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Abstract
Background: SV40 DNA replication system is a very useful tool to understand the mechanism of
replication, which is a tightly regulated process. Many environmental and cellular factors can induce
cell cycle arrest or apoptosis by inhibiting DNA replication. In the course of our search for
bioactive metabolites from the marine sponges, psammaplin A was found to have some anticancer
properties, the possible mechanism of which was studied.

Methods: Cell viability was determined by Cell Counting Kit-8 (CCK-8) to count living RAW264.7
cells by combining 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium (WST-8) and 1-methoxy-phenazine methosulfate (1-methoxy-PMS). The effect of
psammaplin A on DNA replication was carried out in SV40 DNA replication system in vitro. The
activities of topoisomerase I and polymerase α-primase were measured by the relaxation of
superhelical plasmid DNA and the incorporation of [3H]dTTP to the template respectively. The
ssDNA binding activity of RPA was assessed by Gel Mobility Shift Assay (GMSA).

Results: We have found that psammaplin A delivers significant cytotoxic activity against the
RAW264.7 cell line. It was also found that psammaplin A could substantially inhibit SV40 DNA
replication in vitro, in which polymerase α-primase is one of its main targets.

Conclusion: Taken together, we suggest that psammaplin A-induced cytotoxicity may correlate
with its inhibition on DNA replication. Psammaplin A has the potential to be developed as an
anticancer drug.
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Background
DNA replication in eukaryotic cells is a tightly regulated
process [1]. The regulation of DNA replication is central to
understanding the regulation of cell cycle and virus prolif-
eration, events that have a direct impact on our under-
standing human disease. One critical component of cell
cycle regulation is the initiation of DNA replication. The
timing of initiation is precisely controlled and is sensitive
to both environmental and cellular factors. If DNA repli-
cation is blocked by inhibitors or the template is damaged
by radiation or other factors, signals are generated that can
induce cell cycle arrest or apoptosis [2,3].

Much of what is currently known about the mechanism of
DNA replication in eukaryotic cells has come from study-
ing SV40 and related viruses. SV40 virus can use the host
replication machinery for its own DNA replication
together with the virally encoded SV40 T-antigen. SV40 T-
Ag is a multifunctional regulatory protein with numerous
biochemical activities, and it has been classified as a mem-
ber of superfamily III helicase and can unwind dsDNA
and RNA [4,5]. All other proteins are supplied by host
cells. In replication, replication protein A (RPA) mediates
unwinding of SV40 origin-containing DNA in the pres-
ence of SV40 T-Ag and the DNA polymerase α-primase
complex (pol α-primase) [6,7], which is necessary for the
initiation of SV40 DNA replication [8,9].

Psammaplin A is a symmetrical bromotyrosine-derived
disulfide dimer that was originally isolated in 1987 from
the Psammaplysilla sponge [10]. Early studies revealed that
psammaplin A had general antibacterial and antitumor
properties. In 1999, it was found that psammaplin A
exhibited significant in vitro antibacterial activity against
both Staphylococcus aureus (SA) and methicillin-resistant
Staphylococcus aureus (MRSA), which was inferred to be the
result of induced bacterial DNA synthesis arrest by psam-
maplin A through inhibiting DNA gyrase [11]. Given the
increasingly rapid emergence of multi-drug resistant bac-
terial strains and the corresponding threat to public
health, there is significant interest in the development of
structurally novel antibacterial agents such as psammap-
lin A. Additionally, psammaplin A has been reported to
exhibit certain inhibition of a number of enzymes includ-
ing topoisomerase II (topo II) [12], farnesyl protein trans-
ferase [13], leucine aminopeptidase [13], and latest
reported chitinase [14]. Among these enzymes, topo II, as
one required protein for eukaryotic DNA replication, as
well as bacterial DNA gyrase belongs to the topoisomerase
family of enzymes responsible for the remolding of DNA
topology. Since psammaplin A can inhibit bacterial DNA
synthesis through DNA gyrase inhibition, and much of
the basic enzymology of the eukaryotic replication fork
has close homologies with its prokaryotic counterpart, we

wonder whether psammaplin A also can induce eukaryo-
tic DNA replication arrest or not.

