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Abstract
Background: The treatment of ovarian cancer is hindered by intrinsic or acquired resistance to
platinum-based chemotherapy. The aim of this study is to determine the frequency of mismatch
repair (MMR) inactivation in ovarian cancer and its association with resistance to platinum-based
chemotherapy.

Methods: We determined, microsatellite instability (MSI) as a marker for MMR inactivation
(analysis of BAT25 and BAT26), MLH1 promoter methylation status (methylation specific PCR on
bisulfite treated DNA) and mRNA expression of MLH1, MSH2, MSH3, MSH6 and PMS2
(quantitative RT-PCR) in 75 ovarian carcinomas and eight ovarian cancer cell lines

Results: MSI was detected in three of the eight cell lines i.e. A2780 (no MLH1 mRNA expression
due to promoter methylation), SKOV3 (no MLH1 mRNA expression) and 2774 (no altered
expression of MMR genes). Overall, there was no association between cisplatin response and MMR
status in these eight cell lines.

Seven of the 75 ovarian carcinomas showed MLH1 promoter methylation, however, none of these
showed MSI. Forty-six of these patients received platinum-based chemotherapy (11 non-
responders, 34 responders, one unknown response). The resistance seen in the eleven non-
responders was not related to MSI and therefore also not to MMR inactivation.

Conclusion: No MMR inactivation was detected in 75 ovarian carcinoma specimens and no
association was seen between MMR inactivation and resistance in the ovarian cancer cell lines as
well as the ovarian carcinomas. In the discussion, the results were compared to that of twenty
similar studies in the literature including in total 1315 ovarian cancer patients. Although no
association between response and MMR status was seen in the primary tumor the possible role of
MMR inactivation in acquired resistance deserves further investigation.
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Background
Ovarian cancer is the leading cause of death from gyneco-
logical cancer in the Western world [1]. The treatment of
ovarian adenocarcinoma has improved over the last 20
years owing to the combined treatment of cytoreductive
surgery and chemotherapy [2]. Although the response of
the primary tumor to taxane and platinum-based chemo-
therapy is high, about 20% of patients never achieve a
clinical response and the majority of the patients will
relapse and eventually die of drug-resistant disease [3].

If it would be possible to predict primary platinum resist-
ance, patients might be spared an ineffective but toxic
platinum-containing therapy and might benefit from an
early therapy with different drugs. Recently, several molec-
ular profiling studies, including our study, have revealed
gene sets that can predict response to platinum-based
chemotherapy in ovarian cancer [4-6]. We discovered a
nine-gene set which predicts response with a sensitivity of
89% and a specificity of 59% [5]. One of these nine genes
was proliferating cell nuclear antigen (PCNA). PCNA is a
DNA sliding clamp that interacts with several proteins
involved in cell cycle control, DNA methylation, DNA
replication and DNA repair including mismatch repair
[7]. In this study, we have focused on DNA mismatch
repair and its role in platinum-based chemotherapy resist-
ance in ovarian cancer.

DNA mismatch repair (MMR) is divided into three steps:
initiation, excision and resynthesis (Figure 1). Several pro-
teins are involved in the initiation of MMR including the
three MutS-homologs, MSH2, MSH3 and MSH6. The
MutS homologs form a heterodimer that recognizes DNA
damage; the MSH2 and MSH6 dimer (the hMutSα com-
plex) recognizes base-base mismatches and single base
loops whereas the MSH2 and MSH3 dimer (hMutSβ com-
plex) recognizes insertion/deletion loops of more then
one base. After the recognition of the DNA damage the
binding of a heterodimer of the MutS-homologs MLH1
and PMS2 (the hMutLα complex) leads to the further ini-
tiation of MMR. Other known and still unknown proteins
involved in the last two steps of MMR, the excision of the
damaged strand and the resynthesis, are recruited subse-
quently. Proteins known to be involved are exonuclease
ExoI, proliferating cell nuclear antigen (PCNA), DNA
polymerase δ and perhaps ε and in addition based on its
association with DNA polymerase δ and PCNA, DNA
ligase I [8,9].

Inactivation of MMR leads to the occurrence of unrepaired
deletions in mono- and dinucleotide repeats resulting in
variable lengths of these repeats. This is called microsatel-
lite instability (MSI) and MSI is therefore used as a marker
for MMR deficiency. MSI can be caused by genetic or epi-
genetic inactivation of several genes involved in MMR.

