
BioMed CentralBMC Cancer

ss
Open AcceResearch article
Characterization of the linkage disequilibrium structure and 
identification of tagging-SNPs in five DNA repair genes
Kristina Allen-Brady* and Nicola J Camp

Address: Genetic Epidemiology, Department of Medical Informatics; University of Utah School of Medicine; 391 Chipeta Way, Suite D; Salt Lake 
City, Utah, 84108, USA

Email: Kristina Allen-Brady* - kristina.allen@hsc.utah.edu; Nicola J Camp - nicki@genepi.med.utah.edu

* Corresponding author    

Abstract
Background: Characterization of the linkage disequilibrium (LD) structure of candidate genes is
the basis for an effective association study of complex diseases such as cancer. In this study, we
report the LD and haplotype architecture and tagging-single nucleotide polymorphisms (tSNPs) for
five DNA repair genes: ATM, MRE11A, XRCC4, NBS1 and RAD50.

Methods: The genes ATM, MRE11A, and XRCC4 were characterized using a panel of 94 unrelated
female subjects (47 breast cancer cases, 47 controls) obtained from high-risk breast cancer families.
A similar LD structure and tSNP analysis was performed for NBS1 and RAD50, using publicly
available genotyping data. We studied a total of 61 SNPs at an average marker density of 10 kb.
Using a matrix decomposition algorithm, based on principal component analysis, we captured >90%
of the intragenetic variation for each gene.

Results: Our results revealed that three of the five genes did not conform to a haplotype block
structure (MRE11A, RAD50 and XRCC4). Instead, the data fit a more flexible LD group paradigm,
where SNPs in high LD are not required to be contiguous. Traditional haplotype blocks assume
recombination is the only dynamic at work. For ATM, MRE11A and XRCC4 we repeated the
analysis in cases and controls separately to determine whether LD structure was consistent across
breast cancer cases and controls. No substantial difference in LD structures was found.

Conclusion: This study suggests that appropriate SNP selection for an association study involving
candidate genes should allow for both mutation and recombination, which shape the population-
level genomic structure. Furthermore, LD structure characterization in either breast cancer cases
or controls appears to be sufficient for future cancer studies utilizing these genes.

Background
Candidate gene association studies are a powerful study
design for complex diseases such as cancer. Advances in
association studies have been furthered by the recent dis-
covery of single nucleotide polymorphisms (SNPs); their
vast density throughout the genome, ease of genotyping

and moderate cost contribute greatly to their utility. Asso-
ciation testing is efficient when the SNPs being analyzed
represent the entire genetic variation of the gene. It has
been suggested that nearby SNPs are organized into
regions of high linkage disequilibrium (LD) separated by
short segments of very low LD [1-6]. In Caucasians, high
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LD regions may vary in length from a few kb to >300
kb[2,6,7]. Regions of high LD contain redundant infor-
mation and can be reduced to smaller subsets of tagging-
SNPs (tSNPs)[8], such that tSNPs identify all common
haplotypes within the region of high LD. A number of
algorithms have been proposed to define regions of high
LD and tSNPs[4,8-14]. Thus far, no consensus of which
algorithm is best has been achieved. Several studies have
suggested the utility of matrix decomposition algo-
rithms.[12,13,15-17]. One advantage of these algorithms
is that SNPs in high LD are not required to be contiguous
nor mutually exclusive, a flexibility that is necessary for
analyzing small genomic regions and rare variants. Fur-
ther, these methods are stable with regards to marker den-
sity, minor allele frequency, analysis window, and
possible analysis window length[18].