We have reported that psammaplin A displayed signifi-
cant cytotoxicity against human lung (A549), ovarian (SK-
OV-3), skin (SK-MEL-2), CNS (XF498), and colon
(HCT15) cancer cell lines [15]. In this paper, psammaplin
A was found to have dose-dependent cytotoxicity on mac-
rophage cell line. In order to clarify the possible mecha-
nism of the cytotoxicity and also verify our conjecture of
its possible action on DNA replication, the effect of psam-
maplin A on eukaryotic DNA replication was examined by
using in vitro SV40 DNA replication system. According to
our result that psammaplin A can induce eukaryotic DNA
replication arrest through inhibiting some important rep-
lication proteins, we suggest that psammaplin A-induced
cytotoxicity may correlate with its inhibition on DNA rep-
lication, and one of the main target molecules could be
DNA polymerase α-primase.

Methods
Psammaplin A, proteins, cell extracts and DNA
Psammaplin A sample was a gift from a Dr. Jung's lab of
Pusan National University. SV40 origin-containing circu-
lar duplex DNA (pUC-ori+), SV40 T-Ag, topoisomerase I
(topo I), human DNA polymerase α-primase (pol α-pri-
mase), replication protein A (RPA), and HeLa extract were
prepared as described previously [16].

Cell lines and chemicals
Media for cell culture including HY, DMEM and RPMI
were purchased from the Sigma Chemical Co. (St. Louis,
MO, USA) and Fetal Calf Serum (FCS) was from Gibco-
BRL (Gaithersburg, MD, USA). Cell Counting Kit-8(CCK-
8) was purchased from Dojin Laboratories (Kumamoto,
Japan). The mouse macrophage cell line RAW264.7 was
purchased from Korean Cell Line Bank (Seoul, Korea).

Cell viability assay
Cell viability was determined by CCK-8 to count living
cells by combining WST-8 and 1-Methoxy PMS [17].
Briefly, macrophage cells (RAW264.7) were seeded into
96 well plates at an initial density of 105 cells/well. After
incubation with the indicated concentrations of psamma-
plin A for 12 hr, 10 µl of kit reagent was added and incu-
bated for a further 3 hr. Cell viability was obtained by
scanning with a microplate reader at 450 nm.

SV40 DNA replication in vitro
The reactions were carried out as described previously
[18]. In brief, the reaction mixtures (40 µl) included 40
mM creatine phosphate-di-Tris salt (pH 7.7), 1 µg of crea-
tine kinase, 7 mM MgCl2, 0.5 mM DTT, 4 mM ATP, 200
µM UTP, GTP, and CTP, 100 µM dATP, dGTP, and dCTP,
25 µM [3H]dTTP (300 cpm/pmol), 0.6 µg of SV40 T-Ag,
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0.23 µg of pUC-ori+, HeLa extracts, and psammaplin A as
indicated. The reactions ran at 37°C for 2 hr, after which
the acid-insoluble radioactivity was measured [18].

Topo I assay
Topo I was measured by the relaxation of superhelical
plasmid DNA [19]. The 20 µl assay mixture contained 50
mM Tris-HCl (pH 7.5), 120 mM KCl, 10 mM MgCl2, 0.5
mM DTT, 0.5 mM EDTA, bovine serum albumin (30 µg/
ml), pUC118 (20 µg/ml), topo I (1 unit), and various
amount of the psammaplin A. After 30 min at 30°C, the
reactions were stopped by the addition of 5 µl of 5%
NaDodSO4/25% (wt/vol) Ficoll 400 (Pharmacia) con-
taining 0.25 mg of bromophenol blue per ml. The sam-
ples were then loaded onto the agarose gel (0.8%) for
electrophoresis followed by photography.

ssDNA binding assay
The assay was performed according to the published pro-
cedures [7]. The reaction mixture (20 µl) contained 50
mM Hepes-KOH (pH 7.5), 150 mM NaCl, 1 mM MgCl2,
0.5 mM DTT, 10% glycerol, 50 fmol of 5'-32P-labeled
oligo(dT)50 (2200 cpm/fmol), plus the indicated amount
of RPA, and was incubated for 15 min at room tempera-
ture. The complex was electrophoretically separated on a
5% polyacrylamide gel in 0.5 × TBE (89 mM Tris borate, 2
mM EDTA) at 15 V/cm. The gel was then dried and
exposed to X-ray film.

