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Abstract
Background: The expression profiles of solid tumor models in rodents have been only minimally
studied despite their extensive use to develop anticancer agents. We have applied RNA expression
profiling using Affymetrix U95A GeneChips to address fundamental biological questions about
human tumor lines.

Methods: To determine whether gene expression changed significantly as a tumor increased in
size, we analyzed samples from two human colon carcinoma lines (Colo205 and HCT-116) at three
different sizes (200 mg, 500 mg and 1000 mg). To investigate whether gene expression was
influenced by the strain of mouse, tumor samples isolated from C.B-17 SCID and Nu/Nu mice were
also compared. Finally, the gene expression differences between tissue culture and in vivo samples
were investigated by comparing profiles from lines grown in both environments.

Results: Multidimensional scaling and analysis of variance demonstrated that the tumor lines were
dramatically different from each other and that gene expression remained constant as the tumors
increased in size. Statistical analysis revealed that 63 genes were differentially expressed due to the
strain of mouse the tumor was grown in but the function of the encoded proteins did not link to
any distinct biological pathways. Hierarchical clustering of tissue culture and xenograft samples
demonstrated that for each individual tumor line, the in vivo and in vitro profiles were more similar
to each other than any other profile. We identified 36 genes with a pattern of high expression in
xenograft samples that encoded proteins involved in extracellular matrix, cell surface receptors and
transcription factors. An additional 17 genes were identified with a pattern of high expression in
tissue culture samples and encoded proteins involved in cell division, cell cycle and RNA
production.

Conclusions: The environment a tumor line is grown in can have a significant effect on gene
expression but tumor size has little or no effect for subcutaneously grown solid tumors.
Furthermore, an individual tumor line has an RNA expression pattern that clearly defines it from
other lines even when grown in different environments. This could be used as a quality control tool
for preclinical oncology studies.
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Background
Preclinical animal models of human tumors represent a
major tool for the selection and development of effective
anticancer agents. There is a considerable number of well
characterized human cancer cell lines, many of which can
be grown as solid tumors (either subcutaneously or ortho-
topicaly) in immunodeficient mice. The ease of use and
low cost of these models make them desirable for screen-
ing in vivo activity of anticancer compounds as compared
to induced or transgenic rodent tumor models. Rodent
models also allow pharmacodynamic and pharmacoki-
netic parameters to be directly measured and related to
antitumor efficacy. Commonly used human cancer cell
lines, such as the panel of 60 lines (NCI60) used by the
Developmental Therapeutics Program at the National
Cancer Institute, have been extensively studied at the
molecular level in vitro and to a lesser extent in vivo. Recent
advances in genomic technology allow molecular charac-
terization of these models to an extent never before possi-
ble using RNA expression profiling, comparative genomic
hybridization, proteomic and metabonomic profiling.
Ross et al. [1] looked at the in vitro gene expression in the
NCI60 panel. The gene expression pattern for many lines
indicated a relationship with the tumor tissue of origin
and also correlated with doubling time and drug metabo-
lism. Virtanen et al. [2] have analyzed the expression pat-
terns of 85 lung tumor samples from both clinical
samples and established tumor lines. The fresh tumors
clustered according to pathological subtype with many of
the cell lines also clustering within the same groups. Ped-
ersen et al. [3] performed a similar study with human
small cell lung cancer cell lines and compared them to
ressected tissue samples. Dan et al. [4] recently performed
RNA expression profiling on 39 human cancer cell lines
and related the gene expression patterns to chemosensitiv-
ity of 55 anticancer agents. Zembutsu et al. [5] performed
a similar study but profiled 85 human cancer xenografts.

What was apparent in all these studies was that each
tumor model was distinctly different and could be distin-
guished from related models using routine data analysis
methods. Furthermore, it appears that it is possible to
identify models that are no longer true to their origins.
Ross et al. [1] identified MDA-MB-435 as a possible
melanoma derived line, which is at odds with its sup-
posed origins of a metastatic breast carcinoma [6]. How-
ever, such identification also raises the possibility that the
sample that Ross et al. obtained was not the true "MDA-
MB-435." Clearly there is the opportunity to use profiling
technology as an advanced quality control method that
could not only identify mislabeled tumor lines but possi-
bly genetic drift.

While these reports have tremendous value they do not
address some basic questions about human tumor mod-

els that could impact the design of in vivo drug develop-
ment studies. For example, most, if not all, xenografts
demonstrate Gompertzian growth kinetics with continu-
ously increasing doubling times as they grow larger [7].
Despite this obvious change in biology, it is unknown
whether xenografts alter their expression as they increase
in size or whether expression differences exist for the same
tumor line grown both as a solid tumor in a mouse or in
tissue culture. To investigate these questions we grew
human colon tumors (HCT-116 and Colo205) in Nu/Nu
mice and harvested tumors at three sizes (200 mg, 500
mg, 1000 mg). Isolated RNA was analyzed on Affymetrix
GeneChips. The effect of mouse strain on tumor gene
expression was also investigated by comparing tumors at
500 mg grown in Nu/Nu and C.B-17 SCID mouse strains.
Lastly we profiled additional tumor models to investigate
the changes in gene expression that occur when a tumor
line is grown in vivo or in vitro.