Mouse knockout models have demonstrated that MSH2-/

-, MSH3-/-, MLH1-/- and PMS2-/- leads to a high frequency
of MSI while MSH6-/- and PMS1-/- cause a low frequency
(reviewed by Wei et al. [10]). However, in hereditary non-
polyposis colon cancer (HNPCC) families (which are
known to have a high frequency of MSI) germline muta-
tions in MSH2 and MLH1 are responsible for the MSI,
while MSH6 and PMS2 are less frequently involved [9].
The lesser role for MSH6, PMS2, PMS1 and especially
MSH3 inactivation in MSI seen in HNPCC patients could
be due to functional redundancy of these genes.

Interestingly, a number of in vitro studies have suggested a
relationship between MMR deficiency and platinum-drug
resistance. Several resistant sublines of ovarian and
melanoma cell lines generated by cisplatin selection,
appeared to be MMR deficient [11-15]. In addition, a
colon (HCT116) and an endometrioid cell line (HEC59),
deficient for MLH1 and MSH2 respectively, were 2.1 and
1.8 fold resistant to cisplatin compared to cell lines com-
plemented with chromosome 3, containing MLH1, or

The mismatch repair system (MMR)Figure 1
The mismatch repair system (MMR). A. Based on figure 
3 from Bellacosa et al [8]. Initiation of MMR by recognizing 
the DNA damage by the MutSα or β complex and recruiting 
the MutLα complex. B. Excision of the damaged strand and 
resynthesis in which exonuclease ExoI, proliferating cell 
nuclear antigen (PCNA), DNA polymerase δ or ε and DNA 
helicase I are suggested to play a role.
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chromosome 2, containing MSH2 [15-17]. These in vitro
studies suggest that inactivation of proteins involved in
the initiation of MMR might cause cisplatin resistance. It
is thought that the DNA damage caused by platin-drugs is
recognized by MMR. The cell will then undergo several
unsuccessful repair cycles, finally resulting in the induc-
tion of apoptosis. When MMR is inactive the DNA dam-
age caused by platin-drugs will not be picked up and will
therefore not result in apoptosis rendering the cells resist-
ant to platin-drugs.

Several studies have determined the frequency of MMR
inactivation in ovarian cancer using MSI as a marker [18-
37]. However, there was a wide range observed (0%–
39%) and so far only a few studies have linked MMR inac-
tivation to platinum-based chemotherapy resistance.
Thus, there is still no general agreement about the fre-
quency of MMR inactivation and its possible involvement
in the platinum-based chemotherapy resistance seen in
ovarian cancer patients.

The aim of this study is to determine the frequency of mis-
match repair (MMR) inactivation in ovarian cancer and
whether it is associated with platinum-based chemother-
apy resistance. To this purpose we analyzed seventy-five
ovarian carcinomas and eight ovarian cancer cell lines. In
the discussion, the results were compared to that of
twenty similar studies in the literature including in total
1315 ovarian cancer patients.

Methods
Cell culture
All cell lines were cultured in medium supplemented with
100 U/ml penicillin, 100 μg/ml streptomycin and 50 μg/
ml gentamycin at 37°C in humidified air with 5% CO2
(except for SW48 which was cultured with 10% CO2). The
human ovarian cancer cell lines SKOV6, HOC7, SKOV3,
2774, KB3.1 and CAOV3 were cultured in DMEM/
HAMF12 medium with 10% fetal calf serum, A2780 in
RPMI 1640 medium with 10% fetal calf serum and
OVCAR3 in RPMI 1640 with 20% fetal calf serum and
0.01 mg/ml insulin. The human colon cancer cell lines
SW480 and SW48, included as controls, were cultured in
RPMI 1640 with 5% fetal calf serum and DMEM/HAMF12
with 10% fetal calf serum respectively. The ovarian cancer
cell line A2780 has been cultured separately in two differ-
ent research laboratories at our department. The isolated
DNA and RNA from each culture were used for further
analysis.

The MTT colorimetric assay, which measures the number
of viable cells capable of reducing the tetrazolium com-
pound (Sigma-Aldrich, Zwijndrecht, The Netherlands) to
a blue formazan product, was used to quantitate the
chemosensitivity of the ovarian cancer cell lines to cispla-

tin. The assay was performed as described previously by us
[38].