Growing evidence appears to suggest that tumorigenesis is
a multi-step process of genetic alterations that transform a
normal human cell into a malignant derivative[19]. The
ability of a cell to maintain genomic stability through
DNA repair mechanisms is essential to prevent tumor ini-
tiation and progression. A number of different types of
cancer have been attributed to defective DNA repair
including xeroderma pigmentosum[20], hereditary non-
polyposis colorectal cancer[21], and breast cancer due to
mutations in BRCA1 and BRCA2 as well as other DNA
repair genes (e.g., ATM, TP53 and CHK2)[22]. Many pub-
lished candidate gene association studies involving DNA
repair genes and cancer risk have assessed risk by examin-
ing a single SNP per gene or a single locus at a time anal-
ysis approach. Unfortunately, the former approach is
often inadequate in comprehensively accounting for the
genetic variation of a gene, and the latter incurs multiple
testing corrections, which usually eliminate all or most of
the association evidence found. It has been suggested that
use of haplotypes in association studies may have
increased power over single-allele studies[8]. Descriptions
of haplotype diversity and LD structure as well as identifi-
cation of potential tSNPs will be key for success in candi-
date gene association studies.

Here we describe haplotypes, LD structure and potential
tSNPs in five DNA repair breast cancer susceptibility
genes: ATM, MRE11A, NBS1, RAD50, and XRCC4. We
used a matrix decomposition algorithm based on a
method of principal components analysis[13]; this
method does not require SNPs to be in contiguous block
structure. Characterization of the LD structure and tSNPs
are necessary for the design of future effective association
studies.

Methods
Subjects
This study is part of a larger study involving 139 high-risk
Caucasian breast cancer families, defined as high risk
because cancer rates in these families were significantly
higher than the general population rate determined using
the Utah Population Database (UPDB) [23-25]. All breast
cancer cases in the larger cohort met at least one of the fol-
lowing criteria: 1.) their family tested negative for a
BRCA1 or BRCA2 mutation, 2.) the case themselves tested
negative for the same BRCA1/2 mutation that was present
in their family, or 3.) their family had a low probability of
carrying a BRCA1/2 mutation based on the number of
breast cancer cases present in the family and/or ages at
diagnosis of breast cancer within the family. Therefore, all
breast cancer cases in the larger study had a low residual
probability of their cancer being due to mutations in
BRCA1/2. Breast cancer diagnosis information was
obtained from medical records for the subject or the Utah
Cancer Registry.

For this LD characterization study, we selected a panel of
94 individuals (47 female breast cancer cases and 47
female controls), chosen randomly from separate kin-
dreds to ensure independence. Both cases and controls
were chosen such that comparisons of LD structure could
be made between the groups. The sample size of 188 chro-
mosomes is larger than generally used for this type of
study [26-29], but inadequate for an association analysis.
This current study is not a case-control study and associa-
tions with disease were not assessed.

Blood samples were collected on all subjects and all indi-
viduals signed consent to participate this study. This study
was approved by the University of Utah Institutional
Review Board.

Genes and SNP selection
For each gene of interest (i.e., ATM, MRE11A, NBS1,
RAD50 and XRCC4), all SNPs available from Applied Bio-
systems[30], within each gene and the flanking 10 kb on
either side, that had been validated to have a minor allele
frequency greater than 0.01 in Caucasians were selected.
For ATM (on chromosome 11q22-q23), which spans
approximately 143 kb and contains 64 exons, 14 SNPs
were studied with a SNP resolution of 1 SNP/10,489 bp.
For MRE11A (11q21), which spans approximately 76 kb
and contains 20 exons, 11 SNPs were studied with a SNP
resolution of 1 SNP/8539 bp. For NBS1 (8q21), which
contains 16 exons and spans about 51 kb, 5 SNPs were
studied with a SNP resolution of 1 SNP/8256 bp. The
RAD50 gene (5q31) spans approximately 87 kb contains
25 exons, and we studied 10 SNPs at a resolution of 1
SNP/10,533 bp. Finally, for XRCC4 (5q13-q14) with 8
exons and approximately 276 kb in length, we studied 21
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Table 1: Characteristics of SNPs analyzed

Gene SNP Code SNP ID Base change* Position† MAF‡ ABI reported MAF§ # bp from the most 5' SNP