Pol α-primase assay
DNA pol α-primase activities were assayed as described
previously [20] with the following modifications. Reac-
tion mixtures (30 µl) contained 40 mM creatine phos-
phate/di-Tris salt, pH 7.7, 1.0 µg of creatine kinase, 7 mM
MgCl2, 0.5 mM DTT, 6 µg of bovine serum albumin, 4
mM ATP, 33 µM of [3H]dTTP (500 cpm/pmol), 0.1 µg of
poly (dA)4500: oligo (dT)25 (20:1), DNA pol α-primase,
and psammaplin A as indicated. After incubation at 37°C
for 30 min, acid-insoluble radioactivity was determined
[18].

Statistical analysis
Values are presented as mean ± SD. Data was initially ana-
lyzed by one-way analysis of variance (ANOVA) and com-
parison of groups was made using Turkey test (SPSS
software).

Results
Effect of psammaplin A on the viability of macrophage cell 
line
As shown in Fig 1, psammaplin A is a symmetrical bromo-
tyrosine-derived disulfide dimer, which exhibits in vitro
antibacterial activity against methicillin-resistant Staphylo-
coccus aureus (MRSA). Psammaplin A is rather interesting
owing to its two identical domains which are linked

through a disulfide bridge. Macrophage cells are one of
the key players in the early innate immune response, and
they release inflammatory chemicals known as cytokines
when they are activated. This sort of inflammation is not
always a good thing, and overactive macrophage cells
have been implicated in a number of human diseases,
including arthritis and sepsis. When we studied the effect
of psammaplin A on the viability of macrophage cell line
RAW264.7, a reduced cell count was observed in the
psammaplin A-treated cells and this decrease in the
number of living cells also showed good dose-dependent
(Fig 2).

Inhibition of SV40 DNA replication in vitro by psammaplin 
A
As it has been mentioned in the background, we wonder
that psammaplin A has inhibitory effect on eukaryotic
DNA replication or not. To verify this conjecture and also
clarify the possible mechanism of psammaplin A-induced
cytotoxicity, we examined the effect of psammaplin A on
DNA replication using an in vitro SV40 DNA replication
system. Addition of increasing amounts of psammaplin A
quantitatively inhibited SV40 DNA replication with HeLa
cytosolic extract (Fig 3).

Inhibition of replication by psammaplin A in a cell-free
system could be mediated either by damaging the tem-
plate or by modulating the activity of a protein (or pro-
teins) that is required for replication. The former
mechanism is unlikely, because we have directly checked
the effect of psammaplin A on DNA and didn't find any
detectable damages to the template (data not shown). In
order to find what proteins in DNA replication were
affected by psammaplin A, we checked topo I activity at
first, which plays key roles in DNA replication, transcrip-
tion, and recombination by forming transient DNA sin-
gle-strand breaks and acting as DNA strand transferase. In
addition, the topoisomerase is now considered to be an
important cancer chemotherapeutic target. The inhibitory

The structure of psammaplin AFigure 1
The structure of psammaplin A.
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effect of psammaplin A on the catalytic activity of topo I
was shown in Fig 4a. The plasmid DNA was in the super-
helical form (lane 1), and topo I relaxed the supercoiled
DNA (lane 2). Psammaplin A inhibited the relaxation by
topo I strongly at a concentration of 125 µM.

Nicolaou and his colleagues reported that the DTT present
in many enzyme assays could reduce the disulfide bond of
psammaplin A to the corresponding free thiol [24]. In
their experiment without DTT, psammaplin A exhibited
no detectable inhibition of bacterial DNA gyrase up to
100 µg/ml. They suggested the weak inhibitory activity
observed by the earlier authors could be attributed to the
presence of the free thiol rather than the product itself. In
our experiments detecting the effect of psammaplin A on
topo I, no difference was found in the same gel between
the reactions in the presence and absence of 0.5 mM DTT
(Fig 4b).