Patients
The study design was approved by the medical ethical
committee of the Erasmus MC Rotterdam, the Nether-
lands (MEC 02.949). Tissue of 75 ovarian cancer patients
and four normal stromal ovarian tissues collected at the
Erasmus MC in Rotterdam were included in this study.
The patient and tumor characteristics are listed in Table 1.
Forty-six patients received platinum-based chemotherapy
of whom 34 responded to treatment defined as complete
response, partial response, stable disease or no relapse
within 6 months after chemotherapy, whereas eleven
patients had progressive disease or a relapse within 6
months after chemotherapy. In one patient the response
was not known. The response rate of 74% (34/46) is com-
parable with the response rate of 80% seen in the clinic. A
more detailed description of the response definitions has

Table 1: Patient and tumor characteristics.

Patient and tumor characteristics No. of patients

FIGO stage
Early (I-IIA) 20
Advanced (IIB-IV) 45
Unknown 10

Histological type
Serous adenocarcinoma 36
Endometrioid adenocarcinoma 13
Mucinous adenocarcinoma 10
Clear cell adenocarcinoma 3
Mixed Mullerian Tumor 8
Poorly differentiated 3
Unknown 2

Tumor grade
1 12
2 29
3 27
Unknown 7

Residual disease
None 25
≤ 1 cm 15
> 1 cm 22
Unknown 13

Chemotherapy
Cisplatin & endoxan 45 *
Carboplatin & endoxan 1 *
Other, not platinum containing 5
No chemotherapy 11
Unknown 12
* Response to platinum-based chemotherapy

No response 11
Response 34
Unknown 1

Total 75
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been previously described by us [5]. The median age at the
time of surgery was 52 years (range 27–83).

DNA isolation: microsatellite analysis and methylation 
specific PCR
Microsatellite analysis and methylation specific PCR
(MSP) were performed on DNA from eight ovarian cancer
cell lines, 75 ovarian cancer specimens (part of a collec-
tion of ovarian tumor specimens described by us previ-
ously [39]) and the four normal stromal ovarian
specimens (see study design in Figure 2).

Microsatellite analysis was standard performed in our lab-
oratory as described by Westenend et al [40] using the two
mononucleotide markers, BAT25 and BAT26. In addition,
the 75 ovarian carcinomas were also analysed with the
mononucleotide marker BAT40 (n = 42) or with the dinu-
cleotide marker D2S123 (n = 40). So all ovarian carcino-
mas were analysed with three or four MSI markers. A PCR
containing α-32PdATP, was performed on 100 ng DNA.
PCR products were separated on a denaturing 6% polyacr-
ylamide gel. After electrophoresis, gels were dried on blot-
ting paper on a vacuum gel dryer and exposed to x-ray
film. The films were evaluated by visual inspection.

The methylation specific PCR (MSP) was used to deter-
mine the promoter methylation of MLH1 after the DNAs
were modified with sodium bisulfite using the Ez DNA
methylation kit (Zymo research). We designed and opti-
mized primers that are specific for methylated and
unmethylated CpG islands within the MLH1 promoter
(methylated: Forward 5'-CGAATTAATAGGAAGAGCGGA-
TAGC-3', Reverse 5'-ACCTCAATACCTCGTACTCACG-3';
unmethylated: Forward 5'-TGAATTAATAGGAAGAGT-
GGATAGT-3', Reverse 5'-CCTCAATACCTCATACTCACA-
3'). Both primers are located within a region important for
a maximal transcription of MLH1 (including the binding
site for the transcription factor CBF) [41,42], since meth-
ylation at this region is most likely to inhibit transcription
of the gene. The PCR mixture contained 1× PCR buffer (as
described by Herman et al [43]), dNTPs (each at 5 mM),
primers (1 pmol/μl each per reaction), Taq polymerase
(0.05 U/μl) and 100 ng modified DNA in a volume of 25
μl. Amplification was carried out for 35 cycles (30 sec
95°C, 30 sec 58°C for methylated and 55°C for unmeth-
ylated and 30 sec 72°C) followed by a final 4 minutes
extension at 72°C. Controls without DNA were per-
formed and in addition, the colon cancer cell lines SW48
with a methylated MLH1 promoter and SW480 with an
unmethylated MLH1 promoter, were used as positive and
negative control respectively.

