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Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. SFRP1
(the secreted frizzled-related protein 1), a putative tumor suppressor gene mapped onto chromosome
8p12-p11.1, the frequent loss of heterozygosity (LOH) region in human HCC, encodes a Wingless-type
(Wnt) signaling antagonist and is frequently inactivated by promoter methylation in many human cancers.
However, whether the down-regulation of SFRP1 can contribute to hepatocarcinogenesis still remains
unclear.

Methods: We investigated the expression of SFRP1 through real time RT-PCR and
immunohistochemistry staining. The cell growth and colony formation were observed as the
overexpression and knockdown of SFRP1. The DNA methylation status within SFRP1 promoter was
analyzed through methylation-specific PCR or bisulphate-treated DNA sequencing assays. Loss of
heterozygosity was here detected with microsatellite markers.

Results: SFRP1 was significantly down-regulated in 76.1% (35/46) HCC specimens at mRNA level and in
30% (30/100) HCCs indicated by immunohistochemistry staining, as compared to adjacent non-cancerous
livers. The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of YY-
8103, SMMC7721, and Hep3B cells. The RNA interference against the constitutional SFRP1 in the offspring
SMMC7721 cells, which were stably transfected by ectopic SFRP1, can markedly promote cell growth of
these cells. LOH of both microsatellite markers D8S532 and D8SAC016868 flanking the gene locus was
found in 13% (6 of 46 HCCs) and 6.5% (3 of 46 HCCs) of the informative cases, respectively, where 5 of
8 HCC specimens with LOH showed the down-regulation of SFRP1. DNA hypermethylation within SFRP1
promoter was identified in two of three HCC specimens without SFRP1 expression. Moreover, the DNA
methylation of SFRP1 promoter was significantly reduced, along with the re-expression of the gene, in
those HCC cell lines, Bel7404, QGY7701, and MHCC-H, as treated by DAC.

Conclusion: Our data suggested that the down-regulation of SFRP1 as a candidate tumor suppressor
gene, triggered by the epigenetic and/or genetic events, could contribute to the oncogenesis of HCC.
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Background
Hepatocellular carcinoma (HCC) is one of the most com-
mon cancers in the world, in particular in Sub-Sahara
Africa and South-eastern Asia, with an estimation of
600,000 deaths annually [1,2]. The higher incidence rate
of HCC has been continuing to increase in China and
other countries over the past decades years [3-5]. The fac-
tors of susceptibility, such as the infection of hepatitis B
virus (HBV) and hepatitis C virus (HCV), and chronic
exposure to aflatoxin B1 (AFB1) and alcoholic cirrhosis,
have been well identified and characterized as contribu-
tors to hepatocarcinogenesis. However, the underlying
molecular mechanisms contributing to hepatocarcino-
genesis are still unclear.

In past years, some transcriptomic approaches, such as
expressed sequence tags (ESTs) and cDNA or oligonucle-
otide microarray, were employed to figure out the gene
expression profile of HCC [6,7]. The comprehensive data
will contribute to the understanding of oncogenesis and
identification of some biomarkers related to the diagnosis
and prognosis of HCC. Our previous transcriptomic data
on HCC disclosed some deregulated genes in hepatocar-
cinogenesis as compared to that of the corresponding
non-cancerous livers [8,9], of which some genes could
contribute to the oncogenesis of HCC as HCC-associated
genes, whatever activated oncogenes or silenced tumor
suppressor genes. Among them, SFRP1 (secreted frizzled-
related protein 1 gene), a putative tumor suppressor gene
mapped onto chromosome 8p12-p11.1, a frequent loss of
heterozygosity (LOH) region in human HCC [10], was
found to be down-regulated in HCC. As known, some
groups have reported that SFRP1 as a Wingless-type (Wnt)
signaling antagonist is frequently inactivated owing to the
promoter methylation in many human cancers [11-22].
Although SFRP1 can regulate the vascular cell prolifera-
tion, postnatal skeletal muscle growth and hypertrophy
and the growth of retinal ganglion cell axons [23-26],
whether the down-regulation of SFRP1 could contribute
to the hepatocarcinogenesis should be further clarified.

In this study, we found that SFRP1 was significantly
down-regulated in HCC specimens through epigenetic
and/or genetic events, as compared to adjacent non-can-
cerous livers. Furthermore, the resulting data from RNA
interference and cell transfection of exogenous SFRP1
indicated that the down-regulation of SFRP1 could con-
tribute to hepatocarcinogenesis.

Methods
Tissue specimens
All HCC specimens were obtained from those patients
who underwent surgical resection of their diseases and
were informed consent before operation on their liver.
The primary tumor specimens were immediately frozen at

-80°C until DNA/RNA extraction. Both tumor and adja-
cent non-tumor tissues were sampled respectively, with
approximate 1 cm3 size of each specimen, and were
proved by pathological examination. Those HCC speci-
mens in this presenting work were grouped as the differ-
entiation grades II-III according to the Edmondson
grading system. The clinical characteristics of patients and
tumors are summarized in Table 1. In addition, two adult
liver tissues were obtained from two patients who were
resected surgically due to hemangioma in liver. The sam-
ples were obtained from the portion unaffected by the
hemangioma and frozen in liquid nitrogen immediately.
The samples were sectioned and confirmed histologically.
Two fetal livers were obtained from aborted fetus as the
pregnancy between 4–6 months. All procedures and risks
were explained verbally and in a written consent form.
This project and protocol for the investigation involving
human and animals were approved by the ethics commit-
tee of the Chinese National Human Genome Center at
Shanghai.