Methods
Xenograft and tissue culture methods
Cell lines were grown in DMEM/F12 supplemented with
10% fetal bovine serum (Invitrogen, Carlsbad, Califor-
nia). They were passaged in 75-cm2 tissue culture flasks in
an atmosphere of 5% CO2 in air and were subcultured
weekly, using 0.05% trypsin EDTA (Invitrogen, Carlsbad,
California). RNA from tissue culture samples was har-
vested at mid-log phase. Human tumor xenografts were
grown in either Nu/Nu mice or C.B-17 SCID female mice
obtained from Charles River Laboratories (Wilmington,
Massachusetts) between four and five weeks of age. Mice
were housed five to a cage in animal rooms maintained at
between 21–25°C with a 12 h alternating dark/light cycle.
All animal studies were conducted under Veterinary Use
Protocols approved by the Institutional Animal Care and
Use Committee. Tumors were maintained by serial pas-
sage of 30 mg tumor fragments between animals,
implanted subcutaneously into the right axillary region
using a trocar needle aseptically. Tumors were passed
when the primary had reached between 500 and 1000 mg
and were never passed more than ten times. Tumor
growth was followed by caliper measurements of perpen-
dicular measures of the tumor. The weight in mg was esti-
mated by the formula: tumor weight = a(b2)/2, where a
and b are the tumor length and width respectively in mm.
Tumor tissue was harvested immediately following ani-
mal sacrifice by excising the tumor and powdering it in a
liquid nitrogen cooled crucible and pestle. Tumor powder
was stored at -80°C until RNA isolation.

Affymetrix GeneChip
RNA was extracted using TRIZOL® reagent (Invitrogen,
Carlsbad, California) according to the manufacturer's pro-
tocol. RNA integrity was monitored using denaturing aga-
rose gel electrophoresis in 1X MOPS. Biotinylated target
Page 2 of 15
(page number not for citation purposes)



BMC Cancer 2004, 4:35 http://www.biomedcentral.com/1471-2407/4/35
RNA was prepared from 15 µg of total RNA using the
Affymetrix protocol. Briefly, double-stranded cDNA was
prepared from the RNA template using a modified oligo-
dT primer containing a 5' T7 RNA polymerase promoter
sequence and the Superscript Choice System for cDNA
Synthesis (Invitrogen, Carlsbad, California). Following
phenol-chloroform extraction and ethanol precipitation,
one-half of the cDNA reaction (0.5 – 1.0 µg) was used as
the template in an in vitro transcription reaction contain-
ing T7 RNA polymerase, a mixture of unlabeled ATP, CTP,
GTP, and UTP, and biotin-11-CTP and biotin-16-UTP
(BioArray High Yield Kit, ENZO, Farmingdale, New York).
The resulting biotinylated-cRNA "target" was purified on
an affinity resin (RNeasy, Qiagen, Valencia, California)
and quantified using the convention that 1 O.D. 260 nm
corresponds to 40 µg/mL of RNA. Typical yields ranged
from 50 – 100 µg with transcript sizes between 3.0 to 0.25
kilonucleotides as determined by denaturing gel electro-
phoresis. Fifteen micrograms of biotinylated cRNA was
randomly fragmented to an average size of 50 nucleotides
by incubating at 94°C for 35 minutes in 40 mM TRIS-ace-
tate, pH 8.1, 100 mM potassium acetate, and 30 mM mag-
nesium acetate. The fragmented cRNA was hybridized in a
solution containing 100 mM MES, 1 M [Na+], 20 mM
EDTA, 0.01% TWEEN 20, 50 pM of Control Oligonucle-
otide B2, 0.1 mg/mL of sonicated herring sperm DNA,
and 0.5 mg/mL BSA for 16 hours at 45°C on either the
Human U95A or the Mouse U74A Affymetrix GeneChips®

(Affymetrix, Santa Clara, California). Each hybridization
included a mixture of four bacterial biotinylated-RNA
transcripts (BioB, BioC, BioD, and cre) spiked at 1.5, 5,
25, and 100 pM, respectively. The hybridization reactions
were processed and scanned according to the standard
Affymetrix protocols.

Data analysis
All arrays were global scaled to a target intensity value of
600 using the standard Affymetrix protocol. Calculation
of the scaling factor, background, noise and percent
present, was performed according to Affymetrix protocols
using the Data Mining Tool (Affymetrix Santa Clara, Cali-
fornia). All resulting data sets were filtered using the abso-
lute call metric (present or absent) using Microsoft Access
(Microsoft Corporation, Redmond, Washington). Genes
selected had expression levels classified as present at least
once in the samples selected for the particular analysis.

To determine the relationship between tumor samples
harvested at different sizes the filtered RNA profiling data
was analyzed with classic multidimensional scaling
(MDS), implemented in R [8,9]. MDS is an unsupervised
learning technique that attempts to preserve the relation-
ship between points from high dimensional space at
lower dimensional spaces. The program R is a free inte-
grated suite of software facilities for data manipulation,

calculation and graphical display http://www.r-
project.org.

Analysis of variance (ANOVA) was used to test the effects
of tumor size and tumor line, using the following model:
Expression of genei ~ tumor.size + tumor.line +
tumor.line*tumor.size. To test the effect due to mouse back-
ground, we used the following model: Expression of genei ~
mouse background. RNA profiling data filtered on the abso-
lute call metric was used for this analysis and ANOVA was
implemented in R. ANOVA is a statistical linear modeling
procedure that partitions the total variance into parts cor-
responding to various sources in the model [10,11]. It has
been used previously in microarray data analysis [12-15].