Quantitative RT-PCR
Quantitative RT-PCR analysis was used to measure the
mRNA expression levels of MLH1, MSH2, MSH3, MSH6

and PMS2 in the eight ovarian cancer cell lines and 50 of
the 75 ovarian cancer specimens of which RNA was avail-
able. Thirty-six of these 50 patients received platinum-
based chemotherapy (7 non-responders, 28 responders
and one patients with unknown response). The following
20× assay-on-demand primers and FAM-TAMRA labeled
probe-mix from Applied Biosystems were used; for MLH1
(Hs00179866_m1), MSH2 (Hs00179887_m1), MSH3
(Hs00267239_m1), MSH6 (Hs00264721_m1) and PMS2
(Hs00241053_m1).

Results
Microsatellite analysis
Two sublines of the ovarian cancer cell line A2780 that
have been cultured by two research groups in our depart-
ment and the cell lines SKOV3 and 2774 showed a micro-
satellite instable (MSI) pattern for both mononucleotide
markers BAT25 and BAT26. All other cell lines showed no
aberrations. In addition, the 75 ovarian carcinoma tissues
and the four normal stromal controls showed no aberra-
tions for BAT25, BAT26 and BAT40 or D2S123, indicating
that these are microsatellite stable (MSS).

MLH1 promoter methylation
One of the two A2780 sublines showed complete methyl-
ation of the MLH1 promoter while the other showed a
low level of methylation. The results for HOC7 and 2774
were not informative and the other five cell lines showed
no methylation. A low level of MLH1 promoter methyla-
tion was also seen in six ovarian carcinoma specimens and
in addition, one ovarian carcinoma specimen showed
abundant methylation. Five ovarian carcinomas were not
informative while the other 63 ovarian carcinomas
showed no methylation.

Quantitative RT-PCR: expression of MLH1, MSH2, MSH3, 
MSH6 and PMS2
The mRNA expression data for the cell lines is shown in
Figure 3A. One of the two separately cultured MSI positive
A2780 cell lines showed complete methylation of the
MLH1 promoter and had no mRNA expression of MLH1.
The other A2780 showed a low level of methylation but
had the highest MLH1 expression levels compared to the
other cell lines. Of the other two MSI positive cell lines,
SKOV3 also showed no MLH1 expression while 2774 did
express MLH1 mRNA.

RNA was available for 50 of the 75 ovarian carcinomas
and the mRNA expression data for these carcinomas is
shown in Figure 3B. Interestingly, the ovarian carcinoma
with an abundant MLH1 promoter methylation had a low
MLH1 mRNA expression compared to the other carcino-
mas. Thirty-six of the 50 patients received platinum-based
chemotherapy (7 non-responders, 28 responders and one
patient with unknown response). There was no significant
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association between the response to platinum-based
chemotherapy and the expression of each of these genes
separately (Mann-Whitney test, p > 0.6). Since inactiva-
tion of only one of these genes might be sufficient to cause
MMR deficiency, we used the expression of all of the five
genes to mark MMR as active or inactive. If at least one of
the five genes had an expression in the lowest quartile we
marked MMR as inactive. If none of the genes had an
expression in the lowest quartile MMR was marked as
active (Figure 3B). Next the Mann-Whitney test demon-
strated that there was no significant relation between the
deducted MMR status and response to platinum-based
chemotherapy (p = 0.665).

Discussion
In this study we aimed to address two questions; 1) what
is the frequency of MMR inactivation in ovarian cancer,
and 2) is it associated with platinum-based chemotherapy
response.

First we analyzed eight ovarian cancer cell lines, i.e.
SKOV6, HOC7, SKOV3, 2774, OVCAR3, KB3.1, CAOV3
and A2780. Microsatellite instability (MSI), which is a
marker for MMR inactivation, was detected in three out of
eight cell lines i.e. SKOV3, 2774 and A2780. This results
in a frequency of MMR inactivation in ovarian cancer cell
lines of 38%. The MSI in SKOV3 can be explained by the
loss of MLH1 mRNA expression which, however, was not
caused by promoter methylation. This is in agreement
with the loss of MLH1 protein expression seen in SKOV3
described in a study of the 60 NCI cancer cell lines [44].
In concordance with our findings, 2774 was also

