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Abstract
Background: Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an
alternative approach to treating solid tumors. Ideally, this would confer long-term protection
against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the
ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive
transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7
thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic
failures were not clear.

Methods: OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor
challenge. At this time, the donor cells had the phenotypical and functional characteristics of
memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were
analyzed to evaluate the reason(s) for therapeutic failure.

Results: Dose-response studies demonstrated that the degree of tumor protection was directly
proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL,
therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo,
rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high
numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I
CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable
level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of
E.G7 that expressed a lower level of tumor antigen.

Conclusions: Memory engraftment with tumor-specific CTL provides long-term protection
against tumor. However, there are several limitations to this immunotherapeutic strategy,
especially when targeting a single antigen. This study illustrates the importance of administering
large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also
demonstrates the importance of targeting several antigens when developing vaccine strategies for
cancer.
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Background
Cytotoxic T lymphocytes (CTL) represent attractive immu-
notherapeutic effectors for cancer, as they are specific and
potent killers of all cells that bear the target antigen in the
context of a class I MHC molecule [1–4]. However, like
other immunological strategies, they infrequently effect
cure of established tumors. Rather, tumor-specific CTL are
most likely to succeed in the presence of minimal disease,
where the primed immune effectors keep the disease at
bay or eliminate residual malignant foci. To utilize CTL in
this way, they must survive for long periods after adoptive
transfer as memory cells, ready to mount a response at the
earliest sign of recurrence.

Recently, we described a mouse model in which tumor-
specific CTL generated in vitro persisted long after adoptive
transfer into syngeneic mice, with the phenotypic and
functional characteristics of memory cells [5]. In this
model, we utilized CD8+ T cells originating from OT-I T
cell receptor (TCR) transgenic mice that recognize ovalbu-
min (OVA) in the context of class I MHC molecules.
While adoptive transfer of OT-I CD8+ T cells conferred
long-term protection against the OVA-expressing E.G7
thymoma, complete protection was not observed. The rea-
sons for the limited therapeutic efficacy of adoptive
immunotherapy targeting a single model tumor antigen
were explored.

Methods
Animals
OT-I TCR transgenic mice [6] were maintained by breed-
ing heterozygous OT-I TCR transgenic mice to wild-type
C57BL/6J mice. The progeny were screened by PCR for the
expression of the TCR transgene. All recipient mice were
C57BL/6J mice aged 6 – 9 weeks, purchased from Jackson
laboratories (Bar Harbor, ME). Mice were treated in
accordance with the guidelines established by the Univer-
sity of Miami Animal Care and Use Committee.

Cell Lines
EL-4, a thymoma that was derived from the C57BL/6
mouse (H-2b), was obtained from the American Type Cul-
ture Collection (ATCC; Rockville, MD). E.G7 cells are EL-
4 cells transfected with OVA cDNA [7], and these were a
gift from Dr. M. Bevan (University of Washington, Seattle,
WA). These cell lines were maintained in complete
medium (CM), consisting of RPMI 1640 containing 5%
FCS, glutamine (30 µg/mL), penicillin (100 U/mL), strep-
tomycin (100 µg/mL), and β-mercaptoethanol (5 × 10-5

M).

Antibodies and other reagents
OVA257–264 peptide (SIINFEKL) [6] was synthesized by
Research Genetics (Huntsville, AL). Directly conjugated
monoclonal antibodies included Cychrom-anti-CD8α,

PE-conjugated anti-Vα2-TCR, FITC-Vβ5.1,5.2-TCR
(Pharmingen, San Diego, CA), FITC-anti-CD8α (53.6.7).
Antibodies for ELISA for measurement of ovalbumin con-
sisted of anti-chicken albumin and horseradish peroxi-
dase-labeled anti-chicken albumin (Rockland,
Gilbertsville, PA).

