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Abstract
Background: Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed
malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/
mTOR signal pathway is involved in multiple cellular functions including proliferation,
differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be
a critical step leading to cell transformation.

Methods: This study investigated changes in mTOR pathway and telomerase activity in
hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu).
We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT
transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol
and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively.

Results: Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in
telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR
substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of
telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor,
significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin
were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells.

Conclusion: These results suggest that chemotherapeutic agent 5-Fu may down-regulate
telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-
transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

Background
Hepatocellular carcinoma (HCC) is the most invasive and
frequently diagnosed malignancy and is the second lead-
ing cause of cancer death for men in China and some
other parts of Asia [1]. Phosphatidylinositol-3-kinase

(PI3-K) pathway has been reported as an important intra-
cellular mediator frequently activated in cancer cells [2].
PI3K activates a number of signaling molecules, among
which the Akt/mTOR pathway is of particular interest
because of its role in inhibiting apoptosis and promoting
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cell proliferation [3]. The mammalian target of rapamy-
cin, mTOR, also known as FRAP, RAFT1, or RAPT1, has
been shown to regulate mitogen stimulated protein syn-
thesis and cell cycle progression [4-6]. Cell culture studies
have demonstrated that one of the mechanisms by which
mTOR controls protein synthesis is through phosphor-
ylating downstream substrates, including p70s6 kinase
(p70S6K1) and eukaryotic initiation factor (eIF) 4E binding
protein 1 (4E-BP1) [7-9]. The protein p70S6K1 phosphor-
ylates the 40S ribosomal protein S6 and is proposed to
play a crucial role in the translation of 5'-terminal oli-
gopyrimidine tract mRNAs, which primarily encode ribos-
omal proteins and components of the translation
apparatus [10,11]. Phosphorylation by mTOR of 4E-BP1
disrupts its binding to eIF4E, a protein that binds the 5'-
cap structure of mRNA. The released eIF4E allows the for-
mation of a functional translation initiation complex con-
taining eIF4G, eIF4A, eIF3, thereby allowing translation
[12,13].

Rapamycin, an immunosuppressive macrocyclic lactone,
specifically inhibits the activity of mTOR. Inhibition of
mTOR leads to G1 arrest of many malignant cell lines, and
currently analogs of rapamycin are being investigated as
cancer therapeutic agents [14,15]. In many cell lines,
exposure to rapamycin results in a relatively small
decrease in overall protein synthesis (~15–20%), but dose
result specifically in G1 cell cycle arrest. This can, in part,
be explained by the fact that some cell cycle regulators, e.g.
cyclin D1, c-MYC and growth factors such as IGF-α are
controlled by the mTOR pathway [16-18]. Some studies
also suggest that mTOR may be a cellular context-depend-
ent, pleiotropic regulator of apoptosis, although conclu-
sive demonstration of mTOR inactivation in such
circumstances is lacking [19].

Telomerase is a specialized type of reverse transcriptase
that catalyzes the addition of hexameric TTAGGG repeats
to telomeres, the ends of chromosomal DNA [20]. The
enzyme consists of three major components: telomerase
reverse transcriptase (hTERT), telomerase-associated pro-
tein (TEP1), and telomerase RNA (TERC) [21-23]. Telom-
erase activation is essential for maintaining the telomere
length and is required for cellular immortality. It has
attracted substantial attention because telomerase activity
has been observed in most types of human tumors, but
not in adjacent normal cells [24-26]. In ~90% of advanced
malignancy cases, high telomerase activity has been
detected, which correlates well with increasing steady-
state mRNA level of human telomerase reverse tran-
scriptase [27].

Since inhibiting mTOR activity leads to cancer cell death
while high levels of telomerase activity is associated with
cancer cell proliferation, it is possible that mTOR may

directly or indirectly regulate telomerase activity. How-
ever, there is no report regarding the role of chemothera-
peutic agents on mTOR and its role in regulating the
expression profiles of hTERT. In the current study, we
investigate the changes in telomerase activity and mTOR
activity after HCC cells are treated with 5-fluorouracil (5-
Fu) and rapamycin. Our results suggest that 5-Fu treat-
ment of HCC cell line SMMC-7721 could down-regulate
both mTOR and telomerase activity, and inhibiting
mTOR leads to further down-regulation of telomerase
activity at the post-transcriptional levels.

Methods
Cell Culture
SMMC-7721 cells (a human hepatocarcinoma cell line)
were maintained in Dulbecco's modified essential
medium (DMEM) containing 10% fetal bovine serum
(FBS). The cells were incubated at 37°C and 5% CO2. The
growth media was changed every 2–3 days.