ATM A1 rs228589 T/A Flanking 0.45 0.33 0
ATM A2 rs228591 G/A mRNA-utr 0.45 0.33 4125
ATM A3 rs641605 T/C Intron 0.45 0.33 8,711
ATM A4 rs228599 A/G Intron 0.44 0.31 14,452
ATM A5 rs600931 T/C Intron 0.45 0.35 24,127
ATM A6 rs228592 A/C Intron 0.45 0.33 29,981
ATM A7 rs664677 T/C Intron 0.43 0.33 49,974
ATM A8 rs1003623 T/C Intron 0.45 0.33 59,374
ATM A9 rs609261 C/T mRNA-utr, intron 0.45 0.32 64,926
ATM A10 rs645485 G/A Intron 0.45 0.32 75,655
ATM A11 rs673281 A/G Intron 0.45 0.31 88,861
ATM A12 rs227061 G/A mRNA-utr, intron 0.45 0.34 112,121
ATM A13 rs227062 A/G mRNA-utr, intron 0.45 0.33 112,175
ATM A14 rs652311 A/G Flanking 0.45 0.36 146,861
MRE11 M1 rs646130 T/C Flanking 0.3 0.39 0
MRE11 M2 rs491404 G/C Flanking 0.3 0.4 9192
MRE11 M3 rs10831227 G/A Intron 0.3 0.4 16,336
MRE11 M4 rs601341 G/A Intron 0.38 0.36 28,536
MRE11 M5 rs554715 T/C Intron 0.3 0.4 32,986
MRE11 M6 rs556477 A/G Intron 0.3 0.4 40,565
MRE11 M7 rs1805365 A/G Intron 0.02 0.02 61,721
MRE11 M8 rs680695 A/G Intron 0.34 0.36 72,913
MRE11 M9 rs1009455 C/G Intron 0.02 0.01|| 85,033
MRE11 M10 rs1009456 C/A locus-region, mRNA-utr 0.01 0.02 87,401
MRE11 M11 rs10831234 C/T Flanking 0.09 0.06 93,946
NBS1 N1 rs12680687 G/T Intron - ** 0.28 0
NBS1 N2 rs709816 A/G Coding-synon - 0.45 16,323
NBS1 N3 rs1805790 C/T Intron - 0.39 23,313
NBS1 N4 rs741778 C/G Intron - 0.36 33,415
NBS1 N5 rs1805841 C/G Intron - 0.45 41,282
RAD50 R1 rs2522406 G/A Flanking - 0.01 0
RAD50 R2 rs2244012 C/T Intron - 0.19 12,116
RAD50 R3 rs2299015 T/G Intron - 0.19 12,388
RAD50 R4 rs2299014 G/T Intron - 0.41 14,290
RAD50 R5 rs2706377 A/G Intron - 0.01 50,388
RAD50 R6 rs2301713 C/T intron - 0.19 62,887
RAD50 R7 rs2040703 C/G Intron - 0.22 83,149
RAD50 R8 rs2240032 C/T Intron - 0.18 88,018
RAD50 R9 rs1800925 C/T Flanking - 0.19 103,700
RAD50 R10 rs2066960 C/A Flanking - 0.17 105,326
XRCC4 X1 rs1993948 T/A Flanking 0.46 0.47 0
XRCC4 X2 rs1478485 G/A mRNA-utr 0.47 0.45 8247
XRCC4 X3 rs11951257 T/C Intron 0.47 0.45 31,031
XRCC4 X4 rs10045104 C/T Intron 0.43 0.42 40,082
XRCC4 X5 rs6452526 C/T Intron 0.47 0.43 64,531
XRCC4 X6 rs1382369 G/A Intron 0.47 0.43 69,149
XRCC4 X7 rs1382368 C/T Intron 0.47 0.41 78,795
XRCC4 X8 rs1382363 C/T Intron 0.47 0.42 80,292
XRCC4 X9 rs13180316 G/A Intron 0.23 0.26 87,173
XRCC4 X10 rs11741420 A/T Intron 0.47 0.44 98,452
XRCC4 X11 rs2731861 T/C Intron 0.47 0.45 112,984
XRCC4 X12 rs2662238 G/A Intron 0.46 0.45 127,027
XRCC4 X13 rs1039786 C/T Intron 0.46 0.45 127,761
XRCC4 X14 rs963248 T/C Intron 0.19 0.16 161,614
XRCC4 X15 rs301276 G/A Intron 0.23 0.23 175,451
XRCC4 X16 rs35268 T/C Intron 0.16 0.13 216,216
XRCC4 X17 rs301286 T/C Intron 0.16 0.18 230,675
XRCC4 X18 rs301289 C/T Intron 0.17 0.17 233,955
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SNPs at a resolution of 1 SNP/13,198 bp. The vast major-
ity of the SNPs studied were intronic (see Table 1).