Adoptive immunotherapy model
OT-I CTL were generated by stimulation with 1 nM OVA
peptide (OVA257–264), IL-2 (50 U/mL) and IL-4 (175 U/
mL), as previously described [5]. On the fifth day of cul-
ture, OT-I CTL were injected via tail vein in a volume of
0.5 mL HBSS, into normal C57BL/6J mice. Tumor cells
(E.G7 or EL-4, 1 × 106 in 0.2 mL HBSS) were injected sub-
cutaneously in the lower abdomen 21 – 28 days after
adoptive transfer of OT-I CTL. The tumor cells were freshly
thawed within 6 days of inoculation.

Phenotypical and Functional Analyses
Cell surface phenotypes were determined by flow cytom-
etry, on a FACScan flow cytometer (Becton-Dickinson,
San Jose, CA). CTL activity was measured with a 5-h 51Cr-
release assay, using E.G7 and EL-4 cells as targets. T cell
proliferation was assessed by thymidine uptake assay. The
methods for each of these analyses has been previously
described [5].

Results
Adoptively transferred OT-I CTL protect against 
inoculation with ovalbumin-expressing tumor
On the day of adoptive transfer, OT-I splenocyte cultures
typically consisted of greater than 90% CD8+ cells that co-
expressed Vα2-TCR and Vβ5.1,5.2-TCR. As previously
shown, on the day of injection, the activated cells typified
effector T lymphocytes. These effector cells were potently
and specifically cytotoxic against ovalbumin-expressing
targets in vitro [5].

At 21 – 28 days after adoptive transfer, mice were chal-
lenged with an ovalbumin-expressing tumor (E.G7). Sev-
eral doses of OT-I CTL were assessed for their
antineoplastic effect. When compared to controls treated
with HBSS, a measurable delay in growth of E.G7 was seen
in recipients of as few as 0.5 × 106 OT-I CTL. Higher doses
were associated with longer disease-free intervals and, in
some cases, prevention of tumor appearance (Figure 1).
This protection was specific to ovalbumin-expressing
tumors, as adoptive transfer of OT-I CTL did not have an
appreciable effect on the growth of the parental cell line,
EL-4 (data not shown; ref. [5]).

Analysis of therapeutic failures
Potential reasons for failure of protection from tumor fol-
lowing adoptive transfer include insufficient effector-to-
target ratio, anergy, or inability of effector T cells to
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recognize tumor as it progresses. To analyze treatment
failures, mice were sacrificed at 21 – 28 days for baseline
analysis of the function of persistent T cells, or within two
days of developing a tumor measuring 7.0 mm in maxi-
mal diameter.

OT-I CTL persisting in the spleen and lymph nodes of
mice were enumerated by determination of the fraction of
cells that were "triple-stain positive" for CD8, Vα2, and
Vβ5. At 21 – 28 days, the mean number of "triple-stain
positive" cells in control mice treated with HBSS was (0.4
± 0.2) × 106. As expected, the number of "triple-stain pos-
itive" cells detectable in the spleen and lymph nodes was
proportional to the number of OT-I CD8+ cells adminis-
tered (Figure 2). Therefore, it is possible that insufficient
numbers of effectors present at the time of tumor chal-

lenge may have been a contributing factor in mice treated
with lower doses of CTL. It was also possible that individ-
ual recipients which developed tumor had lower numbers
of surviving cells than average. However, when the num-
bers of donor cells recovered prior to tumor inoculation
were compared to the numbers recovered at the time of
therapeutic failure, there was no evidence that the individ-
uals which developed tumor sustained a significant loss or
had a deficiency of donor cells (Figure 2). Therefore, poor
viability and loss of tumor-specific effectors in the course
of time or in response to tumor inoculation did not
appear to be a problem, although insufficient effectors
may have been a contributing factor in mice treated with
lower doses of CTL.