Cell growth Assay
SMMC-7721 cells were suspended at a concentration of 5
× 104/ml, and then 200 µl of the cell suspension was
placed in each well of a replicate 96-well microtiter plate.
The cells were allowed to adhere overnight. Different con-
centrations (25 µg/ml, 75 µg/ml, 125 µg/ml, 137.5 µg/
ml) of 5-Fu were added to the culture. MTT (Thiazolyl
blue) assay was performed after 48 h. Ten microlitters of
5 mg/ml of MTT was added to each well followed by incu-
bation for 4 h at 37°C. The formazan crystals were dis-
solved in 200 µl of DMSO. Optical density values (OD)
were determined at a wavelength 570 nm. Each assay was
performed three times and the average results were calcu-
lated.

TUNEL Assay
Terminal deoxynucleotidyl transferase-mediated deoxyu-
ridine nick end-labeling (TUNEL) staining was performed
on SMMC-7721 cells to detect apoptotic cells. We used a
commercial kit from ONCOGENE (Carpinteria, CA,
USA). Accordingly, SMMC-7721 cells were fixed with
10% formalin, and slides with attached cells stained by
TUNEL according to manufacturer's instructions, where
the 3'-OH ends of fragmented nucleosomal DNA of apop-
totic cells were specifically labeled using exogenous termi-
nal transferase and fluorescently-labeled dNTP, then
detected with a fluorescein labeled antibody specific to
deoxyuridine. Slides with attached cells were then exam-
ined by fluorescence microscopy for positive staining.

Plasmid and transient transfections
pBTdel-130 plasmid DNA containing 135 bp hTERT core
promoter gene and Firefly luciferase was a gift from Dr.
Jiyue Zhu. We used dual-luciferase reporter system, where
the Renilla luciferase vector provides an internal control
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that serves as the baseline response. Transient transfec-
tions of SMMC-7721 cells were performed in 24-wells
plates using Lipofectamin 2000 from Invitrogen accord-
ing to the manufacturer instructions. SMMC-7721 cells
were cultured in 24-well plates until they reached 85–90%
confluence. 1 µl of Lipofectamin 2000 reagent and 0.4 µg
pBTdel-130 plasmid DNA were used to transfect each well
of cells in the absence of serum. After 4–6 h, the medium
were replaced with 10% FBS DMEM. Approximately 24 h
after the beginning of the transfection, the cells were
exposed to 5-Fu and, or rapamycin. The cells luciferase
activity was then analyzed by Dual-Luciferase Reporter
Assay System.

Telomerase activity assay
The telomerase activity was detected by the telomeric
repeat amplication protocol and silver staining assay
(TRAP-silver staining assay). Cells were washed once in
phosphated-buffered saline and 105 cells were resus-
pended in 200 µl of 1 × CHAPS lysis buffer. After 30-
minute incubation on ice, the suspension was centrifuged
at 12 000 × g for 20 min at 4°C. Protein concentration was
determined and extracts were stored at -80°C until
assayed. A PCR-based telomerase assay and silver staining
assay were performed according to a published protocol
[28].

RT-PCR for hTERT
Expression of hTERT mRNA was analyzed by RT-PCR
amplification. Total RNA was isolated using Trizol (Invit-
rogen) according to the manufacturer's protocol. One µg
of total RNA was reverse transcribed at 37°C for 45 min in
the presence of random hexamer and Moloney murine
leukemia virus reverse transcriptase (Gibco-BRL). Analysis
of the expression of the telomerase subunit was per-
formed by RT-PCR amplification. A 145-bp hTERT frag-
ment was amplified using the primer pair 5'-
CGGAAGAGTGTCTGGAGCAA-3' and 5'-GGATGAAGCG-
GAGTCTGGA-3'.

Western blot analysis
Cells were lysed in 1 × SDS loading buffer and the lysates
were centrifuged at 13,000 × g at 4°C for 30 min. Protein
content in the supernatants was determined with the BCA
Protein Assay system. Protein (30 µg) in cell extracts was
resolved by 10% SDS-PAGE and transferred to PVDF
membranes. After blocking with 5% nonfat dry milk in
PBS containing 0.2% Tween 20, the membranes were
incubated at 4°C overnight with antibodies. Blots were
then incubated for 2 h at room temperature with second-
ary antibodies and then analyzed with the ELC chemilu-
miniscence substrate system (Amersham Biosciences,
Piscataway, NJ). Antibodies specific for hTERT (Santa
Cruz Biotechnology) and p70S6k Thr 389(Cell Signaling
Technology) were used.