Liver cancer cell lines
Liver tumor-derived cell lines (Bel7402, Bel7404,
Bel7405, QGY7701, QGY7703, SMMC7721, Hep3B,
HepG2, MHCC-L, MHCC-H, Sk-hep1, Huh-7, PLC, YY-
8103 and Focus) and the fetal liver-derived cell line L02
were employed in this study, where MHCC-H and
MHCC-L cells were kindly provided by the Cancer Insti-
tute affiliated to Zhongshan Hospital, Fudan University.
All of these cell lines were grown under standard cell cul-
ture conditions in the following media: minimum essen-
tial medium Eagle (Sigma, Dorset, UK) supplemented
with 10% fetal bovine serum (Life Technologies), 1% L-
glutamine (L-glut) and 1% nonessential amino acids
(NEAA) in a 5% CO2-humidified chamber.

Extraction of genomic DNA and total RNA
In this work, genomic DNA was extracted from all availa-
ble specimens using the DNeasy Tissue Kit (Qiagen,
Valencia, CA) according to the manufacturer's recommen-
dation. RNA was extracted using TRIzol solution accord-
ing to the manufacturer's recommendation. And RNAse-
free DNase I was used to remove DNA contamination.
Total RNA concentration and quantity were assessed by
absorbency at 260 nm using a DNA/Protein Analyzer (DU
530, Beckman, USA).

Semi-quantitative RT-PCR and quantitative real-time RT-
PCR
Reverse transcription (RT) was performed in a 20 μl reac-
tion system with 2 μg total RNA treated by DNase I
according to the manufacturer's recommendation. Each
PCR was generally performed in 35 thermal cycles and
then the PCR products were observed by electrophoresis
on 2% agarose gel and visualized after staining with ethid-
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ium bromide, where β-actin was employed as loading
control. The primers of SFRP1 were showed as following:
forward, 5'-AAAGCAAGGGCCATTTA GATTAG-3';
reversal, 5'-TTCTGGGCTTGACCTTAATTGTA-3'. The PCR
product is 328 bp. β-actin primers are: forward, 5'-
TCACCC ACACTGTGCCCATCTACGA-3'; reversal, 5'-
CAGCGGAACCGCTC ATTGCCAATGG-3'. The PCR prod-
uct is 295 bp. To further analyze expression of SFRP1 gene

in HCC specimens, the relative mRNA level of SFRP1 was
measured by a quantitative real-time RT-PCR using
TaKaRa PCR Thermal Cycler Dice Detection System and
SYBR green dye (TaKaRa, Japan) in additional 40 paired
HCC specimens according to the manufacturer's recom-
mendation. A housekeeping gene, β-actin was used as an
internal control. Measurements were repeated thrice to
ensure the reproducibility of results. The mRNA level of

Table 1: Summary of Analyses of the SFRP1 Gene in 46 HCC Tissues

Case ID Folds Flag Gender Age HBV HCV Size(cm) D8S532 D8SAC0168
68

1 0.66 - M 40 + - 3 - -
2 1.36 - M 45 + + 2 + -
3 0.18 + M 50 + - 3.5 - -
4 0.67 - M 37 + - 11 - -
5 0.44 + M 55 + - 4 - -
6 0.29 + M 60 + - 3 - -
7 0.12 + M 65 + - 7 - -
8 0.05 + M 50 + + 16 - -
9 7.09 - M 50 + - 16 - -
10 0.06 + M 50 + - 16 - +
11 0.01 + M 40 + - 5 + +
12 0.04 + M 34 + - 11 - -
13 0.28 + F 50 + - 4 - -
14 0.11 + M 52 + - 9 + -
15 0.52 - M 53 + - 4 - -
16 0.01 + M 46 + - 5 + -
17 0.02 + M 48 + - 12 - -
18 0.01 + M 41 + - 3 - -
19 0.00 + M 60 + - 3.5 + -
20 0.23 + M 45 + - 15 - -
21 5.15 - M 41 + - 10 - -
22 0.14 + M 49 + - 5 - -
23 0.23 + M 30 + - 3 - -
24 0.15 + M 44 + - 4 - -
25 1.26 - M 65 + - 11 - -
26 0.17 + M 37 + - 18 - -
27 0.31 + M 49 + - 9 - -
28 0.04 + M 75 + - 2.5 - -
29 0.06 + M 44 + - 3.5 - +
30 0.19 + M 53 + - 5 - -
31 0.43 + M 41 + - 4.5 - -
32 0.36 + M 61 + - 14 - -
33 1.37 - M 70 + - 3 - -
34 0.57 - F 48 + - 5 - -
35 0.41 + M 48 + - 4 - -
36 2.54 - F 59 + - 6 - -
37 0.01 + M 51 + - 5 + -
38 0.03 + M 51 + - 4.5 - -
39 1.52 - F 33 + - 15 - -
40 0.17 + M 53 + - 6 - -
41 0.08 + M 50 + - 5 - -
42 0.31 + M 42 + - 6 - -
43 0.04 + M 58 + - 12 - -
44 0.06 + F 51 + - 4 - -
45 0.19 + F 55 + - 8 - -
46 0.44 + M 58 + - 12 - -

Flag + indicated downregulation of SFRP1 gene (fold less than 0.5); – indicated no downregulation of SFRP
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each gene in each HCC sample was normalized by com-
paring with the level in corresponding non-cancerous
liver [27]. The average Ct value of the β-actin gene was
subtracted from the average Ct value of SFRP1 for each
sample: SFRP1ΔCt = (Avg. SFRP1 Ct – Avg. β-actin Ct),
SFRP1ΔΔCt= (SFRP1ΔCt_HCC -SFRP1ΔCt_non-HCC).
The fold change (2-SFRP1ΔΔCt) of SFRP1 expression relative
to β-actin of each HCC sample examined was calculated.
The significance level was defined as p value <0.01 [28].