To rigorously select genes with expression differences
between samples, ANOVA p-values were adjusted using
multiple comparison procedures. Multiple comparison
procedures are tools to adjust p-values that might be
inflated as a result of performing multiple hypothesis
tests. The Benjamini and Hochberg procedure controls the
false discovery rate, which is the expected fraction of false
discoveries in all rejected hypothesis [16]. This procedure
is less stringent than methods controlling the family wise
error rate (e.g. the Bonferroni correction); hence it is more
powerful.

Hierarchical clustering was performed in GeneSpring 5.0
(Silicon Genetics, Redwood City, California). The distinc-
tion calculation from Spotfire DecisionSite 6.2 (Spotfire
Inc. Somerville, Massachusetts) was used to select genes
differentially expressed in xenograft samples or tissue cul-
ture samples. All data from the tissue culture samples that
had an in vivo pair (8 samples) were selected into one
group and all data from the xenograft samples (8 samples)
were selected into a second group. Genes were prefiltered
using the absolute call metric by selecting genes that were
present at least once in the selected samples. A distinction
value score and p-value was calculated for each gene. The
score (≥1) and p-value (≤0.001) was then used to select
genes that were differentially expressed between xenograft
samples and tissue culture samples. To functionally clas-
sify gene lists, web resources such as NCBI (National
Center for Biotechnology Information, http://
www.ncbi.nlm.nih.gov/) were searched and the data com-
piled. Further searching for gene associations in PubMed
(NCBI) was also performed.

Results
Variation in tumor xenograft gene expression due to size
We focused on two human colon carcinoma xenografts
(HCT-116 and Colo205) to investigate the effects of
tumor size and mouse strain on gene expression. Samples
were harvested in quadruplicate at three different tumor
sizes (200 mg, 500 mg and 1000 mg) for both tumor
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models grown in Nu/Nu mice (except for the 500 mg sam-
ple of Colo205 where five samples were harvested). These
sizes were selected as they represent the range at which
sensitivity to anticancer agents are traditionally tested and
because most models approximate log-linear growth at
these sizes. RNA expression profiling data was obtained
from Affymetrix U95A GeneChips containing approxi-
mately 12600 genes. Genes present (above background)

once or more across all samples were selected for further
analysis (approximately 7600 genes).

Initial analysis of the expression data with multi-dimen-
sional scaling (MDS) showed that samples from the same
tumor line clustered together and that there was clear sep-
aration between samples from HCT-116 and Colo205
(Figure 1). Compared to the profound effect due to tumor

Multidimensional scaling plot of Colo205 and HCT-116 samplesFigure 1
Multidimensional scaling plot of Colo205 and HCT-116 samples. Multidimensional scaling plot showing the related-
ness of individual samples from Colo205 and HCT-116 to each other in 2D space. The color indicates the size of the tumor 
sample when harvested: red, 200 mg; blue, 500 mg; black, 1000 mg. The size of text indicates the mouse strain the tumor was 
grown in: small, Nu/Nu; large, C.B-17 SCID. Samples that are more related to each other are closer together. For Colo205 five 
samples were analyzed.
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line, there was no clear separation among samples of dif-
ferent sizes in the MDS plot, suggesting that there was lit-
tle alteration in gene expression due to differences in
tumor size (tumor size effect).

The result from MDS was further confirmed by analysis of
variance (ANOVA). Using ANOVA we modeled the effects
of tumor line and tumor size on gene expression. Since in
the ANOVA we conducted approximately 7000 statistical
tests (on the selected genes), with a p-value cutoff of 0.01,
we would expect approximately 70 genes (1% of 7000)
scored as significantly changed due to chance alone.
Indeed, the observed number of significantly changed
genes (p ≤ 0.01) due to tumor size effect was 154, approx-
imately twice what was predicted by chance alone (Figure
2). In contrast, the number of significantly changed genes
due to tumor line effect (4731 genes p-value < 0.01) was
far greater than chance alone, indicating the two tumor
lines were extremely different as suggested by MDS. The
distribution of p-values confirmed the profound effect of
tumor line on gene expression with genes affected at all
expression levels (Figure 3).

To rigorously identify genes that may suggest functionally
significant changes as a tumor increases in size from 200
mg to 1000 mg the ANOVA p-values were adjusted using
multiple comparison procedures. Following this analysis
none of the previously identified 154 genes had p-values
< 0.05. This indicated that there was no change in gene
expression as a human tumor xenograft increased in size
from 200 mg to 1000 mg. This was true for both the HCT-
116 and the Colo205 tumor lines.