described to be MSI [45]. One of the MSI positive A2780
sublines showed a strong methylation of the MLH1 pro-
moter without MLH1 mRNA expression, while the other
subline showed a low level of methylation and relative
high mRNA expression. Strathdee et al. described that one
MLH1 allele was methylated in A2780 [12] which is com-
parable with the methylation status we saw in A2780,
moreover one of our A2780 sublines showed complete
methylation. On the other hand, another study did not
detect MSI in A2780 [11]. Interestingly, Aquilina and col-
leagues suggested there is a subpopulation of A2780 cells,
estimated to be around one per 106 cells [46], which are
MLH1 deficient and heterozygous for the p53phe172
mutation [46,47]. Since these cells have a growth advan-
tage, prolonged culturing of the A2780 cell line can result
in selection of this subpopulation. Thus over time, sepa-
rately cultured A2780 can have varying percentages of
cells belonging to this subpopulation which may explain
the discrepancies in MMR status seen in the A2780 cell
lines analyzed by us.

Next we studied the association between MMR inactiva-
tion and cisplatin resistance in these cell lines. MMR inac-
tivation seen in SKOV3 and 2774 might result in the
relative resistance to cisplatin compared to the other cell
lines. On the other hand, A2780 which has clearly an
inactive MMR, was most sensitive to cisplatin. Overall,
there seems to be no association between the response to
cisplatin and MMR status in these eight cell lines. This is
similar to a study in the 60 NCI cell lines which also
showed no association between response to cisplatin and
MMR status based on the MLH1 and/or MSH2 protein
expression [44].

Furthermore, we analyzed MMR status in 75 ovarian car-
cinomas to determine the frequency of MMR inactivation
in ovarian cancer in vivo. Seven of the 75 ovarian carcino-
mas showed MLH1 promoter methylation. We confirmed
whether the observed MLH1 promoter methylation
results in the inactivation of the gene by determining the
MLH1 mRNA expression with quantitative RT-PCR. The
six tumors with low level MLH1 promoter methylation
appeared to express MLH1 at mRNA levels similar to that
of the unmethylated tumors. Thus a low level of methyla-
tion does not result in an altered expression of the MLH1
gene. In contrast, the abundant methylation seen in the
remaining carcinoma was associated with the lowest
MLH1 mRNA expression level of all 50 ovarian carcino-
mas tested. However, none of the ovarian carcinomas
showed MSI for BAT25, BAT26 and for BAT40 or D2S123
which suggests a frequency of MMR inactivation of 0%.
The low MLH1 mRNA expression seen in the abundant
methylated carcinoma might be sufficient enough for a
functional MMR which results in the observed absence of
MSI.

Study designFigure 2
Study design. Flow chart for study design.
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The mRNA expression data for A. eight ovarian cancer cell lines, and B. 50 ovarian carcinomasFigure 3
The mRNA expression data for A. eight ovarian cancer cell lines, and B. 50 ovarian carcinomas. The ovarian can-
cer cell lines and the ovarian carcinomas are ordered according to their cisplatin and platinum-based chemotherapy response. 
The MMR status deducted from the mRNA expression levels is given for the carcinomas (1: active, 0: inactive). The mRNA 
expression is shown in the heatmap (green color: low expression (25th percentile calculated per gene), black: median expres-
sion, red color: high expression (75th percentile calculated per gene), gray: no value). Depicted next to the heatmap is: the 
MLH1 promoter methylation status (black: complete or high level, gray: low level, white: no methylation, X: unknown), the 
microsatellite stability (black: instable, white: stable, X: unknown), the cisplatin response (Figure 3A; IC50 in nM) or platinum-
based chemotherapy response (Figure 3B; black: non-responders, white: responders, X: unknown) and the histology (PD: 
poorly differentiated, SE: serous, CC: clear cell, MU: mucinous, EN: endometrioid, MM: mixed mullerian). Cell lines and carci-
nomas are ordered according to their cisplatin response or platinum-based chemotherapy response respectively.
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Since ovarian cancer is a heterogeneous disease character-
ized by various histological types which may have differ-
ent MSI frequencies, the number of specimens analyzed is
very important in characterizing a feature that may be
uncommon such as MSI. We therefore, made a summary
of 20 studies totaling 1315 ovarian carcinomas, to com-
pare the findings of these studies with our results (Table
2). The MSI frequencies determined in these studies
ranged from 0% to 39%. Overall, MSI was detected in 165
of the 1315 ovarian carcinomas tested, suggesting an over-
all incidence of 13% [18-37].