Immunohistochemistry
Four-μm thick sections were deparaffinized and dehy-
drated, and then treated with methanol containing 0.3%
H2O2 to inhibit endogenous peroxidase. The slides were
incubated with rabbit anti-SFRP1 polyclonal antibody
(1:100 dilution, 600-401-475, Rockland Inc.) at 37°C for
2 hrs, and then at 4°C overnight, followed by the incuba-
tion with a horseradish peroxidase-conjugated anti-rabbit
antibody (Dako Japan Ltd., Kyoto, Japan) at 37°C for 1 h.
The signals were detected using Diaminobenzidine Sub-
strate Kit (Vector Laboratories, Burlingame, CA). Counter-
staining was performed with hematoxylin. Slides
incubated with PBS buffer instead of the primary rabbit
antibody were used as negative controls, whereas normal
liver in which SFRP1 was known to be strongly positive
were used as positive controls in each experiment. In addi-
tion, the slides with HCC specimens and corresponding
adjacent non-HCC livers were simultaneously examined
via the immunohistochemistry staining, and then were
assessed by visual inspection and the estimation of the
percentage of immunopositive cells. The HCC specimens
with less than 10% immunopositive cells were considered
as negative. Tissues were graded on a scale of negative (-),
low expression (+), high expression (++), or strong expres-
sion (+++). If ++ or +++ was observed, the specimen was
considered to be strongly positive.

Western blot analysis
Total proteins from cultured cell lines were subjected to
protein gel electrophoresis using 12% SDS-PAGE and
transferred onto Hybrid- PVDA membrane (Amersham
life Science) treated by 20% methanol in Tris-glycine
buffer. After blocked in PBS containing 5% BSA, the mem-
brane was incubated for immunoblotting analysis with
rabbit anti-SFRP1 polyclonal antibody (600-401-475,
Rockland Inc.) by 1:300 dilutions at room temperature
for 2 hrs, and then with goat-anti-rabbit secondary anti-
body for 40 min. Finally, the signals were detected using
the Odyssey Infrared Imaging System (LI-COR Bio-
sciences).

Cell transfection and cell proliferation
All HCC cell lines were grown at 37°C in Dulbecco's mod-
ified Eagle's medium (Sigma Chemicals, St. Louis, Mis-
souri, MO) supplemented with 10% fetal bovine serum

(Life Technologies), in a 5% CO2-humidified chamber. To
observe the cell proliferation, the recombinant plasmids
pcDNA3.0 containing full-length ORF of SFRP1, which
was amplified from a normal liver with high fidelity PCR
Enzyme (PrimerStar, TaKaRa, Dalian, China), were tran-
siently transfected into target cells using Lipofectamine™
2000 Transfection Reagent (Invitrogen) according to the
manufacturer's instruction. The transfected cells were
seeded in 96-well plate at 2 × 103 cells per well and then
cultured for 5–8 d. 10 μl of CCK-8 (Cell Counting Kit-8,
Dojindo Laboratories, Kumamoto, Japan) solution was
added to each well of per plate, and incubated the plate at
37°C for 1 h. The absorbance at 450 nm was measured to
represent the cell viability. To establish the stable off-
spring cell lines with exogenous SFRP1, above plasmids
and empty vectors as control were transfected into
SMMC7721 cells and then G418 (Life Technologies, Inc.,
Paisley, UK) was added to the medium at a final concen-
tration of 700 μg/ml. After 3 weeks, the remaining colo-
nies were individually picked and expanded. The
expression of exogenous SFRP1 in these offspring sub-
clones was checked by western blotting using anti-SFRP1
polyclonal antibody. Cell viability was measured to assess
the cell proliferation of those stable SMMC7721 sub-
clones with exogenous SFRP1 according to the described
method above. All experiments were independently
repeated at least three times.

Colony formation
Plasmids pcDNA3. 0 containing SFRP1 or empty vector as
control were transfected into Hep3B and YY-8103 cells in
35-mm dishes by Lipofectamine 2000 (Invitrogen) for 24
hrs, and then stripped and plated on 100-mm tissue cul-
ture dishes, and then G418 (Life Technologies, Inc., Pais-
ley, UK) was added to the medium at a final concentration
of 700 μg/ml. After 3 weeks, the remaining colonies were
counted on crystal-violet-stained dishes.

Loss of heterozygosity (LOH) analysis

LOH analysis were here performed using DNA sequencing
in 46 pairs of HCC and adjacent non-cancerous livers with
the polymorphic microsatellite markers D8S532 (For-
ward primer: GCTCAAAGCCTCC AATGAC; Reverse
primer: GACTTCGTGATCCACCTGC, the size of PCR
product is about 240 ~ 260 bp) and D8SAC016868 (For-
ward primer: AAGTCAAAGGCCAGGGTGT; Reverse
primer: TCATGTGTTTCCC AGGAATG, the size of PCR
product is about 230 ~ 250 bp), located close to the SFRP1

locus. Amplification was done in 5 μl volumes with 20 ng

of genomic DNA, 0.06 μmol/L of each primer (5' fluores-
cent-labeled primers), 0.2 mmol/L each dinucleotide tri-
phosphate, and 0.2 U hotstar Taq polymerase under the
following conditions: 94°C (hot start) for 10 min, fol-
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lowed by 30 cycles at 94°C for 30 sec, at 55°C for 30 sec,
and at 72°C for 30 sec, with a final extension at 72°C for
10 min. PCR products were analyzed using ABI 3730
sequencer. LOH was analyzed by determining the fluores-
cent intensity of each allele and calculating the ratio using
peak height as the following formula:

, where the longer or

shorter alleles were considered to be significantly lost in

HCC specimens when an LOH value ≤0.5 or ≥1.5 was
observed, respectively.