Genotyping
For the ATM and XRCC4 all SNPs that met the above cri-
teria were genotyped on our panel of 94 subjects. For
MRE11A, one SNP repeatedly failed to amplify
(rs10831224) and was removed from the study.

Genomic DNA was isolated and purified using standard
phenol/chloroform DNA extraction. SNP genotyping was
performed using the fluorogenic 5' nuclease TaqMan
Assay[31] (Applied Biosystems). The TaqMan Assay
requires TaqMan PCR Master Mix (Applied Biosystems),
which we used according to manufacturer's instructions,
yielding a final volume of 5 µl per well. PCR amplification
was also performed according to the Applied Biosystems
protocol. The 7900HT Sequence Detection System
(Applied Biosystems) was used to measure each fluores-
cent dye-labeled probe specific for each allele studied and
results were analyzed with the Sequence Detection Soft-
ware (Applied Biosystems).

Haplotype structure and tSNP selection
Haplotypes and haplotype frequencies were estimated
from unphased genotype data using an expectation-maxi-
mization algorithm, SNPHAP[32]. SNPHAP uses a maxi-
mum-likelihood program to predict multilocus
haplotypes. Haplotypes with a frequency of at least 0.01
were analyzed using a two-step PCA method[13]. This
method does not require that groups of SNPs be contigu-
ous along a DNA fragment and also allows SNPs to be
present in more than one group. In step I, LD groups are
determined. In brief, the PCA method extracts factors (LD
groups) to capture ≥ 90% of the genetic diversity. An LD
group is defined as those SNPs that load onto the same
factor. In step II, tSNPs are selected for each LD group.
Each LD group is considered separately and the PCA
method again extracts factors; tSNPs are chosen as the
SNPs with the highest factor loading. When a number of

SNPs load equally well on an LD group, these can all be
considered potential tSNPs. Under such circumstances,
we selected the single SNP that performed best in the gen-
otyping assay. This was done in order to minimize errors
in allele calls.

We compared our genotype data for ATM, MRE11A, and
XRCC4 with genotyping data for these same genes
obtained from Applied Biosystems (ABI)[30] on 45 Cau-
casians. We found good concordance in allele frequencies
between the data sets. Further, we applied the same LD
characterization to both data sets and found excellent
concordance in the LD groups and potential tSNPs (see
Results). We therefore characterized LD groups and tSNPs
for NBS1 and RAD50 using the genotyping data available
online.

We also examined whether differences existed between
LD group structure and tSNP selection when cases and
controls were considered separately. This analysis could
only be performed for ATM, MRE11A, and XRCC4.

Results
Characteristics of the SNPs studied are listed in Table 1.
Minor allele frequencies from our 94 subjects compared
well with those listed by Applied Biosystems[30]. Despite
the very low minor allele frequencies in some of the SNPs
studied, we observed heterozygosity for all SNPs
genotyped.

Table 2 lists the haplotypes with a frequency > 0.01
obtained from SNPHAP, and the LD group designation
and the tSNPs that were selected using the PCA method,
for ATM, MRE11A, and XRCC4. Haplotypes are reported
using the standard convention of designating the major
allele as '1' and the minor allele as '2', in order to more
easily spot occurrences of the minor allele. Please see
Table 1 for the corresponding base pair change. For ATM,
7 haplotypes overall were observed and 5 had a frequency
> 0.01. Using the PCA method, a single LD group was

XRCC4 X19 rs2386275 G/A Intron 0.09 0.12 270,260
XRCC4 X20 rs2891980 T/C Intron 0.09 0.13 270,383
XRCC4 X21 rs1056503 T/G Coding-synon 0.09 0.12 276,697

