analysis of Variance (ANOVA). Differences were
taken to be significant when p < 0.05. Satisfactory homo-
geneity of variances was determined with Bartlett's test.
Where a significant difference between means was identi-
fied with ANOVA, the differences between individual
means were analysed further with Bonferroni simultane-
ous tests for multiple comparisons.

Results

pRb and other pocket proteins are central to the regula-
tion of G1/S transition by inhibition of E2F activity and
transcription of multiple target genes involved in DNA
synthesis and cell cycle regulation. In Rb-deficient hepato-
cytes, although E2F activity is elevated [30], we found
using gene expression array (see methods) that expression
of p107 and p130 were increased (2.1, 2 and 3.1 fold for
p107;1.3,1.1 and 1.4 fold forp130 at 48, 72 and 96 hours
after plating). This may help maintain some regulation of
G1/S transition including inhibition of proliferation by
TGF. Studies in a variety of epithelial cells, including
hepatocytes, have shown at least two interconnected
mechanisms by which TGFp normally inhibits prolifera-
tion: downregulation of ¢-myc in early G1 and inhibition
of cyclin-dependent kinase (CDK) activities by regulation
of cyclin-dependent kinase inhibitors (CDKI) ([9] and
therein) leading to the maintenance of pRb, and other
pocket proteins in the active hypophosphorylated form
[10] and inhibition of E2F responsive promoters. We
asked what would be the consequences of Rb deletion on
TGFp regulation of hepatocytes proliferation.

In our culture conditions, primary hepatocytes enter S
phase in a more or less synchronous manner. The first
control cells reach S phase around 72 hours after plating
(Figure 1A) and M phase is observed around 96 hours
[25,30,31]. Hepatocytes can enter a second cell cycle but
often in a less synchronous manner. As we have previ-
ously reported [30] following Rb deletion within the first
24 hours after plating a higher number of cells enter S
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phase and there is an earlier onset of DNA synthesis which
is detected as soon as 48 hours after plating (Figure 1A &
B compare curves with open symbols).

Rb is central to TGF/-~induced inhibition of proliferation
In these conditions, TGFp-treatment of control cells was
highly effective to cause growth arrest almost completely
blocking proliferation (Figure 1A). By contrast, many of
the sister cells subjected to inducible Rb-deletion escaped
the inhibition by TGFp and entered S phase (Figure 1B).

E2F and MYC activities were found to be significantly
higher in Rb-null cells compared with wild type (Figure 2,
compare black bars). This was detectable from 48 hours
for E2F (data not shown) and 72 hours after plating for
MYC (Figure 2). TGEFB-treatment decreased MYC activity
in both control and Rb-null hepatocytes, although this
was less efficient in Rb-null cells (40.3% and 18.5%
decrease for control and Rb-null respectively) and the
activity remained higher than in untreated control hepa-
tocytes (Figure 2). E2F activity also decreased after TGFp-
treatment in cells of either genotype (32.6 in Rb-/- and
66.4% in control).
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MYC is a negative regulator of CDKI expression [34-37].
Accordingly, we found that the high levels of CDKI expres-
sion initially observed in response to Rb deletion (48 after
plating), returned to wild type levels at 72 hours, together
with the increased MYC activity (Figure 2, Figure 3A). We
can only speculate about the mechanism behind the ini-
tial increase of CDKI expression, but the suggestion that
E2F activity can regulate CDKI expression [38] suggests
that this may be an early response to the rapid increase of
E2F activity resulting from the induced Rb deletion, before
the system reaches an equilibrium.

Decreased MYC expression, as observed here in response
to TGFB is known to alleviate inhibition of transcription
of various CDKI. We therefore investigated CDKI expres-
sion in response to TGFB. We were unable to detect
P15INK4Bjn hepatocytes of either genotype; P27KIP1 expres-
sion was similar in control and Rb-null cells and was not
affected by TGFp (Figure 3B). P16!NK4A gppeared to local-
ise in the nuclei after TGFB-treatment of control but not
Rb-null cells (Figure 3B). P16INK4A jphibits CDK4 and
CDKG6 that are known to phosphorylate pockets proteins.
P16'NK4A may therefore contribute to TGFB-induced cell
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144