Variation in tumor xenograft gene expression due to 
mouse strain
Additional RNA samples were prepared from 500 mg
HCT-116 tumors grown in C.B-17 SCID mice and hybrid-
ized to Affymetrix U95A GeneChips. The expression data
were compared to data from the same line grown in Nu/
Nu mice harvested at 500 mg. The MDS analysis showed
there was no distinct separation or grouping for samples
from the two different mouse strains (Figure 1). This sug-
gests that mouse strain played only a small role in altering
the expression profiles of HCT-116 tumor samples. How-
ever, ANOVA did reveal that considerably more genes

Expected verses observed number of significantly changed genesFigure 2
Expected verses observed number of significantly changed genes. The graph shows the number of genes (y-axis) that 
fall into specific categories (x-axis) based on the ANOVA calculated p-values. The categories are as follows: Predicted, number 
of genes expected by chance alone; Tumor line effect, number of genes that fall within the specified ranges due to differences in 
the tumor line; Tumor size effect, number of genes that fall within the specified ranges due to changes in the tumor size; Mouse 
strain effect, number of genes that fall within the specified range due to changes in the mouse strain the tumors were grown in.
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were altered in their expression due to the mouse back-
ground (493 genes) compared to chance alone (p < 0.01).
To identify genes that may suggest biologically significant
differences due to the mouse background effect, the
ANOVA p-values were adjusted using multiple compari-
son procedures. Using the Benjamini and Hockberg pro-
cedure [16] 63 genes were found to have a p-value < 0.05

with 32 genes increased in the C.B17-SCID strain and 31
increased in the Nu/Nu strain (Table 1 and 2). Functional
classification of these genes using a gene ontology
approach did not identify functions that could be linked
to known biological pathways. Therefore a biological
understanding of the changes in gene expression due to
mouse strain remains elusive.

P-value distribution/volcano plot of line and size effectFigure 3
P-value distribution/volcano plot of line and size effect. Scatter plot with mean expression level (log 10) on the x-axis 
and – p-value (log 10) on y-axis. Each gene is plotted twice, once for the p-value resulting from the tumor-line effect ANOVA 
(black) and once for the p-value resulting from the tumor-size effect ANOVA (red). The blue line represents a p-value of 0.01. 
Genes with a lower p-value (more significant) have a higher – p-value log10. There are far more genes with significant p-values 
due to differences in the tumor lines than due to changes in tumor size.
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Comparison of lines grown in both tissue culture and solid 
tumor xenografts
To explore the relatedness of different tumor lines to each
other and to investigate the gene expression differences
between growth in tissue culture and growth as a subcuta-
neous solid tumor, RNA samples were prepared from the
13 human tumor lines grown in tissue culture to mid-log
phase (Table 3). An additional eight RNA samples were
obtained of the same lines grown as xenografts in Nu/Nu
mice. The gene expression profiling data resulting from
hybridizing the 21 samples to Affymetrix U95A Gene-
Chips was filtered for genes classified as present at least
once across all samples.

Hierarchical clustering analysis using Spearman rank for
samples and Pearson correlation for genes was used to
determine the relationship between 13 different human
tumor lines (Figure 4). The clustering analysis revealed
that for each individual tumor line the xenograft and tis-
sue culture profiles were more similar to each other than
any other profile (with one exception). That is, tumor
lines clustered together based on their genotypes rather
than their growth conditions, suggesting "nature" (geno-
type) was more influential than "nurture" (growth condi-
tions). This result was confirmed with MDS and principle
component analysis (data not shown). The one exception
from this pattern was the xenograft sample of ZR-75-1,

Table 1: Genes with high expression in HCT-116 tumors grown in C.B-17 SCID mice

Function Affymetrix 
Probe Set ID

ANOVA 
p-value

BH         
p-value1

Log2 
FC2

Gene 
Symbol

LocusLink 
ID

Sequence Probe 
Derived From

Gene Title

Translation/RNA binding/RNA splicing
34733_at 0.00029 0.046 0.5 SF3A1 10291 X85237 splicing factor 3a, subunit 1, 120 kDa
34829_at 0.00020 0.046 0.4 DKC1 1736 U59151 dyskeratosis congenita 1, dyskerin
35174_i_at 0.00020 0.046 0.4 EEF1A2 1917 X70940 eukaryotic translation elongation factor 1 alpha 2
37462_i_at 0.00013 0.042 0.5 SF3A2 8175 L21990 splicing factor 3a, subunit 2, 66 kDa
39047_at 0.00007 0.030 0.5 SART3 9733 AB020880 squamous cell carcinoma antigen recognised by T cells 

3
40490_at 0.00041 0.049 0.7 DDX21 9188 U41387 DEAD/H box polypeptide 21

Signal transduction
33887_at 0.00029 0.046 0.5 HGS 9146 D84064 hepatocyte growth factor-regulated tyrosine kinase 

substrate
38019_at 0.00002 0.028 1.0 CSNK1E 1454 L37043 casein kinase 1, epsilon
38779_r_at 0.00039 0.048 0.8 HDGF 3068 D16431 hepatoma-derived growth factor
40864_at 0.00029 0.046 0.4 RAC1 5879 D25274 ras-related C3 botulinum toxin substrate

Small Molecule transport
32186_at 0.00023 0.046 0.7 SLC7A5 8140 M80244 solute carrier family 7, member 5
36557_at 0.00003 0.028 0.9 CACNB1 782 M92303 calcium channel, voltage-dependent, beta 1 subunit
38029_at 0.00031 0.046 0.4 SLC3A2 6520 J02939 solute carrier family, member 2

Protein Complex Assembly
31842_at 0.00044 0.050 0.5 BCS1L 617 AF038195 BCS1-like (yeast)
32575_at 0.00019 0.046 0.4 NAP1L4 4676 U77456 nucleosome assembly protein 1-like 4