Cell Proliferation Assay
SMMC-7721 cells (1 × 104) were plated in triplicate onto
6-well culture plates in regular medium. The next day, the
medium was changed, and rapamycin (10 nM 1 hr piror
to 5-Fu) and 5-Fu was added. Cells were incubated for 36
hrs. Cells counts were performed with a hemocytometer.

Statistical analysis
Differences in luciferase activity between 5-Fu treatment
and control group were analyzed by Student's t-test. The
probability (P) of 0.05 was considered to be significant.

Results
Inhibition of human hepatocarcinoma cells growth by 5-Fu 
is due to increased apoptosis
SMMC-7721 cells were treated with different concentra-
tions of 5-Fu for 36 h and cell viability were determined
by MTT assay (Figure 1A). Cell viability was reduced
under 5-Fu treatment in a dose-dependent manner. At the
highest concentration (137.5 µg/ml) used, the inhibition
on cell viability was 78.6%. The IC50 of 5-Fu was deter-
mined as 62.5 µg/ml.

Then SMMC-7721 cells were treated with the IC50 of 5-Fu
(62.5 µg/ml) for 36 h, and the TUNEL staining technique
was used to reveal DNA strand breaks, characteristic of cell
apoptosis (Figure 1B). A significant numbers of cells
(37.56%~45.32% at this concentration, based on tripli-
cate experiments) underwent apoptosis after 5-Fu treat-
ment, while few, if any, apoptotic cells were observed in
the untreated samples.

These results indicated that 5-Fu could reduce the viability
of SMMC-7721 cells in a dose-dependent manner, likely
due to significant levels of cell death.

Down-regulation of telomerase activity by 5-Fu at the 
transcriptional level
To investigate the effect of 5-Fu on telomerase activity in
SMMC-7721 cells, telomerase activity was measured by
TRAP-silver staining assay on cells harvested after 36 h
treatment with 5-Fu at 62.5 µg/ml. Telomerase activity
(Figure 2A), as well as the hTERT mRNA level (Figure 2B)
were significantly reduced by 5-Fu treatment.

To confirm that down-regulation of telomerase activity by
5-Fu treatment occurs primarily at the transcriptional
level, a plasmid carrying a firefly luciferase reporter gene
driven by the 135 bp hTERT core promoter was trans-
fected into SMMC-7721 cells and cells were cultured with
or without 5-Fu treatment. The hTERT promoter activity
was drastically reduced by 5-Fu treatment, indicating that
in 5-Fu induced apoptosis of HCC cells, telomerase activ-
ity was down-regulated due to reduced hTERT expression
at the transcription level.
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Inhibition of mTOR activity by 5-Fu
PI3K/Akt/mTOR signal pathway plays an important role
in the course of initiation and progression of carcinoma.
To study the role of mTOR in 5-Fu induced apoptosis of
HCC cells, SMMC-7721 cells were treated with or without
5-Fu at the concentration of 62.5 µg/ml for 36 h, and then
cell lysates were prepared, and Western analyses were per-
formed with an antibody specific for the phosphotylated
form of p70s6 kinase at Thr389, the position known to be

phosphotylated by mTOR. The amount of Thr389 phos-
photylated p70s6 kinase in the 5-Fu-exposed cells was
much less than that in the untreated cells (Figure 3), indi-
cating that 5-Fu down-regulated mTOR activity.

To investigate the role of mTOR in 5-Fu induced apoptosis
of HCC cells, rapamycin, a specific inhibitor of mTOR,
was used to block the PI3K/Akt/mTOR pathway. SMMC-
7721 cells were cultured in the presence of rapamycin (10
nM 1 hr piror to 5-Fu) or 5-Fu (62.5 µg/ml) or both for 36
h. As shown in Figure 4, at the concentration tested,
rapamycin alone reduced cell growth rate by ~20%, 5-Fu
alone reduced cell growth rate by ~50% and the two drugs
together reduced cell growth rate by nearly 70%, demon-
strating synergistic or additive effect of 5-Fu and rapamy-
cin in inhibiting growth of HCC cells in vitro.

Rapamycin reduces hTERT protein expression in synergy 
with 5-Fu
To investigate the link between mTOR and telomerase
activity in 5-Fu induced apoptosis of HCC cells, the effect
of rapamycin on hTERT mRNA transcription and protein
expression was examined. Treatment of SMMC-7721 cells
with either rapamycin or 5-Fu alone resulted in significant
reduction of hTERT protein expression compared with
that of the untreated cells, and dual treatment caused a
more profound reduction in the hTERT protein level than
either single drug treatment (Figure 5A), suggesting a syn-
ergistic/additive effect of the two drugs on reducing the
protein level of hTERT.