Rb deficiency reduces TGFp inhibition of proliferation. The figure shows the percentage of cells in S phase at the indi-
cated times after plating of one representative experiment. All hepatocytes for the experiment were isolated from the same
Rb-floxed mouse. Control and Rb-/- cells are Rb-floxed cells treated at the time of plating with either adenovirus control (wild-
type phenotype) (A); or adenovirus expressing Cre (Rb-/-) (B) respectively. Each point is the average proliferation in 2 inde-
pendent cultures where 500 hepatocytes were counted +/- SEM. The experiment was repeated multiple times with similar
results. Where appropriate (close symbols), TGF(3 was added daily from 24 hours after plating.
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Figure 2

TGF affects c-MYC and E2F transcriptional activity.
The graph represents the transcriptional activities of c-MYC
and E2F quantified using a reporter assay. Control and Rb-/-
hepatocytes were in culture for 78 hours, treated or not
with TGFp for 30 hours at the time of the assay. The bars
represent the average +/- SEM of duplicate transfections.

cycle arrest by inhibition of pocket protein phosphoryla-
tion and reduction of E2F activity in control but not in Rb-
null cells. In control cells TGFp-treatment was also accom-
panied by early activation of P21€ir! (Figure 3B & C)
which relocalised in the cytoplasm: the percentage of
nuclear positivity increased initially to rapidly drop back
to the level of untreated cells but with a concomitant
increase of cytoplasmic P21¢iPl-staining (Figure 3B, 3C)
from 72 hours after plating. In Rb-null cells, which show
a constitutive high level of P21¢iP! due to P53 activation
[30], there was no change in nuclear positivity but an
increased number of cells exhibited cytoplasmic staining
(Figure 3B, 3C). Finally, TGFp marginally affected P53, as
few strongly positive cells were observed in TGFp-treated
control cells (<2%) and the small proportion of "less pos-
itive"Rb-null hepatocytes became intensively fluorescent
with TGFp-treatment (Figure 3B).

Some Rb-deficient hepatocytes remain sensitive to TGF/-
induced inhibition of proliferation through a P53-
dependent pathway

Interestingly, a certain proportion of Rb-/- hepatocytes
were nevertheless prevented to by TGFp from entering S
phase (Figure 1B) as the number of cells incorporating
BrdU is reduced (Figure 1B compare curves with open and
black symbols).

http://www.biomedcentral.com/1471-2407/7/215

As Rb-null greatly differed from control hepatocytes in
respect of the high level of P21CiPland P53, we investi-
gated whether these proteins could contribute to TGFj-
induced cell cycle arrest independently of pRb. To address
this question, we compared the inhibition of proliferation
in hepatocytes knocked-out for these genes, undergoing
or not a further inducible deletion of the Rb gene.

p21¢irl and p53 deficiencies similarly affected cell
responses to TGFP with about 55-60% of the proliferating
cells being inhibited by TGFp (Figure 4 legend (2)).
Simultaneous deficiencies in both p21¢ir! and p53 did not
significantly differ from either alone (Figure 4 legend (2)).
As expected Rb-deficiency had the strongest effect, sharply
decreasing the susceptibility to TGFB-induced cell cycle
arrest regardless of p53 and p21Cir! genotypes (Figure 4
legend (3) all p < 0.0001). This confirms the central role
played by pRb in the response to TGFj.

In Rb-null cells additional loss of p53 (Figure 4 legend (4))
but not p21€ir! caused a further reduction in sensitivity to
TGEFp (Rb-/- versus Rb-/-p53-/-; p = 0.0001 and Rb-/- versus
p21-/-Rb-/- p = 0.20). This was accompanied by a reduced
inhibition of E2F activity by TGFp in Rb-/- p53-/- but not
in Rb-/-p21-/- (7.49% reduction in Rb-/- p53-/- and 33.9 in
Rb-/-p21-/- versus 32.6 in Rb-/- hepatocytes) (Figure 5).

Discussion

We have investigated here the consequences of Rb-defi-
ciency in hepatocytes - as happens in viral liver diseases -
with respect to TGFp regulation of proliferation. Our data
show that pRb is central to the anti-proliferative action of
TGF with the majority of Rb-null cells escaping from this
effect. This may have consequences for the development
of cancer. We found however that a proportion of Rb-null
hepatocytes remain sensitive to TGFf and undergo cell
cycle arrest and investigated whether P53 and
P21Cirlcould be involved.