* Base change listed as Major allele / Minor allele
† Position obtained from the University of California, Santa Cruz Genome Browser http://genome.ucsc.edu/cgi-bin/hgGateway; Flanking = within 10 
kb of either side of gene; Locus region = variation in region of gene, but not in transcript; mRNA-utr = variation in transcript, but not in coding 
region interval
‡ MAF = minor allele frequency using our panel of 94 breast cancer case and control subjects
§Applied Biosystems reported minor allele frequency in Caucasians
|| Corrected value. Applied Biosystems acknowledged error in reported minor allele frequency of 0.49 on their web site, but it has not been 
updated.
** NBS1 and RAD50 were not genotyped in the current study. All analyses for these two genes were performed using the raw genotype data freely 
available online from Applied Biosystems. Base change obtained from University of California, Santa Cruz Genome Browser.

Table 1: Characteristics of SNPs analyzed (Continued)
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identified, encompassing the entire gene and accounting
for 98.8% of the genetic variance across the gene. From
this single LD group, a single tSNP (A13) was selected.

For MRE11A, we observed 9 haplotypes in total and 6
with frequency > 0.01. From the PCA analysis, four LD
groups were identified based on these 6 haplotypes with a
frequency > 0.01, and accounted for 99.1% of the genetic
variance. The LD groups did not conform to haplotype
blocks. SNP M4 separated LD group 1 into two parts and
M8 separated LD group 2. Each LD group was represented
by a single tSNP, such that the tSNP set contained 4 tSNPs
(M6, M10, M11, and M14).

For XRCC4, we observed 26 haplotypes overall; 13 of
which had a frequency >0.01. From the PCA method, four
LD groups were observed which accounted for 97.2% of
the variance. Similarly to MRE11A, the LD groups were
not contiguous blocks. LD group 1 was divided by X9 and
LD group 2 was divided by X15. Each of the LD groups
could be represented by a single SNP resulting in the tSNP
set (X2, X9, X14, and X21).

Table 3 shows the LD groups and tSNPs for ATM, MRE11A
and XRCC4 using our panel of 94 subjects and using the
45 Caucasian subjects from Applied Biosystems[30]. For
these three genes, we observed the same number of LD
groups containing precisely the same SNPs for both data
sets. The difference between the results was in the number

Table 2: Haplotypes with frequency>0.01, LD group characterization and tSNPs selected using Utah genotyping data* 

a. ATM

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 Freq

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.54
2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.42
2 2 2 2 2 2 1 2 2 2 2 2 2 2 0.01
2 2 2 1 2 2 1 2 2 2 1 2 2 2 0.01
1 1 1 1 1 1 1 1 1 1 2 1 1 1 0.01

LD Group and tSNP Designation
1 1 1 1 1 1 1 1 1 1 1 1 1† 1

b. MRE11A

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 Freq

2 2 2 1 2 2 1 1 1 1 1 0.30
1 1 1 2 1 1 1 2 1 1 1 0.28
1 1 1 1 1 1 1 1 1 1 1 0.25
1 1 1 2 1 1 1 1 1 1 2 0.09
1 1 1 1 1 1 1 2 1 1 1 0.06
1 1 1 2 1 1 2 1 2 2 1 0.01

LD Group and tSNP Designation
1 1 1 4† 1 1† 2 4 2 2† 3†

c. XRCC4

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 Freq

2 2 2 2 2 2 2 2 1 2 2 2 2 1 1 1 1 1 1 1 1 0.35
1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 0.19
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.11
1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 1 1 1 0.10
1 2 2 2 2 2 2 2 1 2 2 2 2 1 1 1 1 1 1 1 1 0.05
1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 2 2 2 0.03
1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 0.02
2 2 2 2 2 2 2 2 1 2 2 2 2 1 1 1 1 1 2 2 2 0.02
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.02
2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 1 1 1 0.02
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 0.02
1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 1 1 0.01

1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 2 1 1 1 0.01
LD Group and tSNP Designation