In replication, RPA mediates unwinding of SV40 origin-
containing DNA in the presence of SV40 T-Ag and topo I.
It interacts with SV40 T-Ag and the DNA pol α-primase
complex, which is necessary for the initiation of SV40

DNA replication [8,9]. Here, we examined the effect of
psammaplin A on RPA's ssDNA-binding activity. As
shown in Fig 5, RPA formed stable complexes with
oligo(dT)50, which appeared as two distinct bands in the
polyacrylamide gel. The ssDNA binding activity of RPA
was inhibited by psammaplin A in a concentration-
dependent manner, and 500 µM of psammaplin A totally
inhibited the ssDNA-binding activity of RPA.

As described above, DNA pol α-primase complex is neces-
sary for the initiation of SV40 DNA replication. To further
investigate the inhibitory effect of psammaplin A in repli-
cation, we tested psammaplin A for inhibition of pol α-
primase activity to see whether it's inhibitory effect on
DNA replication correlate with pol α-primase activity. As
shown in Fig 6, the activity of pol α-primase was inhibited
by psammaplin A, and 40 µM of psammaplin A inhibited
about 94% the activity of pol α-primase.

Discussion
Psammaplin A has exhibited inhibition on general bacte-
rium, some actinomycetes and fungi, and it also has

Effect of psammaplin A on the viability of macrophage cell line RAW 264.7Figure 2
Effect of psammaplin A on the viability of macrophage cell 
line RAW 264.7. Macrophage cells were treated with various 
concentrations of psammaplin A for 12 hr. Relative cell viabil-
ity was determined by WST-8 and 1-Methoxy PMS and is 
shown as a percentage of living cells. Data are shown as 
means ± SD of three independent experiments. * Data are 
significantly different from control group at p < 0.001.
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Effect of psammaplin A on SV40 DNA replication in vitroFigure 3
Effect of psammaplin A on SV40 DNA replication in vitro. 
Replication reaction comprised SV40 origin-containing DNA 
(pUC-ori+), SV40 T-Ag, HeLa cytosolic extract (100 µg), 
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(*)and at p < 0.001 (**).
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cytotoxicity toward several cancer cell lines. In our
research, we found that psammaplin A deliver significant
cytotoxic activity against macrophage cell line RAW264.7.
Which process is mostly affected by psammaplin A in cell
cycle? What is the mechanism of the inhibition? Enlight-
ened by the inhibitory effects of psammaplin A on bacte-
rial DNA synthesis, bacterial DNA gyrase and eukaryotic
topo I, we investigated the effect of psammaplin A on
DNA replication using SV40 replication in vitro system
attempting to find out the target process and molecules of

psammaplin A and have a glimpse on cell cycle
regulation.

In our study, we found that psammaplin A inhibited SV40
DNA replication in vitro. In order to clarify the inhibition
mechanism, further work were carried out. In SV40 DNA
replication, three factors, SV40 T-Ag, RPA, and pol α-pri-
mase complex, are essential for initiation process. In the
presence of topo I, SV40 T-Ag will continue to unwind the
DNA to form a highly unwound DNA [21]. DNA

Psammaplin A inhibited topo I catalytic activityFigure 4
Psammaplin A inhibited topo I catalytic activity. Topo I activity was measured by the relaxation of superhelical plasmid DNA. 
The assay mixture (20 µl) contained pUC118 (20 µg/ml), topo I (1 unit), and various amounts of the psammaplin A. After 30 
min at 30°C, the reactions were stopped by the addition of 5 µl of stop solution. The samples were then loaded onto the aga-
rose gel (0.8%) for electrophoresis followed by photography. (A) The reaction mixtures contain 0.5 mM DTT; (B) Compare 
the reactions in the presence and absence of 0.5 mM DTT.
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synthesis with three factors and topoisomerase can be
quite extensive [22]. We have suggested that psammaplin
A might interfere with some molecules that are required to
establish replication forks during the initiation reaction.
To address this possibility, we asked whether psammaplin
A inhibits topo I, RPA's ssDNA binding activity, and pol
α-primase activity. In addition, the topo I is now consid-
ered to be important cancer chemotherapeutic target. In
mammalian cells, actions of antitopoisomerase drugs on
replication, transcription, and other processes ultimately
activate pathways of programmed cell death [23]. Psam-
maplin A inhibited the DNA relaxation activity of topo I
and the ssDNA binding activity of RPA in a dose-depend-
ent manner, and up to 500 µM, psammaplin A can inhibit
both the activities of topo I and RPA completely. On the
other hand, psammaplin A significantly reduced pol α-

primase activity at 40 µM. The above results indicate that
major inhibition of SV40 DNA replication by psammap-
lin A may be due to the inhibition of pol α-primase activ-
ity. Here, we cannot rule out the possibility that
psammaplin A inhibit the activity of SV40 T-Ag, because it
is essential for initiation process.