TGFp is a potent inhibitor of cell proliferation by activa-
tion of a cell cycle arrest in G1 through potentially multi-
ple pathways: First, protein complexes containing SMAD3
[39-43] and P107 [44,45] downregulate MYC activity
leading to CDKI upregulation ([1] and therein). The active
CDKs that can feedback on SMAD3 to reduce its activity
[46,47], are therefore kept in check by the CDKIs. Consist-
ent with the involvement of P107 rather than pRb, we
observed decreased MYC activity in both wild-type and
Rb-null hepatocytes, albeit with somewhat reduced effi-
ciency in the later. In the absence of P16INK4A activation,
SMAD3 may be inhibited by CDKs thus preventing opti-
mum inhibition of MYC [39,40] in Rb-deficient cells.

A reported effect of c-myc downregulation is to reduce

P15INK4B repression and inhibit cyclinD/CDK4 and
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A CDKI relative expression level in Rb-null hepatocytes

Time after plating

Gene symbol Common name 48 hours 72 hours
Cdkna P21 1.8 0.9
Cdknlb P27 % 3.8 0.9
Cdknle P57 1.9 0.9
Cdkn2a plé 17 1.4
Cdkn2b P15 1.2 1.2
Cdkn2c P18 24 2
B
control Rb-/-
control  TGFp Rb-/- TGF p G

Figure 3

% p21 positive cells

100

80

60

20

control Rb null

48 72 96 48 72 96

O cytoplasmic
W nuclear

48 72 96 48 72 96 hours after plating

untreated

TGFp untreated TGFp

Effect of TGF on P53, P16!NK4A P2]Cirl apnd P27KIP! expression A: Expression of CDKI in Rb-null hepatocytes. The
table gives the level of expression of the various CDKI in Rb-null hepatocytes relative to control hepatocytes. The values were
obtained using a gene expression array as described in methods. * The level of p27KIP! expression in control cells was low, and
the ratio may therefore be overestimated. B & C. Hepatocytes were treated or not with TGFf3 24 hours after plating. B.
Immunofluorescence for P16INK4A P2 | Cipl P27KIPl and P53. Photos were taken 48 hours after treatment. Green: specific
immunofluorescence, blue: Topro-3 nuclear counterstain. C: Quantification of P21CPl immunopositivity. Black bars: percentage
of cells exhibiting nuclear staining. White bars, cytoplasmic staining.
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% inhibition
of proliferation

by TGFf3
83.4
33.1
60.2
54.3
15.8
34.6
49.2
20.6

genotype

control
Rb-/-
p53-/-
p21-/-
Rbp53-/-
Rbp21-/-
p53p21-/-
TRPL

Rb is central to TGFp inhibition of proliferation via multiple pathways. A. The figure shows the effect of p53, p2/Cip!
or Rb deficiency on TGFf induced cell cycle arrest +/- SDV. The percentage inhibition of proliferation by TGFf3 was calculated
for 2 (for p53p21-/- and TRPL) to 6 independent experiments and differences analysed by ANOVA (** p < 0.0001; NS non sig-
nificant). As for all experiments the Rb-null hepatocytes were obtained by infection at the time of plating of the Rb-floxed hepa-
tocytes of corresponding genotypes with adenovirus expressing Cre recombinase. (1) all deficient hepatocytes respond less
well to inhibition of proliferation by TGFf than control cells and Rb deficient has the strongest effect. (2) p53 and

p2 | Cirldeficiency, singly or together have a similar effect on inhibition of proliferation by TGFp. (3) Rb deletion significantly
reduces TGFp-induced cell cycle arrest regardless of p53 and p2/CP/status (compare control with Rb-/-; p53-/- with p53-/-Rb-/-
; b2 1-I- with p2 [-/-Rb-/- and p53-/-p2 |-/- with TRPL). (4) double deficiency in Rb and p53 further decreases hepatocytes
responses to TGFf3 in term of regulation of proliferation, independently of p2 /SP/status. (5) by contrast the effect of TGFf} on
hepatocytes deficient in both p2/SP! and Rb is not significantly different to that of Rb null cells, and this is independent of p53
status. B. corresponding percentages of inhibition of proliferation for each genotype. TRPL: triple null hepatocytes.

cyclinE/CDK2 by both direct binding and relocalisation
of P27KIP1 from cyclinD/CDK4 to cyclinE/CDK2 [1,48].
Although in untreated Rb-null hepatocytes, all CDKI are
overexpressed in G1, we were unable to detect expression
of P15INK4B and did not observe any changes in P27KIP1
after TGFB-treatment. P16INK4A which localised in the
nuclei of control but not Rb-null cells after TGFp-treat-
ment can inhibit CDK4 & 6 and may therefore contribute
to TGFp-induced cell cycle arrest by inhibition of pocket
protein phosphorylation and reduction of E2F activity in
control but not in Rb-null cells.