Protein transport and folding
36945_at 0.00036 0.047 0.5 C12orf8 10961 X94910 chromosome 12 open reading frame 8
40756_at 0.00017 0.046 0.4 NPM3 10360 AF081280 nucleophosmin/nucleoplasmin, 3

Unknown or other functions
31670_s_at 0.00023 0.046 0.3 SRP72 6731 U81554 signal recognition particle 72 kDa
34279_at 0.00005 0.030 2.0 FLJ20719 55672 AL050141 hypothetical protein FLJ20719
36192_at 0.00003 0.028 0.7 KIAA019

3
9805 D83777 KIAA0193 gene product

36209_at 0.00003 0.028 0.8 BRD2 6046 S78771 bromodomain containing 2
36210_g_at 0.00035 0.047 1.0 BRD2 6046 S78771 bromodomain containing 2
36668_at 0.00035 0.047 0.4 DIA1 1727 M28713 diaphorase (NADH)
37907_at 0.00006 0.030 0.4 F8A 8263 M34677 coagulation factor VIII-associated
38885_at 0.00000 0.007 1.0 DNA2L 1763 D42046 DNA2 DNA replication helicase 2-like
39436_at 0.00010 0.039 1.5 BNIP3L 665 AF079221 BCL2/adenovirus E1B 19 kDa interacting protein 

3-like
39758_f_at 0.00030 0.046 0.4 LAMP1 3916 J04182 lysosomal-associated membrane protein 1
39832_at 0.00007 0.030 0.5 ARS2 51593 AL096723 arsenate resistance protein ARS2
40589_at 0.00041 0.049 0.9 SNTB2 6645 U40572 syntrophin, beta 2
40604_at 0.00012 0.040 1.1 DYRK2 8445 Y13493 dual-specificity tyrosine-(Y)-phosphorylation regulated 

kinase 2
41062_at 0.00028 0.046 0.7 NSPC1 84759 AA037278 likely ortholog of mouse nervous system polycomb 1
982_at 0.00011 0.039 0.4 MCM5 4174 X74795 MCM5 minichromosome maintenance deficient 5, cell 

division cycle 46

1p-value resulting from Benjamini and Hochberg procedure 2 log2 fold change calculated by dividing expression level from C.B-17 SCID sample by 
expression level of Nu/Nu sample
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which did not cluster on the same node as the ZR-75-1
sample grown in tissue culture. However, subsequently
we have found that our xenograft ZR-75-1 line has aber-
rant biological characteristics that are inconsistent with
the known phenotypes of this line.

Although each tissue culture-xenograft sample did cluster
together there were many gene changes between the
paired samples (Table 4). When fold change values were
calculated for each tissue culture xenograft pair and the
number of genes with ≥2 fold-change tabulated there was
a median of 425.5 genes increased in xenografts and 387
decreased. Again the ZR-75-1 sample was aberrant with
many more gene changes than the other lines.

Another striking feature revealed by clustering analysis
was that none of the tumor lines were particularly similar
to each other. The tumor lines did not necessarily cluster
based upon the tissue of origin from which each line was
thought to be derived. However, a group of breast carci-
noma lines that did cluster together (BT474, ZR-75-1,
MDA-MB-453, MCF-7, SKBr-3 and MDA-MB-468),
although MDA-MB-435 and MDA-MB-231 did not cluster
with this group. The two lung carcinoma lines (H2009
and H125) did cluster closely, but MDA-MB-231 and
HCT-116 (colon carcinoma) also clustered with this
group. MDA-MB-435 and Colo205 clustered independ-
ently from all groups.

Selection and functional assessment of differential 
expressed genes in xenograft or tissue culture samples
Since genes that are co-expressed in a particular environ-
ment may provide information about the adaptive
changes to the environment, we identified genes that
showed a pattern of high expression in xenograft samples
or tissue culture samples using Spotfire's DecisionSite
calculation. This analysis identified a small number of
genes that matched either pattern. There were 36 genes
with increased expression in the xenograft samples rela-
tive to the tissue cultures samples and 17 genes that
showed high expression in the tissue culture samples rel-
ative to the xenograft samples (Figure 5). Functional clas-
sification of these genes showed that they separated into
distinct functional groups (see Table 5 and 6). Many of
the genes consistently expressed in tissue culture samples
encoded proteins involved in cell division, cell cycle, tran-
scription and translation. In contrast, genes expressed in
xenograft samples encoded proteins involved in
extracellular matrix, cell adhesion, cell surface receptors
transcription and translation.

Discussion
The first part of our study was designed to address whether
gene expression patterns in xenografts varied with tumor
size. No significant changes (p-value < 0.05) were found

in any genes after statistical analysis of the RNA profiling
data. This was a somewhat surprising result as there is evi-
dence to suggest that tumors show size-dependent
biological variation in both a clinical setting and as
implanted solid tumors in rodents. It is generally assumed
clinically that the larger the tumor mass the lower the
likelihood of curing the patient, regardless of the treat-
ment [17,18]. Pathological and genetic heterogeneity
increase with increasing tumor cell number and contrib-
ute to the emergence of clinical drug resistance [19]. As
tumors grow larger their vascular surface decreases, inter-
capillary distance increases, interstial pressure increases
and necrotic foci develop [20]. Tumor doubling times and
cell loss also increase with increasing tumor size [17].