Tumor-free survival of mice which received infusions of various numbers of OT-I CTL and which were challenged with E.G7 tumor cells (1 × 106, sc)Figure 1
Tumor-free survival of mice which received infusions of various numbers of OT-I CTL and which were challenged with E.G7 
tumor cells (1 × 106, sc). Numbers of OT-I CTL that were adoptively transferred are expressed in millions (M). Data are from 
8 – 10 mice per group.
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The capacity of the OT-I CD8+ cells present in the spleen
and lymph nodes to recognize and to respond to tumor
antigen was examined in all therapeutic failures. We pre-
viously demonstrated that, at 21 – 28 days (ie: prior to
tumor inoculation), a vigorous proliferative response is
typically seen in vitro following re-exposure to OVA pep-
tide. Moreover, the persistent donor cells respond more
quickly and more intensely to lower levels of antigen than
naïve T cells [5]. These functional characteristics are typi-
cal for memory T cells [8–10]. To determine whether
donor cells from mice which developed tumor after adop-
tive transfer of CTL retained their ability to respond to
antigen, splenocytes were similarly re-stimulated with
ovalbumin. The magnitude of the response was propor-
tional to the number of OT-I CTL administered (Figure 3).

Therefore, while it is possible that individual cells were
rendered anergic, generalized clonal anergy was not
responsible for therapeutic failures.

Inability of CTL effectors to recognize individual tumor
cells was another possible mechanism for therapeutic fail-
ure. Tumors removed from mice treated by various num-
bers of CTL were tested for their ability to act as targets to
freshly generated OT-I CTL. Tumors originating from ani-
mals treated with 0.5 million CTL or with HBSS alone
remained targets to the OVA-specific CTL. In contrast,
tumors originating from animals treated with 2 or 10 mil-
lion CTL were not lysed by the freshly generated CTL effec-
tors, suggesting that they were no longer targets (Figure 4).

Number of persistent donor cells recovered from spleen and 4 lymph nodes, as measured prior to tumor challenge (ie: Day 21 – 28) and at the time of therapeutic failureFigure 2
Number of persistent donor cells recovered from spleen and 
4 lymph nodes, as measured prior to tumor challenge (ie: 
Day 21 – 28) and at the time of therapeutic failure. Donor 
cells were identified by staining for CD8, Vα2-TCR and 
Vβ5.1,5.2-TCR. These data are the aggregate of 2 – 3 individ-
ual experiments per group.

0

1

2

3

4

5

6

7

0 0.5 2 10

Pre-Inoculation

After Tumour Appearance

0 0.5 2 10

# 
o

f 
C

el
ls

 R
ec

o
ve

re
d

 (
x 

10
6 )

# of OT-I Cells 
Administered (x 106)

Proliferative response of donor cells as determined by 3H-thymidine uptake assayFigure 3
Proliferative response of donor cells as determined by 3H-
thymidine uptake assay. Splenocytes from recipients of OT-I 
CTL were harvested after therapeutic failure and pulsed with 
ovalbumin peptide (5 nM). These data are the aggregate of 2 
– 3 individual experiments per group.
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To determine whether the degree of antigen expression
was responsible for this finding, cells derived from tumors
of OT-I CTL recipients were tested for ovalbumin secre-
tion. Tumor cells derived from treatment failures were cul-
tured in standardized conditions and the media were
tested for ovalbumin content. Tumors from mice treated
with 2 or 10 millions effectors, which were poor targets by
cytotoxicity assay, did not produce sufficient ovalbumin
to be detectable by ELISA (sensitivity 50 pg/mL) (Figure
5). To evaluate whether this was due to selection of OVA
loss variants originating from the E.G7 cells used to inoc-
ulate the CTL recipients, E.G7 cells were cloned to deter-
mine what proportion secreted ovalbumin. 96 of 113
clones (85%) secreted sufficient ovalbumin to be detecta-
ble by ELISA. Thus, failed immunotherapy likely reflected

the outgrowth of those E.G7 that did not obviously
express OVA at the time of tumor inoculation.