1 1† 1 1 1 1 1 1 4† 1 1 1 1 2† 4 2 2 2 3 3 3†

* Analysis considers the total panel of 94 individuals together
† tSNP selected / group
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Table 3: Comparison of LD groups for the Utah breast cancer cases and controls with Applied Biosystems (ABI) data*

Gene Group Utah breast 
cancer case/
control SNPs

Utah potential 
tSNPs

Utah % 
variance 
captured/

group

ABI SNPs ABI potential 
tSNPs

ABI % 
variance 
captured/

group

ATM 1 A1-A14 A1-A3, A5, A6, A8-A10, 
A12-A14

98.8% A1-A14 A1-A3, A5, A8, 
A13, A14

98.2%

MRE11 1 M1, M2, M3, M5, M6 M1, M2, M3, M5, M6 100% M1, M2, M3, M5, 
M6

M1, M2, M3, M5, 
M6

100%

2 M7, M9, M10 M10 84.3% M7, M9, M10 M7, M9, M10 100%
3 M11 M11 100% M11 M11 100%
4 M4, M8 M4, M8 82.2% M4, M8 M4, M8 83.9%

XRCC4 1 X1-X8, X10-X13 X2-X3, X5-X8, X10-
X11

95.3% X1-X8, X10-X13 X2, X3, X10, X11, 
X13

96.0%

2 X14, X16-X18 X14 91.6% X14, X16-X18 X14, X17, X18 93.5%
3 X19-X21 X19-X21 100% X19-X21 X19-X21 100%
4 X9, X15 X9, X15 97.4% X9, X15 X9, X15 96.8%

*We used Applied Biosystems' validated SNP genotype data for 45 Caucasian subjects.

Table 4: Haplotypes with frequency>0.01, LD group characterization and tSNP selected using data from Applied Biosystems* 

a. NBS1

N1 N2 N3† N4† N5† Frequency

1 1 1 1 1 0.55
2 2 2 2 2 0.26
1 2 2 2 2 0.10
1 2 2 1 2 0.03
2 2 1 1 2 0.03
1 2 1 1 2 0.03

LD Group and tSNP Designation
2‡ 1‡ 1 1 1

b. RAD50

R1† R2 R3† R4† R5 R6† R7 R8 R9 R10 Frequency

1 1 1 1 1 1 1 1 1 1 0.50
1 1 1 2 1 1 1 1 1 1 0.21
1 2 2 2 1 2 2 2 2 1 0.11
1 1 1 1 1 1 1 1 1 2 0.08
1 2 2 2 1 2 2 2 2 2 0.05
1 2 2 2 1 2 2 1 2 2 0.01
1 2 2 2 1 2 2 2 1 2 0.01
1 1 1 2 1 2 2 1 2 1 0.01
1 1 1 1 1 2 2 2 2 1 0.01
2 2 1 2 2 1 2 1 1 2 0.009§

LD Group and tSNP Designation
2‡ 1 1‡ 1 2 1 1 1 1 3‡

*We used Applied Biosystems' validated SNP genotype data for 45 Caucasian subjects.
† Allele designations have been changed from that listed by ABI to conform to the convention 1 = common allele, 2 = rare allele.
‡ tSNP selected / group
§ The haplotype with a frequency 0.009 was also analyzed to allow inclusion of rare variants at R1 and R5.
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of potential tSNPs for each LD group. For the majority of
LD groups, the potential tSNPs using Applied Biosystems
data were a subset of those from our data. This is perhaps
expected, because our sample size was more than double
their size and is therefore capable of better resolution.

Table 4 lists the haplotypes, LD group designation, poten-
tial tSNPs, and tSNP selected per group for NBS1 and
RAD50 using the Applied Biosystems' data. For NBS1, 6
haplotypes overall were observed and all 6 haplotypes
had a frequency > 0.01. Using the PCA method, two LD
groups were identified and accounted for 93.8% of the
variance. Two tSNPs were sufficient to tag these groups
(N1, N2). However, N5 could replace N2 with no reduc-
tion in the variance explained. For the RAD50 gene, in
order to include two available rare SNPs in the analysis,
we lowered the haplotype acceptance threshold to 0.009.
We observed a total of 14 haplotypes, 10 with a frequency
greater than 0.01. Using the PCA method, we identified
three LD groups, which accounted for 91.5% of the
variance. Similarly to MRE11A and XRCC4, the LD groups
for RAD50 were not contiguous blocks. Three tSNPs were
sufficient to tag the groups (R1, R3, and R10), although
R5 could replace R1 and R6 could replace R3 with no loss
of variance explained.