Downregulation of cmyc also allows activation of
p21C€ir1[49], and our finding that TGFB-treatment greatly
increased nuclear P21Cip1 could certainly contribute to cell
cycle arrest via inhibition of pRb phosphorylation in cells
containing Rb.

By contrast, it is interesting that p21¢ir! deficiency in Rb-
null hepatocytes did not reduce the sensitivity of hepato-
cytes to TGFP (correlated with a similar decrease in level
of E2F activity; 32.6 and 33.9% in Rb-/- and Rbp21-/-
respectively). We have indeed previously shown that
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% decrease in
E2F activity

66.4
32.6
7.49
33.9

genotype

control
Rb-/-
Rbp53-/-
Rbp21-/-

Figure 5

Deficiency in p53 but not p2ICip! further decreases
E2F activity in Rb-deficient hepatocytes. The values are
the percentage decrease in E2F activity in TGFp-treated
hepatocytes of different genotypes compared with untreated
cells. The E2F activity was quantified using a reporter assay as
described in figure 2.

P21C€ir! provides pRb-independent control of hepatocytes
proliferation: in standard culture conditions p21-/-Rb-/-
hepatocytes proliferate more than hepatocytes bearing
only one knock-out gene [30]. Various potential mecha-
nisms have been discussed and include the inhibition of
PCNA [50], or cyclin E/cdk2 [51,52] or reduction of MYC
activity [53] by P21Cip1. The present results therefore sug-
gest that whatever the mechanism involved, it is not
enhanced by TGFp-treatment and that proliferation rate
and inhibition of proliferation by TGFf are unrelated.

Thus activation of cyclin kinase inhibitors P21€iP! and
P16!NK4A can therefore inhibit pRb and other pocket pro-
teins phosphorylation and prevent E2F transcriptional
activity leading to very efficient cells cycle arrest in control
cells.

In Rb-null hepatocytes where neither CDKI seem involved
after TGFp-treatment, E2F activity was nevertheless
reduced suggesting that a different mechanism may affect
other pocket protein(s) and contribute to cell cycle arrest
of Rb-null hepatocytes. P21CiP1 and P53 were both
strongly increased in Rb-null hepatocytes and shown to
change with TGFp treatment; we therefore investigated if
they could contribute to TGFB-induced inhibition of pro-
liferation through an Rb-independent pathway.

By comparing proliferative responses of hepatocytes of
various genotypes, a P53-dependent, P21Cirl-independ-
ent pathway was highlighted. This was correlated with a
greater reduction of E2F activity in Rb-/-p53-/- cells sug-
gesting that high P53 prevents inhibition of E2F activity

http://www.biomedcentral.com/1471-2407/7/215

by TGFB. This may involve P53-dependent inhibition of
CDK4 expression - indeed we find that in p53-/- hepato-
cytes CDK4 expression in G1 and S phase is reduced to
76% and 72% of the level in control cells - or repression
of CDK4 synthesis [54] and prevent E2F release from
P107 which we have shown to be twofold increased in Rb-
null cells.

Conclusion

Loss of responsiveness to TGFp antiproliferative effects is
believed to be important in carcinogenesis, yet the known
mechanisms of TGFp resistance happen late in the pro-
gression of established liver cancer [55,8]. The present
results show that otherwise genetically normal hepato-
cytes with disabled p53, p21Cir! or Rb genes respond less
well (by differing degrees) to the antiproliferative effects
of TGF. As the function of these critical cellular proteins
can be impaired by common causes of chronic liver dis-
ease and HCC, including viral hepatitis B and C proteins
[14-22], we suggest that disruption of pRb function, and
to a lesser extend P21€iP! and P53 in hepatocytes may rep-
resent an additional new mechanism of escape from TGFj
growth inhibition in the inflammatory milieu of chronic
liver disease.
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