Several clones shown to secrete detectable amounts of
ovalbumin were expanded. One of these clones was tested
in an in vitro cytotoxicity assay using freshly generated OT-
I CTL, and it served as an excellent target (Figure 4). More-
over, recipients of 10 × 106 OT-I CTL were challenged with
this E.G7 clone. When these freshly cloned tumor cells
were utilized as the target, the therapeutic outcome was
markedly better compared to mice treated with the old
E.G7 cells. Only one mouse in 6 developed tumor and this
tumor did not appear until 21 days after tumor inocula-
tion (data not shown). Moreover, OT-I CD8+ T cells
primed under various conditions were tested over several
experiments; cure rates were generally better when the

Analysis of tumors extracted from mice which failed to reject a tumor challenge after adoptive transfer of various numbers of OT-I CTLFigure 4
Analysis of tumors extracted from mice which failed to reject a tumor challenge after adoptive transfer of various numbers of 
OT-I CTL. Cytotoxicity of freshly generated OT-I CTL against E.G7 tumor derived from individual therapeutic failures. Data 
are expressed as % cytotoxicity at an effector-to-target ratio of 100:1. Each symbol represents an individual.
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freshly cloned E.G7 was utilized to inoculate recipients
[5].

Altogether, the data suggest that one mechanism of thera-
peutic failure, typically seen in animals treated with
higher numbers of OVA-specific CTL, is selection of tumor
cells that produced insufficient amounts of antigen to be
recognized by effectors. This mechanism of therapeutic
failure did not appear to be responsible for the earlier
tumor growth seen in animals treated with low numbers
of CTL. Rather, it is more likely that insufficient effector-
to-target ratios were responsible for therapeutic failures in
these animals.

Discussion
Since a large tumor burden is a potential obstacle to suc-
cessful immunotherapy, it is likely that the role of immu-
notherapy will be most pronounced in the presence of
minimal disease. Clinically, this strategy might then be
best applied as adjuvant therapy following resection or
after cytoreductive chemotherapy. Therefore, cellular
immunotherapy must be designed to respond to recur-
rence or progression of minimal disease over a long
period of time. This would require engraftment of immu-
nologic memory. While our model does not perfectly
reflect the clinical situation of minimal residual disease, it
does enable the assessment of how effectively tumor-spe-
cific T cell memory engraftment prevents tumor emer-
gence. T cells administered well before tumor challenge
persisted long after adoptive transfer and they responded

Ovalbumin secretion by E.G7 tumor cells derived from mice which developed tumor after adoptive immunotherapyFigure 5
Ovalbumin secretion by E.G7 tumor cells derived from mice which developed tumor after adoptive immunotherapy. Tumor 
cells (1 × 106) from each individual were cultured in duplicates and supernatants were collected at 24 hours for ELISA determi-
nation of ovalbumin content. Data are derived from 2 – 3 mice per group.
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readily to re-stimulation by antigen. Moreover, their in
vivo activity was demonstrable by their ability to provide
long-term protection against tumor expressing the target
antigen, in a dose-dependent manner. Unfortunately,
even in what appeared to be an idealized experimental sit-
uation, responses were incomplete and nondurable. This
was secondary to a very powerful selective influence, cul-
minating in the emergence of antigen-loss variants.

According to the immune surveillance theory, cancer
arises when the immune system is unable to recognize
individual cancer cells, enabling them to escape detection.
While this postulate does not completely explain the
pathogenesis of cancer, escape from the immune system is
an important factor. Indeed, tumor cells escape by a
number of mechanisms. Peripheral tolerance to tumor
antigens may exist [11,12]. Immune precursors may be
ignorant of tumor because of malpresentation [4], MHC
downregulation [13,14] or insufficient antigen expression
[15,16]. As tumor evolves, the immune system sequen-
tially and consecutively eliminates cells expressing certain
antigens in order of degree of immunodominance [16–
19], diminishing tumor immunogenicity. MHC downreg-
ulation appears to be particularly detrimental to the anti-
tumor immune response, as this results in permanent
escape from immune detection [16].