Treatment of 5-aza-2'-deoxycytidine and trichostatin A
To evaluate whether the genomic DNA methylation can
contribute to the re-expression of SFRP1, both 5-aza-2'-
deoxycytidine (DAC) (1000 nM) (Sigma), a demethyla-
tion reagent, and trichostatin A (TSA) (300 nM) (Wako
BioProducts, Richmond, VA), an inhibitor of histone
deacetylase, were employed to treat Bel7404, QGY7701
and MHCC-H cells with low expression of endogenetic
SFRP1.

Methylation-specific PCR and Bisulfite Sequencing
We treated DNA with bisulfite according to the previous
description [29]. Briefly, 1 μg of genomic DNA was dena-
tured by incubation with 0.2 M NaOH. Aliquots of 10
mM hydroquinone and 3 M sodium bisulfite (pH 5.0)
were added and the solution was incubated at 50°C for 16
hrs. To analyze the DNA methylation status of the CpG
islands of SFRP1 in HCCs and cell lines, Methylation-Spe-
cific PCR (MSP) was performed with genomic DNA
treated by bisulfite, where specific primers for unmethyl-
ated and methylated DNA were designed within the CpG
island of SFRP1, as following: Methylation (forward: AGT-
TAGTGTC GCGCGTTC; reversal: CCGATACCCATAC-
CGACTC) and Unmethylation (forward:
GGAGTTGGGGTGTATTTAGTTTG; reversal: CCAATAC-
CCATACCAACTCTACA). The lengths of "M" and "U"
product are 299 bp and 247 bp, respectively. In addition,
DNA sequencing on PCR products was also carried out to
further assess the DNA methylation status of SFRP1 pro-
moter, where the CpG islands-enriched region within
SFRP1 promoter was amplified with bisulfite-treated
genomic DNA by using the primers (forward: TTTAT-
GGGTTTGTAAGTATGATTTAGG; reversal: ACAAAT-
TAAAC AACACCATCTTCTT). The length of product is 897
bp, and then the PCR products were inserted into pMD
18-T vector (TaKaRa Inc. Japan) for DNA sequencing on
ABI 3730 sequencer.

RNA interference using small interference RNA (siRNA)
Two siRNAs against SFRP1 were designed and chemically
synthesized (Shanghai GenePharma Co., Shanghai,
China) for targeting different coding regions of the gene as
following: siRNA-SFRP1_888 (5'- GGCCAUCAUU-
GAACAUCUCtt-3' and 5'-GAGAUGUUCAAUGAU
GGCCtt-3') for nt 888–909 of SFRP1; and siRNA-
SFRP1_1094 (5'- GCCACCACUUCCUCAUCAUtt-3' and
5'-AUGAUGAGGAAGUGGU GGCtt-3') for nt 1094–1115
of SFRP1. In addition, a negative control, termed as
siRNA_NC (5'-UUCUCCGAACGUGUCACGUtt-3' and 5'-
ACGUGACACGUUCGGAGAAtt-3') was also synthesized
in this study. All above siRNAs were transfected into
SMMC7721 cells to observe the rescue of depressed cell
growth triggered by exogenous SFRP1.

Results
SFRP1 was frequently down-regulated in primary HCC
To evaluate the transcriptional expression of SFRP1 in pri-
mary HCCs, semi-quantitative RT-PCR was employed to
detect the mRNA level of SFRP1 in 120 pairs of HCC spec-
imens and their adjacent non-cancerous liver tissues. The
results showed that SFRP1 was frequently down-regulated
in 48% (58/120) HCC specimens as compared with adja-
cent non-cancerous livers, of which the representative RT-
PCRs from 24 pairs of HCC samples were showed as Fig-
ure 1A. To confirm the absence of genomic DNA contam-
ination, 6 paired HCCs and non-HCCs were randomly
selected to detect the expression of SFRP1 and β-actin by
RT-PCR. The products of SFRP1 and β-actin were con-
firmed by DNA sequencing. The resulting data showed
that no PCR products were amplified in all of samples
without RT (RT-), indicating that there is no genomic
DNA contamination in these RNA samples (Fig. 1B). Con-
sidering the limitation of RT-PCR method, the mRNA
level of SFRP1 was also further evaluated to confirm the
down-regulation of this gene in 46 informative cases
(Table 1) through real time RT-PCR. Of these 46 cases, 35
(76.1%) HCCs showed at least a 2-fold reduction of the
SFRP1 mRNA level as normalized by β-actin level in each
sample as compared with that of the corresponding non-
tumorous livers. The resulting data showed that the tran-
scriptional expression of SFRP1 was significantly reduced
in HCC (p < 0.001, Fig. 1C) by comparing between tumor
and non-cancerous liver groups. However, the down-reg-
ulation of SFRP1 was not statistically correlated with the
gender, age (≥60 or <60), or tumor size (≥3 or <3 cm) (p
> 0.05, Table 2).