Multiple differences between these studies could have
caused the wide range in the MSI frequency (0–39%).
One of these is the number and variety of microsatellite
markers analyzed to determine the MSI. The NCI recom-
mended five markers comprising the National Cancer
Institute Consensus Panel (NCI-CP) for the detection of
MSI, i.e. markers for the mononucleotide repeats BAT25
and BAT26 and the dinucleotide repeats D2S123, D5S346
and D17S250 [48]. Table 2 shows per study the number
of MS markers used and specifies how many of these are
part of the NCI-CP. Interestingly, the studies that used all
NCI-CP markers to determine the MS status also showed
a wide range in MSI frequency (8–39%) which is similar
to the overall range (0–39%). Therefore, the various MS
markers used cannot be the sole cause for the wide range.
Moreover, Gras et al. suggest that the reliability of the
mononucleotide markers BAT25 and BAT26 is so high
that most MSI can be predicted by evaluating these two
markers exclusively [27], confirming the less stringent role
for the various markers used for the analysis.

Another difference between the studies is the distribution
of the various histological types of the ovarian carcinoma
tissues analyzed (Table 2). This difference in the distribu-
tion could be a cause for the wide range in the MSI fre-
quency especially since it has been suggested that certain
histological types have a higher frequency of MSI. To
determine whether there is a relation between histology
and MSI within these studies, we looked at the frequency
of MSI per histological type for the 628 patients with
known histology (Table 2). The summary of these studies
suggests that the frequency of MSI is higher in the muci-
nous and endometrioid adenocarcinoma compared to
clear cell and serous adenocarcinoma (the overall fre-
quencies of MSI were 22%, 16%, 9% and 8%, respec-
tively) (Table 2). We hypothesize that mucinous and
endometrioid histology might be prone to a higher MSI
frequency since sporadic endometrial carcinoma, which is
closely related to endometrioid ovarian cancer, has a MSI
frequency of 20–30% [49-51] and MSI is almost universal
present in the colorectal tumors of the hereditary non-
polyposis colon cancer (HNPCC) syndrome which all
have a mucinous histological type. Therefore, the different

histology's of the ovarian carcinomas included in the sev-
eral studies seems to be a plausible cause for the wide
range in MSI frequency reported in these studies.

Next we addressed the second part of the aim of this study,
is MMR inactivation associated with resistance to plati-
num-based chemotherapy in ovarian cancer. Forty-six of
the 75 ovarian carcinomas we analyzed had been treated
with platinum-based chemotherapy, eleven did not
respond and 34 did. For one patient the response was not
known. Methylation of the MLH1 promoter was detected
in two of the eleven non-responders (18%) and four of
the 34 responders (12%) and this was not significantly
different (p = 0.664). Since we did not detect any MSI, the
resistance seen in the eleven patients could not be associ-
ated with MSI and MMR inactivation.

The relation between MMR deficiency and platinum-drug
resistance has been investigated in only a few in vivo stud-
ies. Similarly to our result, no MSI was detected by
Mesquita et al. [18] who studied 34 ovarian carcinomas of
which seven did not respond to cisplatin/paclitaxel ther-
apy. So the resistance seen in these seven nonresponding
patients was also not associated with MMR inactivation.
In contrast, Samimi et al. [52] found an inverse relation
between MLH1 protein expression and the response to
platinum-based chemotherapy in 54 ovarian carcinomas.
Again, the number of ovarian carcinomas included in
these studies is small and no further conclusion can be
drawn from these results.

Since platinum-drug resistance is thought to be multifac-
torial the involvement of other resistance mechanisms
could have overruled the possible contribution of MMR
status. However, platinum treatment does seem to select
for MMR deficient cells since in vitro enrichment for
MLH1 deficient colon cancer HCT116 cells in a mixed cell
population was seen after cisplatin treatment [53]. In
addition, several in vivo studies found an increase in the
percentage of MSI and MLH1 methylation after platinum-
based chemotherapy as well as a decrease in the percent-
age of cells positive for MLH1 and MSH2 [14,19,25,52].
Moreover, an increase in MLH1 methylation after plati-
num-based chemotherapy was associated with poor sur-
vival in ovarian cancer patients [19]. These results as well
as the in vitro studies mentioned in the introduction, sug-
gest that MMR inactivation causes a low level resistance to
platinum-based chemotherapy which does not play a sig-
nificant role in intrinsic resistance. However, due to selec-
tion during chemotherapy MMR inactivation might play a
greater role in the acquired resistance. We therefore pro-
pose that the role of MMR inactivation in acquired resist-
ance in ovarian cancer should be further investigated.
Page 7 of 10
(page number not for citation purposes)