Implanted animal tumor models most likely represent
clinical end-stage disease and may not necessarily recapit-
ulate clinical behavior seen during tumor development in
humans. There are few reports on the molecular and bio-
chemical changes that occur as implanted solid tumors
increase in size. Massaad et al. [21] found that some drug
metabolizing enzyme systems, including glutathione-S-
transferases (GST) did change both activity and
expression with increasing tumor size in the mouse colon
adenocarcinoma Co38.

Preclinical tumor models show variability in response to
treatment with a given anti-tumor agent despite being
derived from a single tumor and being implanted into
inbred mice [22]. This has been attributed to heterogene-
ity of the host or the tumor cell populations [23,24] along
with tumor-to-tumor variations in perfusion and drug dis-
tribution [25]. We found there was no significant differ-
ence in gene expression between tumors of either the
same size or different size as assessed in four replicate ani-
mals. If differences in tumor population, host metabolism
or perfusion exist between animals implanted with the
same tumors, our data suggests they are not detectable
using gene expression analysis of the whole tumor.

Our results suggest that once tumor xenografts have
grown to 200 mg, physiological influences on tumor tran-
scription (such as the interaction with host stroma,
nutrient supply and oxygenation) have reached steady
state and do not change appreciably as the tumor grows to
1000 mg. It is also conceivable that tumors smaller and
larger than the sizes investigated in this study may show
gene expression changes. When a tumor is first implanted
the hypoxic environment is likely to drive the expression
of pro-angiogenic cytokines that will recruit new vessels to
the tumor. As a tumor becomes very large (>2 g) ang-
iogenic factors may again become highly expressed due to
the inability for the existing vasculature to adequately sup-
port the large tumor mass. We have not excluded the
possibility that there may be changes in protein activities
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Hierarchical clustering analysis of 13 tumor lines grown in different environmentsFigure 4
Hierarchical clustering analysis of 13 tumor lines grown in different environments. Hierarchical clustering analysis 
showing the structure within the data of the 13 tissue culture samples (suffix – TC) and 8 xenograft samples (suffix – X). Sam-
ples are displayed vertically, genes are displayed horizontally. A dendrogram of relatedness of the samples is at the top in green. 
For any two samples, the vertical distance from the sample roots to the first node joining them is a measure of their similarity; 
the shorter the distance the more similar. The color in each cell of the table represents the median adjusted expression value 
of each gene. The color scale used to represent the expression ratios is shown on the right, with yellow indicating increased 
expression relative to the median and blue decreased.
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Table 2: Genes with high expression in HCT-116 tumors grown in Nu/Nu mice

Function Affymetrix 
Probe Set ID

ANOVA 
p-value

BH       
p-value1

Log2 
FC2

Gene 
Symbol

LocusLink 
ID

Sequence Probe 
Derived From

Gene Title

Translation/RNA binding/RNA splicing
32276_at 0.00036 0.047 -0.5 RPL32 6161 X03342 ribosomal protein L32
32432_f_at 0.00032 0.046 -0.6 RPL15 6138 L25899 ribosomal protein L15
33614_at 0.00028 0.046 -0.5 RPL18A 6142 X80822 ribosomal protein L18a
33660_at 0.00039 0.048 -0.5 RPL5 6125 U14966 ribosomal protein L5
34317_g_at 0.00029 0.046 -0.5 RPS15A 6210 W52024 ribosomal protein S15a
34345_at 0.00043 0.049 -0.1 C20orf14 24148 AF026031 chromosome 20 open reading frame 14
398_at 0.00029 0.046 -0.6 DDX18 8886 X98743 DEAD/H box polypeptide 18 (Myc-regulated)
40887_g_at 0.00017 0.046 -0.5 EEF1A1 1915 L41498 eukaryotic translation elongation factor 1 alpha 1

Signal Transduction
35772_at 0.00029 0.046 -0.9 ARHGEF

12
23365 AB002380 Rho guanine nucleotide exchange factor (GEF) 12

36091_at 0.00038 0.048 -0.6 SCAP2 8935 AF051323 src family associated phosphoprotein 2
40784_at 0.00003 0.028 -0.7 PPP2R5C 5527 Z69030 protein phosphatase 2, regulatory subunit B (B56), 

gamma isoform
769_s_at 0.00032 0.046 -0.3 ANXA2 302 D00017 annexin A2
777_at 0.00010 0.039 -0.6 GDI2 2665 D13988 GDP dissociation inhibitor 2

Unknown or Other Functions
1160_at 0.00024 0.046 -0.3 CYC1 1537 J04444 cytochrome c-1
1226_at 0.00010 0.039 -0.5 ADAM17 6868 U69611 a disintegrin and metalloproteinase domain 17
31531_g_at 0.00007 0.030 -0.5 ACACB 32 U89344 acetyl-Coenzyme A carboxylase beta
31684_at 0.00004 0.030 -0.8 ANXA2P