To investigate the underlying mechanism, the hTERT pro-
moter activity and hTERT mRNA levels were analyzed in
the cells treated with or without both drugs. SMMC-7721
cells transiently tranfected with the reporter plasmid were
treated with rapamycin (10 nM) or 5-Fu (62.5 µg/ml) or
both drugs (10 nM rapamycin 1 h piror to 5-Fu) for 36 h.
Again, 5-Fu nearly abolished the activity of the hTERT pro-
moter (Figure 5B) or mRNA expression (Figure 5C). On
the other hand, rapamycin treatment had no effect at all
on hTERT promoter activity and hTERT mRNA level, indi-
cating that rapamycin probably reduced hTERT protein
expression at the post-transcriptional level.

Discussion
The reactivation of telomerase activity is a vital step in
tumorigenesis. Beyond its role in telomere maintenance,
telomerase provides additional functions in DNA repair
and cell survival. Telomerase protects cells from apoptosis
and necrosis, and stimulates growth under adverse condi-
tions [29]. Inhibition of telomerase activity in cancer cells
is a potent factor in the abrogation of cellular immortali-
zation. A number of different approaches have been
developed to inhibit telomerase activity in human cancer
cells. Different components and types of inhibitors target-

Inhibition of human hepatocarcinoma cells growth by 5-Fu is due to increased apoptosisFigure 1
Inhibition of human hepatocarcinoma cells growth by 
5-Fu is due to increased apoptosis. (A) SMMC-7721 cells 
were treated with different concentrations of 5-Fu for 36 h, 
and cell viability was measured by MTT assay. (B) SMMC-
7721 cells were incubated with (b,d) or without (a,c) 5-Fu 
(62.5 µg/ml) for 36 h were stained by the TUNEL method to 
reveal DNA strand breaks indicative of apoptosis. (a) (b) 
bright field micrographs corresponding to (c) and (d), respec-
tively. (c)(d), micrographs taken with fluorescent microscopy 
(400×).
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ing various regulatory levels have been regarded as useful
for telomerase inhibition. Many telomerase inhibitors
seem to be most efficient when combined with conven-
tional chemotherapeutics. It has been demonstrated that
telomerase may be involved in triggering apoptosis, but
the underlying molecular mechanism remains unclear
[30]. In the present study, we showed that 5-Fu treatment
of SMMC-7721 cells induces apoptosis and telomerase
activity down-regulation within 36 h. Moreover, this is

accompanied by reduction of hTERT mRNA and hTERT
protein.

In principle, survival signals are ideal targets for antican-
cer therapeutic strategies because blocking these signals
leads to the death of cells that are dependent upon them.
Increasing evidences implicate mTOR as a central player
in cell proliferation, migration, and survival [31-33]. The
mTOR protein is involved in the regulation of cyclins D1/
A, cyclin-dependent kinases, cyclin-dependent kinase
inhibitors (p21Cip1 and p27Kip1), retinoblastoma pro-
tein, RNA polymerase I/II/III-transcription and transla-
tion [34-37]. Suppression of these mTOR-mediated
survival signals provides the opportunity to reactivate
default apoptotic pathways in cancer cells and allow them
to proceed on the path of death [38]. Three potent and
specific mTOR inhibitors have been reported which are
either rapamycin or rapamycin derivatives: rapamycin,
CCI-779 (also called cell-cycle inhibitor-779, rapamycin-
42,2,2-bis(hydroxymethyl)-propionic acid; Wyeth-Ayerst,
PA, USA) and RAD001 (also called everolimus or 40-O-
(2-hydroxyethyl)-rapamycin; Novartis AG, Basel, Switzer-
land). In addition to being a fungicide and immunosup-
pressant, rapamycin has also been proposed as a potential

Inhibition of mTOR activity by 5-FuFigure 3
Inhibition of mTOR activity by 5-Fu. SMMC-7721 cells 
were treated with or without 5-Fu (62.5 µg/ml) for 36 h. 
Expression of P-p70S6K protein was detected by Western 
Blot. Cell lysates were immunoblotted with P-p70S6K Thr 
389 antibody.
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Down-regulation of telomerase activity by 5-FuFigure 2
Down-regulation of telomerase activity by 5-Fu. (A) Telomerase activity assay. SMMC-7721 cells were harvested after 
incubation with 62.5 µg/ml of 5-Fu for 36 h. The telomerase activity was measured by TRAP-silver staining assay. (Lanes 1–4: 
293 cell lysate as positive control, heat-treated (65°C, 10 min) SMMC-7721 cell lysate as negative control, SMMC-7721 cell 
lysate not treated with 5-Fu, SMMC-7721 cell lysate treated with 5-Fu (62.5 µg/ml) for 36 h,respectively). (B) hTERT mRNA 
expression determined with RT-PCR.
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therapeutic for cancer treatment and for restenosis preven-
tion [39,40].