To further confirm the down-regulation of SFRP1 at pro-
tein levels, immunohistochemical staining was performed
on an additional 100 pairs of HCC specimens and corre-
sponding adjacent non-cancerous livers using tissue array
(Shanghai OUTDO Biotech Co, LTD, China), where
immunohistochemical-staining intensity was scored on a

LOH

Height of normal allele two
Height of normal allele one

=
HHeight of tumor allele two
Height of tumor allele one
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scale of 1+ to 3+. Interestingly, SFRP1 was found also
decreased in 30 (30%) of 100 HCC specimens as com-
pared to adjacent non-cancerous livers (p < 0.05), where
the stain intensity of SFRP1 in those non-cancerous livers
was generally scored to the scale of 3+. The immunohisto-
chemical staining showed that SFRP1 was mostly
anchored in cytoplasm and extracellular matrix (ECM)
(Fig. 1D), in coincidence with the character of SFRP1 as a
secreted protein. Furthermore, we evaluated the expres-
sion level of SFRP1 in available HCC cell lines by RT-PCR.
The resulting data showed that SFRP1 was significantly
expressed in Bel7405, QGY7703, MHCC-L, Sk-Hep1,
HuH-7, PLC, and Focus cell lines, whereas no or weak

expression of the gene was found in Bel7402, Bel7404,
QGY7701, SMMC7721, Hep3B, HepG2, MHCC-H, L02
and YY-8103 cell lines (Fig. 1E). Together these findings
indicated that the down-regulation of SFRP1 could be an
important event in oncogenesis of HCC.

Exogenous SFRP1 could inhibit cell growth of HCC cells
To assess whether the down-regulation of SFRP1 could
contribute to hepatocarcinogenesis, plasmid pcDNA3.0
with full ORF of SFRP1 under the control of the SV40 pro-
moter were first transiently transfected into YY-8103, a
HCC cell line, without the significant expression of endo-
genetic SFRP1 (Fig. 1E), where the empty vector

Expression pattern of SFRP1 in HCC specimens by RT-PCR and immunohistochemical stainingFigure 1
Expression pattern of SFRP1 in HCC specimens by RT-PCR and immunohistochemical staining. (A) Represent-
ative results of semi-quantitative RT-PCR of SFRP1 from 24 pairs of HCCs (C) and corresponding adjacent non-cancerous liv-
ers (N), where β-actin was employed as an internal control. Each PCR was generally performed in 32 thermal cycles and PCR 
products were visualized after electrophoresis through 2% agarose. The length of PCR product of SFRP1 and β-actin are 328 
bp and 295 bp, respectively. (B) To confirm the absence of influences of genomic DNA contamination, 6 Paired HCCs and 
non-HCCs were selected randomly to detect the SFRP1 and beta-actin expression by RT-PCR. Experiments were performed 
by using RT (RT+) or no RT (RT-) in each sample. (C) Real time RT-PCR analysis of SFRP1 was carried out on 46 paired HCCs 
and adjacent non-cancerous livers. For each sample, the relative mRNA level of SFRP1 was normalized based on that of β-actin. 
The line within each box represents the median -ΔCt value; the upper and lower edges of each box represent the 75th and 
25th percentile, respectively; the upper and lower bars indicate the highest and lowest values determined, respectively. * indi-
cates p value <0.001. (D) Representative immunohistochemical staining of a pair of HCC specimen and corresponding non-
cancerous liver with anti-SFRP1 antibody. The nuclei were countered stained with hematoxylin. (E) Expression pattern of 
SFRP1 was evaluated in HCC cell lines, fetal and adult normal livers through RT-PCR, where β-actin was used as a loading con-
trol.
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pcDNA3.0 was used as control (Fig. 2A). The interesting
results showed that exogenous SFRP1 can significantly
inhibit the cell growth of YY-8103 cells as compared to the
vector alone (Fig. 2B), suggested that SFRP1 as a Wnt
pathway antagonist could play important roles in regulat-
ing negatively the cell growth of HCC-derived cells. To fur-
ther test the negative effect of SFRP1 on the cell growth of
HCC cells, the colony formation assay was performed on
another HCC cell line, Hep3B, without the significant
expression of endogenetic SFRP1, through the transient
cell transfection with the same plasmids, pcDNA3.0 with
full ORF of SFRP1 and empty vector (Fig. 2C). After cul-
tured in G418 for 21 days, few colonies can be formed
when the cell transfection using pcDNA3.0 with SFRP1,
whereas the colony formation was still obvious as the cell
transfection with empty vector alone (Fig. 2D). The dra-
matic reduction of colony formation from Hep3B cells
further suggested that SFRP1 could be a potent inhibitor
for negatively regulating the cell growth, possibly through
the opposed effect of Wnt-β-catenin pathway, which was
well-known as an important contributor to the oncogene-
sis of HCC [30-33]. To further observe the long-term effect
of SFRP1 on the cell growth of HCC cells, the same plas-
mids were stably transfected into SMMC7721 cells, also a
HCC cell line. After screening the transfected cells by west-
ern blotting assay, five stable offspring subclones were
picked up and maintained. Among them, two stable sub-
clones (SMMC7721Z and SMMC7721Y) with significant
expression of exogenous SFRP1 were further evaluated by
this study (Fig. 3A). The resulting data showed that
SMMC7721Z and SMMC7721Y with stable expression of
SFRP1 exhibited the depressed cell growth as compared to
parent SMMC7721 cells without endogenous expression
of the gene (p < 0.01, Fig. 3B). These transient and long-

term effects of SFRP1 on different HCC cells support the
notion that SFRP1 as a candidate tumor suppressor genes
could be involved in hepatocarcinogenesis. To eliminate
the artificial growth suppression induced by the overex-
pression of various genes, we compare the expression
level of SFRP1 in SMMC7721Z containing exogenous
SFRP1 with that of normal liver through RT-PCR (Fig.
3C). The resulting data showed that the mRNA level of
exogenous SFRP1 in SMMC7721Z was not higher than
that of human normal liver, implying that the growth sup-
pression of SMMC7721Z could be induced by SFRP1
itself, not by the artificial overexpression of ectopic gene.