Even when tumor cells are recognized by effectors, a
number of processes may interfere with their clearance.
For example, insufficient costimulation or other mecha-
nisms may lead to anergy [20] or blunted responsiveness
of tumor-specific effectors [21,22]. Induction of apoptosis
of potentially hostile lymphocytes by tumor has also been
described [23–25]. Thus, in addition to escape from detec-
tion by the immune system, tumor may directly influence
immune effector function.

Some of the mechanisms that enable escape from the
immune system in its natural state may also be responsi-
ble for treatment failures following immunotherapy. In
the idealized experimental system described in the present
work, therapeutic failures predictably occurred when
effector-to-target ratios were insufficient in vivo. This prob-
lem was easily overcome by administration of greater
numbers of activated CTL. However, in the clinical situa-
tion, where CTL are generated in non-transgenic individu-
als, generation of such high numbers of CTL may be
problematic. When vaccination strategies are employed
(using modified tumor cells or dendritic cells, for
example), generating sufficient numbers of CTL may be
particularly difficult, even following booster vaccinations.
It will therefore be imperative to get a better understand-
ing of the factors that improve survival of tumor-specific
CTL and enhance differentiation to memory cells.

A second important limitation of adoptive immuno-
therapy that became apparent in the presence of higher
effector-to-target ratios was selection for antigen loss vari-
ants. It may be argued that the model described in the
present paper is not truly reflective of the situation seen
with a normal cancer cell. That is, the E.G7 cell has been
transfected with a foreign gene that has inherent instabil-
ity and this may be responsible for the antigen loss. On
the other hand, data from others have shown that, in gen-
eral, cancer cells are typically genetically unstable. As seen
in the adenoma-colorectal cancer sequence, by the time of
clinical manifestation, many tumors have accumulated
thousands of mutations [26–28]. As a result, antigen
expression would be expected to be heterogeneous in any
given tumor. Therefore, in the model presented (where
85% of input cells expressed the target antigen), the heter-
ogeneity of tumor cells is probably considerably less than
what might be expected in the real situation, emphasizing
the magnitude of the problem of emergence of antigen
loss variants.

Targeting a single antigen is not likely to succeed unless
that antigen is necessary for the function and survival of
the cancer cell. This situation is rare, although one exam-
ple is BCR-ABL, a constitutively activated tyrosine kinase
that causes chronic myeloid leukemia (CML). Targeting
such a protein, albeit pharmacologically, has met with
therapeutic success [29]. In the absence of an appropriate
pharmacological agent, targeting such an antigen immu-
nologically would be expected to be successful. Unfortu-
nately, few such targets have so far been identified and so
other strategies are required to overcome the problem of
emergence of antigen loss variants. Undoubtedly, target-
ing multiple antigens will ameliorate part of the problem
[30–32], although the probability of success with this
approach has not yet been quantified. Another potential
solution is the concomitant utilization of approaches with
more bystander effect. For example, MHC non-restricted
effectors such as NK or LAK cells may be helpful [33,34],
particularly in tumors where loss of MHC expression has
occurred. Alternatively, biological response modifiers or
cytotoxic agents could be administered concomitantly.
The problem of emergence of antigen loss variants is
therefore not insurmountable.

Conclusions
We have demonstrated two obstacles to success with
tumor-specific CD8+ memory T cell engraftment. Firstly,
sufficient persistence of functional tumor-specific CTL
over long periods will prove a potential problem in non-
transgenic individuals and when vaccination strategies are
utilized. Secondly, targeting a single antigen by cellular
immunotherapy is not likely to be successful because of
selective emergence of antigen loss variants. While we are
certainly not the first to describe antigen loss variants
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[15,35,36,16,37], this study is important in that it demon-
strates unequivocally the magnitude of the problem, even
in an idealized experimental system, in the presence of
minimal disease burden. This is especially topical given
the number of vaccines in development and in clinical tri-
als that are reliant on a single antigen expressed by a given
tumor. Clearly, targeting multiple antigens is essential to
success. Moreover, treatment with multiple therapeutic
modalities may prove to be best.
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