Our present study attempts to link these two important
factors of human tumorigenesis in hepatocellular carci-
noma (HCC), which is one of the leading causes of cancer
and cancer-related death in China, in the context of con-
ventional chemotherapeutics (i.e. 5-Fu) induced apopto-
sis of HCC cells. We have demonstrated that in 5-Fu
induced apoptosis of HCC cells SMMC-7721 in a dose-
dependent fashion, and 5-Fu reduced telomerase activity
of these cells primarily through reduction in hTERT tran-
scription. The 5-Fu treatment also reduced mTOR activity.
Inhibition of mTOR activity with its specific inhibitor
rapamycin resulted in decrease of SMMC-7721 cells via-
bility and down-regulation of hTERT protein expression,
although rapamycin did not affect hTERT transcription.
The two effects, reduction of cell viability and down-regu-
lation of hTERT protein, caused by 5-Fu and rapamycin
were synergistic or additive and that this would be a
potential chemotherapeutic combination for hepatocellu-
lar cancer. Our findings indicated that mTOR signal mol-
ecule may be involved in the regulation of telomerase

activity at post-transcriptional level. Phosphatidylinosi-
tol-3-kinase (PI3-K) pathway has been reported as an
important intracellular mediator frequently activated in
cancer cells. PI3K activates a number of signaling mole-
cules, such as Akt. Recent studies show mTOR is an impor-
tant substrate of Akt. The down-regulation of mTOR

Rapamycin did not reduce hTERT transcription but reduced hTERT protein expressionFigure 5
Rapamycin did not reduce hTERT transcription but 
reduced hTERT protein expression. (A) The effect of 
rapamycin on hTERT protein expression was detected by 
Western Blot. SMMC-7721 cells were treated with rapamy-
cin, or 5-Fu or both for 36 h, cell lysates were immunoblot-
ted with hTERT antibody. (B) The effect of rapamycin and 5-
Fu on hTERT promoter activity. SMMC-7721 cells were tran-
sient transfected with pBTdel-130 plasmid DNA, which con-
tains the luciferase reporter driven by the core hTERT 
promoter, whole cell extract was then prepared from the 
cells and luciferase activity was measured by Dual-Luciferase 
Reporter Assay System (lands are as labeled on the figure). 
The mean ± SD of four experiments is shown; statistical sig-
nificance shown as * and ** was determined by t test, with p 
> 0.05 defined as significant. (C) hTERT mRNA expression 
determined with RT-PCR.

Rapamycin and 5-Fu synergistically inhibit proliferation of SMMC-7721 cellsFigure 4
Rapamycin and 5-Fu synergistically inhibit prolifera-
tion of SMMC-7721 cells. SMMC-7721 cells were cultured 
in the presence of rapamycin (10 nM), or 5-Fu (62.5 µg/ml), 
or both drugs (10 nM rapamycin 1 h piror to 5-Fu) for 36 h. 
Cells counts were performed with a hemocytometer. The 
cell numbers were normalized to the untreated control. The 
results are shown as the mean ± SD of triplicate samples and 
are representative of two independent experiments. Statisti-
cal significance shown as * and ** was determined by t test, 
with p > 0.05 defined as significant.
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activity may be through the inhibition of PI3K/Akt signal
pathway.

Thus, 5-Fu functions to induce cell death by regulating tel-
omerase activity through two distinct mechanisms: 1)
direct effect at the transcriptional level and 2) indirectly by
down-regulating mTOR, which leads to reduced telomer-
ase protein level. Thus, our results suggest that mTOR may
be a likely chemotherapeutic target for cancer.

Conclusion
Chemotherapeutic agent, 5-Fu, down-regulated telomer-
ase activity at both transcriptional level and PI3K/Akt/
mTOR pathway-dependent post-transcriptional level to
facilitate hepatocellular carcinoma cell apoptosis.

Abbreviations
hTERT, human telomerase reverse transcriptase; PI3K,
phosphatidylinositol-3-kinase; mTOR, mammalian target
of rapamycin; 5-Fu, 5-fluorouracil.
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