For ATM, MRE11A, and XRCC4, we compared haplotypes
and LD structure between the breast cancer cases and con-
trols. For ATM and XRCC4 no difference in the LD struc-
ture was observed when cases and controls were analyzed
separately. For the MRE11A gene differences in LD struc-
ture were noted, however, these were minor and likely
attributable to small sample size since the differences were
driven by 3 rare haplotypes (frequency = 0.02).

Discussion
Identification of the most informative markers to use in a
large-scale association analysis for studies of complex dis-
ease, such as breast cancer, is critical to the success of the
study. The key to this process is to select SNPs that are
most informative about the underlying haplotype struc-
ture in a population of interest. As haplotype based
designs have been suggested as being more powerful than
the single-allele approach for association studies[8], a
haplotype-based approach should result in more accurate
and definitive findings. In this study, we have described
haplotypes and characterized the LD structure of the ATM,
MRE11A, and XRCC4 genes using a panel of 94 subjects,
including breast cancer cases from high-risk breast cancer
families as well as controls. Further, we identified tSNPs
that can be used in future haplotype-based association
studies. A similar analysis was performed for NBS1 and
RAD50 using publicly available genotype data. We identi-
fied, using Principal Components Analysis[13], a single
LD group for ATM, four noncontiguous LD groups for

MRE11A, two LD groups for NBS1, three noncontiguous
LD groups for RAD50, and four noncontiguous LD groups
for XRCC4. In each case, the LD groups captured greater
than 90% of the variance of the total SNPs available from
Applied Biosystems across the gene. Furthermore for each
gene, we present tSNPs that could be selected to represent
the gene.

It is of interest that the LD structure for three of these five
DNA repair genes did not conform to the haplotype block
model, that is, that the LD groups did not contain contig-
uous SNPs. This was true whether the genotyping data
came from our own study or from Applied Biosystems.
Although we did not directly sequence these genes to
identify all possible variants, the discontinuity we
observed illustrates that the underlying LD structure
cannot conform to contiguous haplotype blocks. A more
flexible LD group representation (as supported under
principle components analysis) fit the data better and
appears to be stable to differences in minor allele
frequency. Similar findings of a complex pattern of LD
structure were recently reported in a high-resolution study
of the ELAC2 gene[15]. Our results suggest that when
studying small genomic regions and low frequency vari-
ants (<0.2), mutation is an important dynamic in LD
structure, and the simple recombination-only model used
in classical haplotype block methods does not fit the data
well and hence will lead to a poor selection of tSNPs.

Due to the stability of the results for ATM, MRE11A and
XRCC4, we pursued two additional DNA repair genes of
interest (i.e., NBS1 and RAD50). Applied Biosystems pro-
vides freely-available genotyping data for four ethnically
diverse populations of 45 subjects in each, therefore, even
with limited funds, the haplotype structure and selection
of tSNPs can be estimated for a study prior to any geno-
typing costs. However, caution must be used if this option
is exercised as one's population must be one of Applied
Biosystems' ethnic cohorts (i.e., Caucasian, African Amer-
ican, Chinese, or Japanese) and our experience is that
occasionally errors exist in the data.