1
303 M62896 annexin A2 pseudogene 1

32518_at 0.00014 0.042 -0.6 ZNF259 8882 AF019767 zinc finger protein 259
33363_at 0.00041 0.049 -0.1 JTV1 7965 W25934 JTV1 gene
33389_at 0.00017 0.046 -1.0 CYP51 1595 U23942 cytochrome P450, 51
33558_at 0.00012 0.039 -0.5 TBX5 6910 Y09445 T-box 5
33820_g_at 0.00000 0.007 -0.7 HSPA8 3312 X13794 heat shock 70 kDa protein 8
33937_at 0.00021 0.046 -0.6 AJ011981 Homo sapiens mRNA sequence, IMAGE clone 417820
34808_at 0.00022 0.046 -0.4 AB023216 KIAA0999 protein
37218_at 0.00029 0.046 -0.4 BTG3 10950 D64110 BTG family, member 3
38553_r_at 0.00025 0.046 -1.3 BAP29 55973 AI984786 B-cell receptor-associated protein BAP29
38589_i_at 0.00042 0.049 -0.6 PTMA 5757 M14630 prothymosin, alpha (gene sequence 28)
39167_r_at 0.00045 0.050 -1.2 SERPINH

2
872 D83174 serine (or cysteine) proteinase inhibitor, clade H, 

member 2
418_at 0.00004 0.030 -0.5 MKI67 4288 X65550 antigen identified by monoclonal antibody Ki-67
893_at 0.00003 0.028 -0.4 E2-EPF 27338 M91670 ubiquitin carrier protein
932_i_at 0.00031 0.046 -0.8 ZNF91 7644 L11672 zinc finger protein 91

1p-value resulting from Benjamini and Hochberg procedure 2 log2 fold change calculated by dividing expression level from C.B-17 SCID sample by 
expression level of Nu/Nu sample

Table 3: Human tumor lines used in this study

Tumor Tissue of Origin Xenograft sample Tissue culture sample

BT-474 Breast No Yes
MCF-7 Breast No Yes
MDA-MB-231 Breast Yes Yes
MDA-MB-435 Breast Yes Yes
MDA-MB-453 Breast No Yes
MDA-MB-468 Breast Yes Yes
SKBr-3 Breast No Yes
ZR-75-1 Breast Yes Yes
Colo205 Colon Yes Yes
HCT-116 Colon Yes Yes
H125 Lung Yes Yes
H2009 Lung No Yes
A431 Squamous cell Yes Yes
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Heat-map plot of differential expressed genes in xenograft or tissue culture samplesFigure 5
Heat-map plot of differential expressed genes in xenograft or tissue culture samples. Heat-map plot showing the 
genes selected as differentially expressed between the tissue culture and xenograft samples. The samples are displayed verti-
cally, genes are displayed horizontally. Yellow indicates high expression while blue indicates low expression, relative to the 
median expression for each gene across all samples
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or levels, or that other tumor lines may show changes as
the size increases. But since the phenomenon was inde-
pendently observed in two tumor lines it suggests it may
be common to many other lines. The results also imply
that tumors harvested within this size range without drug
treatment should be very comparable. It remains possible
that selective isolation and analysis of tumor regions or
subpopulations by microdissection may identify expres-
sion differences.

By comparing the same tumor line grown in different
mouse strains we identified 63 genes with a significant
change in gene expression with biological functions rang-
ing from cellular signaling, RNA processing and transla-
tion. Although different genes were differentially
expressed in different mouse strains, particular gene func-
tions did not associate with one strain. Therefore, the bio-
logical significance of these changes remains unclear. It
should be noted that although the changes were statisti-
cally significant, in general the magnitude of the change
was small. Only 12% of the significant genes displayed a
change greater or equal to 2-fold. This raises the question
of whether statistical significance equates to biological
significance and how relevant thresholds can be deter-
mined for analyzing expression profiling data.

In the second part of the study we compared the gene
expression patterns of tumor lines grown as xenografts
with the same lines grown in tissue culture. We found that
each xenograft – tissue culture pair was more similar to
one another than any other line. This has been previously
observed with RNA expression profiling of small cell lung
cancer lines grown as both xenografts and tissue culture
[3]. In our data, the one exception to this clustering
pattern, ZR-75-1, exhibited aberrant growth
characteristics; it had a rapid doubling time (2–3 days)

and was not estrogen dependent as has been reported
[26,27].

There was a gene expression pattern consistent with
growth either in a xenograft or tissue culture environment,
but remarkably it consisted of only a small number of
genes. We identified 36 genes with high relative expres-
sion in xenograft samples and 17 genes with high relative
expression in tissue culture samples. Their biological func-
tions were consistent with the differences between a tissue
culture sample and a xenograft sample. Genes expressed at
increased levels in tissue culture samples were primarily
involved in cell division, cell cycle, transcription and
translation and were consistent with a greater percentage
of cycling cells in the tissue culture samples, which we
have previously observed with flow cytometry (data not
shown). Many of the genes expressed in xenograft samples
encoded for proteins involved in extracellular matrix, cell
adhesion, cell surface receptors transcription and transla-
tion and suggest increased interactions with an in vivo
stromal environment, including the development of a 3-
dimensional matrix.

There are several reports in the literature of tumor line
expression profiling studies demonstrating that lines
derived from a common tissue of origin group together in
most cases [1,4,5]. We observed that most of the breast
tumor lines clustered together but the other lines gener-
ally did not show clustering patterns based upon tissue of
origin. However, our study evaluated fewer samples and
consisted predominantly of breast cancer tumor lines with
only two representatives of non-small cell lung cancer and
colon cancer.