Rescue of the suppressive cell growth of exogenous SFRP1 
through RNA interference
To further evaluate the contribution of the down-regula-
tion of SFRP1 to oncogenesis of HCC, two small interfer-
ence RNAs (siRNAs), siRNA-SFRP1_888 for nt 888–909
and siRNA-SFRP1_1094 for 1094–1115 of SFRP1, were
designed and chemically synthesized for the knockdown
of SFRP1. To test the efficacy of these siRNAs, the siRNAs
were transiently transfected into SMMC7721Z cells with
exogenous SFRP1 because the endogenetic SFRP1 was dif-
ficult to be detected by using western blotting assay, where
siRNA-NC was used as a reference control. The resulting
data indicated that these two siRNAs can significantly
knockdown the exogenous SFRP1, as compared with
siRNA-NC (Fig. 3D). Afterward, these siRNAs were further
transiently transfected into some HCC cell lines, such as
MHCC-L and Sk-hep-1 cells, with the endogenetic SFRP1.
However, the growth of these cells had no significant
alteration, whatever promotion or suppression of cell
growth, implying that those HCC cell lines could be inap-
propriate to evaluate the effect of SFRP1 on cell growth.

Table 2: The expression of SFRP1 versus clinical features

Clinicopathological 
parameters

Number of 
patients

Down* regultaion No Down 
regultaion

X2 p

Gender
male 40 32 (80.2%) 8 (20.0%) 2.770 0.065

female 6 3 (50.0%) 3 (50.0%)
Age

≥60 7 5 (71.4%) 2 (28.6%) 0.098 0.754
<60 39 30 (76.9%) 9 (23.1%)

Tumor Size (cm)
>3 cm 39 31 (45.5%) 8 (54.5%) 1.629 0.202
≤3 cm 7 4 (37.5%) 3 (62.5%)

D8S532
LOH+ 6 5 (83.3%) 1 (16.7%) 0.361 0.548
LOH- 40 30 (75%) 10 (25%)

D8SAC016868
LOH+ 3 3 (100.0%) 0 1.30 0.254
LOH- 43 32 (74.4%) 11 (25.6%)

*Down-regulation of SFRP1 was designed as ≤0.5 (HCC/non-HCC)
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The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of HCC cellsFigure 2
The overexpression of SFRP1 can significantly inhibit the cell growth and colony formation of HCC cells. (A) 
Plasmid pcDNA3.0-SFRP1 was transiently transfected into YY-8103 cells, confirmed by immunoblotting assay, where empty 
vector was used as control and β-actin was used as an internal reference. (B) Cell growth curve of YY-8103 cells with the 
exogenous SFRP1, which cultured in RPMI 1640 with 10% FBS. The cells transfected with the empty vector pcDNA3.0 were 
served as control. The experiments were repeated at least three times. The result represents the average value of triplicate 
wells, with standard deviation. T-test was performed to determine the statistical significance between both vector and SFRP1 
experiments using SPSS software, and p<0.05. (C) Plasmid pcDNA3.0-SFRP1 was also transiently transfected into Hep3B cells, 
where the overexpression of SFRP1 was confirmed by immunoblotting assay, as compared to the control transfected by empty 
vector. (D) The colony formation of Hep3B cells was markedly inhibited as transfected with exogenous SFRP1, where the 
empty vector pcDNA3.0 was served as control (left). Here, after transfection for 24 h, the cells were striped and plated on 
100 mm-dishes and then cultured by G418 (600 mg/ml) for 3 weeks. The dishes were stained with crystal violet solution and 
the number of colonies was counted from three independent experiments. The right histogram showed the colony formation 
efficiency, where the numbers represented the average value of three independent experiments, with standard deviation (p < 
0.01, as compared with that of vector control).
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Furthermore, we still chose SMMC7721 cells to evaluate
the efficiency of these siRNAs, because the above data
indicated that SMMC7721 cells exhibited the response to
the exogenous SFRP1. Here, these siRNAs were transiently
transfected into stable offspring SMMC7721Z cells with
constitutional expression of exogenous SFRP1. Interest-
ingly, both siRNA-SFRP1_888 and siRNA-SFRP1_1094

could obviously promote cell growth of SMMC7721Z
cells as compared to siRNA_NC (p < 0.05, Fig. 3E), indi-
cated that the suppressive cell growth of exogenous SFRP1
could be rescued by the RNA interference. The data also
further supported that the frequent down-regulation of
SFRP1 could contribute to hepatocarcinogenesis via pro-
moting the cell growth of given HCC cells, since the cell

The overexpression and RNA interference of SFRP1 can affect the cell growth of SMMC7721 cellsFigure 3
The overexpression and RNA interference of SFRP1 can affect the cell growth of SMMC7721 cells. (A) 
SMMC7721 cells were stably transfected by plasmid containing SFRP1, where both offspring subclones, SMMC7721Z and 
SMMC7721Y, were validated to be overexpressed through western blotting assay, whereas no expression of the gene was 
confirmed in SMMC7721-mock although transfected with the same vector. (B) The overexpression of SFRP1 can suppress the 
cell growth of SMMC7721 cells as compared with the mock. The result represents the average value of triplicate wells, with 
standard deviation, p < 0.01. (C) Analysis of SFRP1 expression level of SMMC7721Z and normal human liver through RT-PCR, 
where β-actin was used as a loading control. (D) RNA interference using both siRNA_888 and siRNA_1094 was employed to 
knockdown the constitutive SFRP1 in SMMC7721Z cells, where both these siRNAs were effective as compared to siRNA_NC 
as control, demonstrated by western blotting assay. (E) Cell growth of SMMC7721Z cells was promoted by both siRNA_888 
and siRNA_1094, not siRNA_NC. The result represented the average value of triplicate wells, with standard deviation, p < 
0.05.
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growth of some HCC cells was indeed negatively regu-
lated through the expression level of SFRP1.