It is puzzling that the DNA pol α-primase, RPA and topo
I were readily inhibited by low concentration of
psammaplin A whereas the SV40 DNA replication assay
still showed about more than 80% DNA replication in the
presence of 125 µM psammaplin A. In our opinion, at
least three points could account for this discrepancy. First,
the cell extract we have used to support in vitro DNA
replication system includes a large number of proteins,
while in topo I assay, RPA binding assay and pol α-pri-

Psammaplin A inhibited ssDNA binding activity of RPAFigure 5
Psammaplin A inhibited ssDNA binding activity of RPA. Indicated amount of either human RPA or a mixture of both RPA and 
psammaplin A were combined with 32P-labeled oligo(dT)50 and incubated for 15 min at room temperature. The protein-DNA 
complexes were then separated from unbound DNA by 5% polyacrylamide (acrylamide:bisacrylamide, 29:1) gel 
electrophoresis.
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mase assay, purified proteins were used. Many of the pro-
teins in the crude extracts can affect each other by physical
or functional interactions. For example, in the process of
DNA replication initiation, RPA interacts with T-Ag and
DNA pol α-primase, and it is believed that RPA can both
stabilize the unwound DNA and stimulate DNA pol α.
The universal protein-protein interactions in crude
extracts make its working environment quite different
from that of purified protein assay system. Second, even
for the same protein, for example, pol α-primase, the con-
centration in the cell extract and in the purified pol α-pri-
mase assay is not comparable before any quantification of
the replication proteins in the cell extract. Third, due to
the active disulfide moiety in the structure of psammaplin
A, it is possible that psammaplin A could interact with
some particular cellular targets in the crude extract, which
may lead to covalent modification of the biological targets
and psammaplin A itself. Therefore, the free available con-
centration of psammaplin A in the crude extract might be
different from that in purified protein assay system.

Different from the effect of psammaplin A on SV40 DNA
in vitro replication, the significant inhibition of
psammaplin A on the viability of macrophage RAW264.7
cells occurred at a relatively low concentration. There is
the possibility that DNA replication might not be the sin-
gle or primary event that affected by psammaplin A. It
should be evident that the event of DNA replication in a
living cell is more complicated than that in the crude
extract system because of many existing cell cycle signals.
So, it is still vague whether the ability of psammaplin A to
inhibit cellular viability is correlated with its ability to
inhibit DNA replication. In order to make it clear, it is nec-
essary to check the effects of psammaplin A on other mac-
romolecular synthesis (RNA synthesis and protein
synthesis). Although the results in this paper do not
clearly define the mechanism of cytotoxicity of psammap-
lin A, they have convincingly shown that psammaplin A
possesses the abilities to inhibit DNA replication and
some important replication proteins.

Because of the disulfide bridge linking two identical sub-
units in the structure of psammaplin A, in this study, we
also paid attention to the potential reduction effect of DTT
present in the topo I assay. Different from the report of
Nicolaou [24], we didn't catch any difference between the
reactions in the presence and absence of DTT. There exist
two possibilities. One is that in our reaction system, DTT
couldn't reduce psammaplin A to the corresponding free
thiol. Comparing the in vitro assay conditions in this
study, we can find that all these assays were performed in
similar conditions (for example: pH 7.5~7.7, 0.5 mM DTT
and Mg2+ ion environment). Given the mildness and tol-
erance of these reaction mixtures, we guess that psamma-
plin A is stable in the assays. Of course there is the second
possibility that psammaplin A was reduced in the reac-
tion, but the reduction product had nearly the same inhi-
bition effect on topo I as the original compound. Further
investigation aimed at this question need to be carried
out.

Conclusions
Based on our results, we suggest that the cytotoxicity of
psammaplin A might be related to the inhibitory effect it
has on the fundamental cellular process-DNA replication,
and one of the main target molecules of psammaplin A
could be pol α-primase.
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