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Paclitaxel-induced neuropathy: potential
association of MAPT and GSK3B genotypes
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Abstract

Background: Paclitaxel treatment produces dose-limiting peripheral neurotoxicity, which adversely affects treatment
and long-term outcomes. In the present study, the contribution of genetic polymorphisms to paclitaxel-induced
neurotoxicity were assessed in 21 patients, focusing on polymorphisms involved in the tau-microtubule pathway,
an important target of paclitaxel involved in neurotoxicity development.

Methods: Polymorphisms in the microtubule-associated protein tau (MAPT) gene (haplotype 1 and rs242557
polymorphism) and the glycogen synthase kinase-3β (GSK3β) gene (rs6438552 polymorphism) were investigated.
Neurotoxicity was assessed using neuropathy grading scales, neurophysiological studies and patient
questionnaires.

Results: A significant relationship between the GSK-3B rs6438552 polymorphism and paclitaxel-induced neurotoxicity
was evident.

Conclusions: Polymorphisms in tau-associated genes may contribute to the development of paclitaxel-induced
neurotoxicity, although larger series will be necessary to confirm these findings.
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Background
The major cytotoxic target of paclitaxel is the micro-
tubule system, which provides stability for cellular shape,
signaling and mitosis. Paclitaxel binds to the microtubule
component β-tubulin, interfering with microtubule dy-
namics and leading to microtubule stabilization, mitotic
arrest and ultimately apoptosis in chemo-sensitive cancer
cells [1].
Microtubules are also critical for axonal function and

provide the major transport route for essential organelles
to distal nerve endings [2]. Disruption of axonal transport
may interrupt energy mechanisms, leading to axonal de-
generation and neuropathy. Paclitaxel causes neuropathy
as a prominent dose-limiting side effect [3] and induces
microtubule aggregation in the peripheral nervous system
[4] and interruptions in anterograde axonal transport [5],
suggesting that microtubule dysfunction may be import-
ant in the development of neuropathy.
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The microtubule-associated protein tau gene (MAPT) en-
codes the protein Tau, involved in tubulin assembly and
polymerization [6]. MAPT has two major haplotypes, H1
and H2, which affect Tau splicing and expression [7]. The
H1 haplotype is associated with increased MAPT transcrip-
tion and tau expression [6,8]. MAPT expression is also a
marker of paclitaxel resistance, with low expression linked
to improved treatment response [9]. Tau is phosphorylated
by glycogen synthase kinase-3β (GSK3β), a signaling pro-
tein [10], which has also been linked to paclitaxel chemore-
sistance [11]. In addition, tau concentration may influence
paclitaxel binding affinity to microtubules [12] and pacli-
taxel and tau may compete for the same β-tubulin binding
sites [13].
Given the putative role of microtubule dysfunction in

neurotoxicity, we investigated effects of genetic variation
in MAPT and GSK3B on neurotoxicity in paclitaxel-
treated patients.
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Table 1 Clinical details

Clinical variables

Age (mean ± sem; years) 51.4 ± 2.1

Range (years) 33 – 68

% Female 95.2%

Cumulative paclitaxel dose (mg/m2) 965.5 ± 80

Range (mg/m2) 420 - 2230

Estrogen and/progesterone receptor positive 80%

HER-2/neu positive 40%

Cancer type – breast cancer 95.2%

Cancer stage

I - IIB 47.6%

IIIA - IIIB 47.6%

IV 4.8%
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Methods
Study design and patients
Paclitaxel-treated patients were referred by the Department
of Medical Oncology, Prince of Wales Hospital. The study
was approved by the South Eastern Sydney Area Health
Service and University of New South Wales Human
Research Ethics Committee. Participants provided written
informed consent. Patients were excluded if there was
another potential cause for neuropathy such as diabetes,
or evidence of neuropathy (based on clinical examin-
ation or neurophysiological study) prior to chemotherapy
treatment.

Neurological assessment
Patients were assessed using the National Cancer Institute
Common Toxicity Criteria for Adverse Events–neurosensory
subscale (NCI). 18 patients underwent more special-
ized clinical neurological assessment, using the Total
Neuropathy Scale-clinical version (TNSc) [14] and encom-
passing symptoms, pinprick and vibration sensibility,
strength and deep tendon reflexes (total score 0–28).
Patient neurotoxicity questionnaires (EORTC-CIPN20)
were undertaken. Nerve conduction studies were under-
taken to assess compound sensory action potential (CSAP)
amplitude of the sural and median nerves. Stimulus–
response curves were recorded from the sensory median
nerve at the second digit and the current required to pro-
duce a CSAP of 90% maximal amplitude (i90) was deter-
mined using the QTracS stimulus delivery program
(Institute of Neurology, UCL). i90 at the 4th week of pacli-
taxel treatment has been identified as predictive of neuro-
logical outcome [15].