B
M

C
 C

an
ce

r 2
00

6,
 6

:2
01

ht
tp

://
w

w
w

.b
io

m
ed

ce
nt

ra
l.c

om
/1

47
1-

24
07

/6
/2

01

Pa
ge

 8
 o

f 1
0

(p
ag

e 
nu

m
be

r n
ot

 fo
r c

ita
tio

n 
pu

rp
os

es
)

Table 2: Summary of the literature: Frequency of MSI in ovarian cancer. The total number of MSI, the number of MS markers used for the analysis and the number of MSI per histological 
subtype (if mentioned) is given for each study.

MSI MS markers Histology

NCI-CP total SE EN CC MU MM PD

Helleman et al. 0/75 (0%) 2 2 0/36 (0%) 0/13 (0%) 0/3 (0%) 0/10 (0%) 0/8 (0%) 0/3 (0%)

Mesquita et al.2005 0/34 (0%) 1 2 0/26 (0%) - 0/8 (0%) - - -

Gifford et al. 2004 2/138 (1%) 3 6 Not mentioned

Catasus et al. 2004 5/54 (9%) 5 5 EN, CC and MM histology

Cai et al.2004 6/42 (14%) 5 5 - - 6/42 (14%) - - -

Liu et al.2004 15/74 (20%) 4 4 - 15/74 (20%) - - - -

Singer et al.2004 6/75 (8%) 5 11 5/53 (9%) 1/14 (7%) 0/3 (0%) 0/5 (0%) - -

Geisler et al.2003 21/125 (17%) 5 6 10/69 (14%) 6/22 (27%) 0/4 (0%) 2/9 (22%) - 1/2 (50%)

Watanabe et al. 2001 2/24 (8%) 5 10 Not mentioned

Sood et al. 2001 13/109 (12%) 5 14 Not mentioned

Gras et al.2001 7/76 (9%) 5 10 0/17 (0%) 1/48 (2%) 1/8 (13%) 0/2 (0%) 0/6 (0%) -

Buller et al. 2001 22/56 (39%) 5 6 Not mentioned

Chiaravalli et al.2001 3/16 (19%) 2 3 0/8 (0%) 1/2 (50%) - 2/4 (50%) - 0/2 (0%)

Ohwada et al.2000 15/61 (25%) 1 5 4/32 (13%) - - 11/29 (38%) - -

Allen et al.2000 1/25 (4%) 2 4 1/16 (6%) 0/2 (0%) 0/2 (0%) 0/1 (0%) - 0/4 (0%)

Colella et al. 1998 3/20 (15%) 0 3 Not mentioned

Sood et al. 1997 13/78 (17%) 1 9 Not mentioned

Sood et al. 1996 11/68 (16%) 1 9 34 serous and 34 not serous

Tangir et al.1996 2/31 (6%) 0 13 2/31 (6%) - - - - -

Arzimanoglou et al. 1996 11/90 (12%) 1 3 Not mentioned

Fujita et al.1995 7/44 (16%) 0 4 2/22 (9%) 5/10 (50%) 0/4 (0%) 0/8 (0%) - -

Total 165/1315 (13%) 24/310 (8%) 29/185 (16%) 7/74 (9%) 15/68 (22%) 0/14 (0%) 1/11 (9%)

Abbreviations: SE serous, EN endometrioid, CC clear cell, MU mucinous, MM mixed mullerian, PD poorly differentiated, - not present, MS microsatellite, NCI-CP National Cancer Institute Consensus Panel.
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Conclusion
No MMR inactivation was detected in 75 ovarian carci-
noma specimens and no association was seen between
MMR inactivation and resistance in the ovarian cancer cell
lines as well as the ovarian carcinomas. We hypothesize
that MMR inactivation is not clearly associated with
intrinsic resistance in ovarian cancer. However, it might
play a role in acquired resistance due to selection of MMR
deficient cells during platinum-based chemotherapy, but
this needs further investigation.
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