Since each tumor line was substantially different to every
other line tesed it suggests that it would be possible to
identify a group of genes that could be used to distinguish

Table 4: Number of genes with fold change values greater than or equal to 2 with tissue culture sample as the baseline

Tumor line Number of genes with ≥2 fold 
increase

Number of genes with ≥2 fold 
decrease

Total with ≥2 fold change

A431 542 650 1192
Colo205 447 328 775
H125 335 304 639
HCT-116 351 393 744
MDA-MB-231 489 381 870
MDA-MB-435 404 519 923
MDA-MB-468 381 204 585
ZR-75-1 889 1218 2107
Median 425.5 387 822.5
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individual lines. Also, it has been our experience that it is
possible to identify aberrant samples resulting from labe-
ling error by expression profiling that were missed by
other methods. What is less clear is whether genetic drift
causes changes in RNA expression that can be identified
using RNA profiling technology. Recently a report has
been published showing that MCF-7 sublines were sub-
stantially different to each other both at the genetic and
RNA expression levels [28] suggesting that variation
within individual lines can be identified. Given this, it
seems reasonable that RNA expression profiling could be
used as a comprehensive methodology for identifying
aberrant or incorrectly labeled samples. This would

provide an additional quality control tool to standardize
tumor models and the in vivo testing of therapeutic agents.

Conclusions
Our data suggest that the environment a tumor line is
grown in can have a significant effect on gene expression
even though tumor size has little or no effect for a subcu-
taneously grown solid tumor. Furthermore, an individual
tumor line has an RNA expression pattern that clearly
defines it from other lines even when grown in different
environments such as tissue culture or in vivo. Routine
RNA expression profiling of a selected set of genes could
be used as a quality control tool for preclinical oncology

Table 5: Genes with high expression in xenograft samples

Function Affymetrix 
Probe Set ID

Gene 
Symbol

LocusLink 
ID

Sequence Probe Set 
Derived From

Gene Title

Extracellular Matrix/Cell Adhesion
31574_i_at M14087 Beta-galactoside-binding lectin, mRNA sequence
31810_g_at CNTN1 1272 Z21488 contactin 1
32305_at COL1A2 1278 J03464 collagen, type I, alpha 2
32701_at ARVCF 421 U51269 armadillo repeat gene deletes in velocardiofacial syndrome
36298_at PRPH 5630 L14565 peripherin
38181_at MMP11 4320 X57766 matrix metalloproteinase 11 (stromelysin 3)
38570_at HLA-DOB 3112 X03066 major histocompatibility complex, class II, DO beta
38614_s_at OGT 8473 U77413 O-linked N-acetylglucosamine (GlcNAc) transferase

Cell surface receptor
33950_g_at CRHR2 1395 AF011406 corticotropin releasing hormone receptor 2
35485_at GRM4 2914 X80818 glutamate receptor, metabotropic 4
35503_at HTR1B 3351 M81590 5-hydroxytryptamine (serotonin) receptor 1B
36277_at CD3E 916 M23323 CD3E antigen, epsilon polypeptide (TiT3 complex)
41190_at TNFRSF25 8718 U83598 tumor necrosis factor receptor superfamily, member 25

Tanscription/transcription factor
34786_at JMJD1 55818 AB018285 zinc finger protein
36944_f_at PLAGL1 5325 U72621 pleiomorphic adenoma gene-like 1
37491_at TAF1 6872 D90359 TAF1 RNA polymerase II, TATA box binding protein-associated factor
38216_at TRIP8 9323 L40411 thyroid hormone receptor interactor 8

Intracellular transport
32228_at AP2A2 161 AB020706 adaptor-related protein complex 2, alpha 2 subunit
33779_at VAMP1 6843 AF060538 vesicle-associated membrane protein 1 (synaptobrevin 1)

Translation/RNA binding/RNA splicing
1556_at RBM5 10181 U23946 RNA binding motif protein 5
31896_at NAG 51594 AL050281 neuroblastoma-amplified protein

Unknown or other functions
1155_at J03069
1529_at 13CDNA73 10129 U50534 hypothetical protein CG003
31525_s_at J00153
31652_at KIAA1000 22989 AB023217 KIAA1000 protein
32355_at DKFZP564

D166
26115 AL050270 putative ankyrin-repeat containing protein

36811_at U24389
37979_at YAP1 10413 X80507 Yes-associated protein 1, 65 kDa
39499_s_at PARD3 56288 W25794 par-3 partitioning defective 3 homolog
40928_at WSB1 26118 W26496 SOCS box-containing WD protein SWiP-1
41113_at KIAA0557 26048 AI871396 KIAA0557 protein
41328_s_at EML2 24139 AL096717 echinoderm microtubule associated protein like 2
40856_at SERPINF1 5176 U29953 serine (or cysteine) proteinase inhibitor, clade F, member 1
32833_at CLK1 1195 M59287 CDC-like kinase 1
39451_i_at IDS 3423 AF050145 iduronate 2-sulfatase (Hunter syndrome)
36386_at PDK1 5163 L42450 pyruvate dehydrogenase kinase, isoenzyme 1
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studies and would allow the standardization of tumor
models used worldwide.
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