Of the genes studied here, only ATM has previously been
studied in any depth for LD structure. The reason that
ATM has received so much attention is that patients with
the recessive disease ataxia-telangiectasia, due to a muta-
tion in the ATM gene, have a 100-fold increased risk of
cancer[33,34] and obligate heterozygous carriers of ATM
mutations may have an increased risk of cancer, particu-
larly breast cancer [35-39], although this finding is con-
troversial[40,41]. Extensive LD across the ATM gene has
previously been reported [42-44], and sequence analysis
reveals that ATM polymorphisms are relatively rare result-
ing in low overall sequence diversity[44]. Thus, it follows
that only a small number of haplotypes have been found,
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particularly in Caucasian populations of European
descent. Thorstenson et al [44] predicted seven haplotypes
in populations throughout the world, only three of which
were found in Europeans or the Americans. Bonnen et al
[43] identified 22 unique haplotypes, seven of which
occurred in Caucasians, and only five of these occurred at
a frequency of greater than 5% among Caucasians. We
observed five haplotypes for the ATM gene, but only two
of these could be considered common haplotypes (>0.01)
and together accounted for 96% of all chromosomes. A
recently published study using those haplotypes defined
by Thorstenson et al[44] and Bonnen et al[43] identified
five haplotype tagging-SNPs that were necessary to cap-
ture all of these haplotypes with a frequency >1%[45]. In
our study, which is limited to Applied Biosystems' vali-
dated SNPs, we found that one tSNP was sufficient to rep-
resent 98.8% of the total genetic variance for all the SNPs
available. The results of our study differed from these
other studies due most likely to differences in the minor
allele frequency range of the SNPs utilized. Our minor
allele frequency for the 14 SNPs studied in the ATM gene
varied minimally from 0.43 – 0.45. Thorstenson et al[44]
and Bonnen et al[43] included 2 and 3 SNPs, respectively,
that had minor allele frequencies <0.25. Population struc-
ture exists in SNP-allele frequencies[43] and as observed
by the results of this study, exclusion of rarer SNPs has an
impact on the frequency of haplotypes that are observed.

Comparison of haplotype and LD structure between cases
and controls for ATM, MRE11A, and XRCC4 indicated
that LD structure for these genes were similar in both
groups. Results for ATM and XRCC4 were identical and
only minor differences in LD structure were noted for
MRE11A due to three rare haplotypes. A recent study has
reported that rare haplotypes may be important for dis-
ease susceptibility and in their study these rare haplotypes
had significant effects on their phenotype of interest[46].
Therefore, if rare haplotypes are of interest to an investiga-
tor, it may be prudent to characterize LD in both cases and
controls and select tSNPs that comprehensively cover the
diversity of both groups. However, most studies to date
have empirically found that LD structure is similar across
phenotype[1,47]. If major differences in LD structure were
to exist, this would have a profound effect on guidelines
for tSNP selection and for application of projects such as
the HapMap[48,49].

Some limitations are inherent in this study and must be
pointed out. First, we did not sequence our genes of inter-
est and thus all of the genetic diversity within these genetic
regions may not be captured. Our results must be inter-
preted in light of this. The gold standard is to identify all
variants within a gene and select a subset of tSNPs from
this set. It would be interesting to evaluate the robustness
of our findings using sequence data. However, the SNPs

examined were relatively evenly spaced, on the order of 1
SNP every 10 kb, and our results are important as they
illustrate how smaller budget studies can best select
tSNPs. Second, our sample size was modest (188 chromo-
somes), although larger than other previous studies exam-
ining LD and tSNPs [26-29]. Finally, haplotype block and
haplotype-tagging SNP analyses have been suggested to
only be reliable when markers are dense, otherwise
marker sets have considerable loss of information[50].
This result may extend to PCA methods, however, the
matrix decomposition algorithm used has been suggested
to be stable with regards to varying levels of marker
density[18].

Conclusion
In conclusion, we have described haplotypes, linkage dis-
equilibrium structure, and identified tSNPs from all
available Applied Biosystems' validated SNPs in ATM,
MRE11A, NBS1, RAD50, and XRCC4 genes in a Caucasian
population. As has been found for other genes, we
identified LD structures that did not conform to contigu-
ous haplotype block structures. This illustrates the impor-
tance of using flexible methods, such as matrix
decomposition, that allow for multiple population
dynamics such as recombination, mutation and selection.
Although the gold standard for SNP characterization
across a candidate gene is sequencing to identify all vari-
ants, we describe a low-budget means to characterize the
LD structure and select tSNPs using publicly available
data. Comprehensive characterization of the LD structure
at genes of interest will be essential for future, effective
association studies.
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