LOH at the SFRP1 locus in HCCs
To address whether the genetic aberrations could contrib-
ute to the down-regulation of SFRP1, genomic imbalance
of the SFRP1 locus was evaluated in 46 pairs of HCC spec-
imens with or without SFRP1 expression by using the mic-
rosatellite markers D8S532 and D8SAC016868, which
were found on chromosome 8p11.2 flanking the SFRP1
locus (Fig. 4A). Among these 46 pairs of HCCs examined,
LOH of these two microsatellite markers was identified in
13% (6 of 46) and 6.5% (3 of 46) HCC specimens (Fig.
4B), respectively, where a total of 8 (17.4%) HCCs was
considered as involving LOH. Interestingly, SFRP1 was
down regulated in seven of eight HCC specimens. How-
ever, the overall resulting data suggested that low fre-
quency of LOH at the SFRP1 locus could not be a crucial
genetic event in HCCs, although epimutation could occur
by the DNA methylation on the remaining allele in those
HCC samples when an allele was lost.

DNA methylation status of SFRP1 promoter in HCC cell 
lines
To assess the DNA methylation level within SFRP1 pro-
moter in these cell lines, MSP was performed on genomic
DNA treated by bisulfite with the designed primers. Inter-
estingly, the results showed that DNA hypermethylation
within SFRP1 promoter indeed occurred in Bel7402,
SMMC7721, Bel7404 and YY-8103 cells without the
expression of endogenetic SFRP1, whereas partially or
complete unmethylation of the region were found in
Bel7405 and Sk-Hep1 cells, respectively (Fig. 5A). Simi-
larly, as a control, we here evaluated the expression of
SFRP1 and DNA methylation level within SFRP1 pro-
moter in both fetal and adult livers. The resulting data
demonstrated that the obvious DNA hypomethylation of
the promoter was significant in the livers, in consistence
with the high expression of SFRP1. The findings implied
that the methylation status of SFRP1 promoter could be
associated with the expression of the gene.

To further investigate whether the epigenetic events could
contribute to the down-regulation of SFRP1, both the
demethylation agent DAC and the histone deacetylase
inhibitor TSA were employed to treat some HCC cell lines,
such as Bel7404, QGY7701, MHCC-H cells, without the
expression of endogenetic SFRP1 (Fig. 1E). Interestingly,
the resulting data showed that SFRP1 was significantly
upregulated in Bel7404, QGY7701, MHCC-H cells
through the treatment by DAC, not by TSA (Fig. 5B),
implying that the DNA methylation status of genomic
DNA could be correlated with the dysregulation of SFRP1.
To further address the relationship between the methyla-
tion status on SFRP1 promoter and the expression of the

gene, MSP was performed on these three HCC cell lines to
detect the methylation levels of CpG islands within SFRP1
promoter. Expectedly, MSP data suggested that the CpG
islands within SFRP1 promoter could be in DNA hyper-
methylation in all parent cell lines, whereas the unmeth-
ylated CpG islands occurred in the cell lines as the
treatment of DAC, not TSA, along with the re-expression
of endogenetic SFRP1 (Fig. 5C). These findings indicated
that the DNA hypermethylation of SFRP1 promoter might
be responsible for the silence of SFRP1 transcription.

DNA methylation of the SFRP1 promoter in primary HCCs
To quantify the DNA methylation status of SFRP1 pro-
moter in clinical HCC samples, bisulfite-treated genomic
DNA sequencing was employed to analyze the methyla-
tion level of CpG islands in three pairs of HCC specimens
with the down-regulation of SFRP1 (Fig. 6A). The DNA
sequencing on PCR products revealed that the methyla-
tion levels of CpG islands around the transcription start
site (TSS) of SFRP1 was significantly increased in two
HCC specimens, 11C and 38C, as compared to that of
non-cancerous livers (p < 0.01) (Fig. 6B), whereas the
methylation status in one HCC sample was not signifi-
cantly changed. The resulting data suggested that the DNA
hypermethylation of CpG islands around TSS of SFRP1
can partially contribute to the down-regulation of SFRP1
in some HCC specimens, although other mechanisms,
such as LOH and/or other epigenetic alterations, may also
contribute to the down-regulation of SFRP1 in HCCs.

Discussion
Wnt signaling pathway is evolutionally conserved and
involved in a variety of cellular processes, such as the con-
trol of cell polarity, cell fate determination, cellular prolif-
eration, motility, morphology, axis formation, organ
development, and even malignant transformation [34-
37]. Interestingly, SFRP1 encodes a soluble Wnt antago-
nist and is located on chromosome 8p12-p11.1, which is
a frequently affected region involving genetic alterations
in some tumors, including breast cancer [38], colorectal
carcinomas [39], and HCC [8,22]. Moreover, the down-
regulation of SFRP1 has been observed in many tumors,
including breast cancer [14,40], ovarian cancer [17,41],
bladder cancer [13,42], mesothelioma [15], prostate can-
cer [18,38], colorectal cancer [12,39], and non-small cell
lung cancers [26]. Recently, the frequent down-regulation
of the gene was also reported in HCC [22], where 43 of 47
HCC (91.5%) exhibited the depressed SFRP1 as compared
with non-cancerous livers through quantitative RT-PCR.
In this study, we also found that SFRP1 was significantly
downregulated in 76.1% (35/46) in HCCs by quantitative
real-time RT-PCR. The lower frequency of SFRP1 down-
regulation than the previous report [22] could be ascribed
to the heterogeneity of hepatocellular carcinoma due to
etiology, ethnics, etc. Moreover, SFRP1 was found to be
Page 10 of 15
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significantly decreased in 30 (30%) of 100 HCC speci-
mens on tissue array at protein levels. These findings sug-
gested that the down-regulation of SFRP1 could be
involved in some HCCs, although the down-regulation of
the gene was not correlated with the etiology, gender, and
tumor size. In general, our findings above implied that the
frequent down-regulation of SFRP1 mapped onto chro-
mosome 8p12-p11.1, a major LOH region in human
HCC, could be an important event in oncogenesis of
HCC.

In this study, we evaluated the DNA methylation status of
SFRP1 promoter in many HCC cell lines and primary
HCC specimens through MSP and bisulfite-treated
genomic DNA sequencing. In these HCC cell lines exam-
ined, the unmethylated CpG islands within SFRP1 pro-
moter was found in Sk-Hep1 and Bel-7405 cells with the
expression of SFRP1 via MSP, whereas the significant
hypermethylation of the region occurred in Bel7402,
SMMC7721, Bel7404, YY-8103, QGY7701, and MHCC-H
cells without SFRP1 transcription. The results supported
that the DNA methylation status of SFRP1 promoter can
correlate with the transcriptional expression of the gene.
Actually, two of three HCC specimens indeed exhibited
the significant hypermethylation of SFRP1 promoter, in

consistency with the previous description [22], suggesting
that the hypermethylation of SFRP1 promoter could be an
important event for the down-regulation of the gene in
HCC.

However, epi-mutation on a remaining allele as an allele
was lost in HCC specimens could not be crucial event in
hepatocarcinogenesis, because low frequency of LOH
occurred at the SFRP1 locus. In this study, we used addi-
tional microsatellite markers D8S532 and D8SAC016868
that are proximal to the SFRP1 locus, not D8S505 and
D8S1722 used in the previous report [22], to evaluate
allelic imbalance of the SFRP1 locus. The two microsatel-
lite markers (D8S532 and D8SAC016868) were closer to
the SFRP1 locus in both flank, not one flank, than others
reported by Shil YL et al [22] based on the genomic infor-
mation (see Fig. 4A). Both D8S532 and D8SAC016868
are located in the upstream or downstream of SFRP1, only
a 378 kb or 153kb distance from SFRP1 locus, respec-
tively. Our result showed that only 13% (6 of 46 HCCs)
and 6.5% (3 of 46 HCCs) exhibited the allelic imbalance,
where seven of eight HCC specimens with LOH showed
the depressed expression of SFRP1. As known, the ideal
reference for LOH analysis is a non-pathologic tissue of
the same patients, such as blood cells. In this study, it is

Loss of heterozygosity (LOH) analysis on HCC samplesFigure 4
Loss of heterozygosity (LOH) analysis on HCC samples. (A) Schematic representation of the microsatellite markers of 
D8S532 and D8SAC016868 located on chromosome 8p11.2 flanking the SFRP1 locus. (B)The microsatellite markers, D8S532 
and D8SAC016868, flanking the SFRP1 locus were employed to analyze the LOH on 46 pairs of HCC samples. Here, we 
showed a representative result of LOH from primary HCC (below) and corresponding adjacent non-cancer liver (upper), 
where the arrows indicated the deleted alleles in the tumor DNA.
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possible that the under-estimation of LOH ratio could
occur when non-tumor livers with pathological lesion
were used as control.

Interestingly, it is known that SFRP1 could control vascu-
lar cell proliferation, skeletal muscle growth and retinal
ganglion cell axons growth in vitro or in vivo [23-26]. How-
ever, whether the silencing of SFRP1 could contribute to
hepatocarcinogenesis remains unknown. Significantly, in
this study, our data indicated that the expression level of
SFRP1 as a negative regulator was crucial to the cell

growth of some HCC cells. The overexpression of SFRP1
can obviously inhibit the cell growth and colony forma-
tion of YY-8103, Hep3B and SMMC7721 cells, whereas
RNA inference on the exogenous SFRP1 can induce the
growth of the given cells (SMMC7721), indicating that the
cellular behaviors of some HCC cells could be sensitive to
the expression level of SFRP1, and the significant reduc-
tion of SFRP1 could contribute to oncogenesis of HCC
through promoting cell growth. On the other hand, our
data also implied that SFRP1 as a tumor suppressor gene
and secreted protein for inhibiting Wnt-β-catenin could

The correlation between the expression of SFRP1 gene and DNA methylation status of SFRP1 promoterFigure 5
The correlation between the expression of SFRP1 gene and DNA methylation status of SFRP1 promoter. (A) 
DNA methylation status of SFRP1 promoter was assessed in some HCC cell lines with or without the expression of endog-
enetic SFRP1, as well as fetal and adult normal livers, through MSP assay with specific primers. The peripheral blood lym-
phocyte (PBL) DNA treated with SssI Methylase (New England Biolabs, Beverly, MA) was used as a positive control for 
methylation (IVD), and water was used as a negative control (H2O). (B) Bel7402, QGY7701 and MHCC-H cells without the 
expression of endogenous SFRP1 were treated with 5-aza-2'-deoxycytidine (DAC) and trichostatin A (TSA) alone or in combi-
nation. The expression of SFRP1 was then evaluated by RT-PCR. Untreated HCC cells were employed as control (lane 1). (C) 
The DNA methylation status of SFRP1 promoter in these cells treated by DAC and TSA were further evaluated by MSP assay 
and the same primers, where bisulfite-treated genomic DNA from these specimens was used as template. M, methylated; U, 
unmethylated.
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be employed for cancer therapy through transfecting the
gene into tumor, and injecting the active protein as sur-
roundings niche.

Conclusion
Our data suggested that the down-regulation of SFRP1 as
a candidate tumor suppressor gene, triggered by the epige-
netic and/or genetic events, could contribute to the onco-
genesis of HCC.
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