Genotype analysis
Lymphocyte-derived patient DNA samples were geno-
typed for MAPT Haplotype (H1 Haplotype), the single
nucleotide polymorphism rs242557 in MAPT, and the
single nucleotide polymorphism rs6438552 in GSK3B.
Genotypes were coded in three strata- e.g. CC, TC and
TT GSK3β rs6438552 genotypes were coded as 0, 1 and
2 respectively.

Statistical analysis
Maximum NCI score, final sural nerve conduction amp-
litude and i90 amplitude at week 4 were selected as
markers of neurotoxicity. Linear regression was utilised
for continuous variables and Fisher’s exact test for cat-
egorical variables. The effects of polymorphisms on sural
amplitude and i90 were examined by linear regression,
with paclitaxel dose as an a priori predictor variable. The
effects of polymorphisms on maximal NCI score was ex-
amined by Fisher’s exact tests. Wilcoxon signed-ranks test
was used to compare baseline and final/week4 results for
sural and i90 respectively. The two-sided significance level
was P ≤ 0.05. As an exploratory analysis, no corrections
were done for multiple statistical testing, which should be
considered when interpreting the results. All analyses
were performed using SPSS (version 21, IBM, NY USA).

Results
Clinical details
Clinical details of the 21 paclitaxel-treated patients re-
cruited for the pilot study are shown in Table 1. The ma-
jority of patients had breast cancer (95.2%; Stages 1–3A)
and received four cycles of doxorubicin 60 mg/m2 and
cyclophosphamide 600 mg/m2 followed by paclitaxel
80 mg/m2 weekly for 12 weeks (N = 16). The remaining
patients received paclitaxel at 2 or 3 weekly intervals. 76%
of patients completed paclitaxel treatment as intended,
14% ceased prematurely due to neurotoxicity, 5% due to
disease progression and 5% due to other toxicity.

Neuropathy assessment
Overall, 76% of patients experienced neuropathic symp-
toms at any stage, with 56% having a maximum grade of
mild (NCI grade 1), 31% moderate (NCI grade 2) and
13% severe (NCI grade 3). Patients underwent clinical
and neurophysiological testing at a median of 90 days
(range 22 – 378 days) following completion of treat-
ment. Of these, 67% had reduced or absent ankle reflex,
44% had deficits in vibration sense and 28% in pinprick
sensibility. Overall, the total neuropathy score was 0–1
in 39%, 2–4 in 50% and greater than 5 in 11%.
43% of patients reported persisting tingling and numb-

ness in the hands and 48% reported persisting symptoms
in the feet. 24% of patients reported continuing func-
tional problems with fine motor or walking skills. EORTC
CIPN20 questionnaire score was significantly correlated
to the maximal NCI grade (correlation coefficient = 0.769;
P ≤ .005). Sural amplitude was significantly decreased from
baseline pre-treatment to completion of treatment (pre
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20.4 ± 2.5 μV; post 14.9 ± 2.3 μV; P ≤ 0.05). i90 was signifi-
cantly increased by the 4th week of treatment (N = 15; pre
4.56 ± 0.29 mA; week 4 5.54 ± 0.52 mA, P ≤ .01), as in pre-
vious studies [15].

Polymorphism analysis
The proportion of GSK3B rs6438552 genotypes was sig-
nificantly different between patients with no or mild
neurotoxicity (Grade 0/1) and those with moderate/se-
vere neurotoxicity (>Grade 2; Fisher’s exact test = 6.411;
P ≤ .05), with the T/T genotype associated with reduced
neurotoxicity severity (Table 2). However, there were no
differences in MAPT haplotype or MAPT polymorphism
rs242557 compared to neurotoxicity grade (Fisher’s exact
test = 0.863; NS; Fisher’s exact test = 2.984; NS). Further,
patients with the C/C genotype of the GSK3β rs6438552
polymorphism demonstrated an odds ratio of 2 with a
95% CI of .899 to 4.452 with respect to the development
of moderate/severe neurotoxicity (P ≤ .05). Accordingly,
patients with the T/T polymorphic GSK3B alleles did not
demonstrate neurotoxicity greater than Grade 1, while pa-
tients with the C/C genotype developed only moderate or
severe (Grade 2/3) neurotoxicity. Linear regression ana-
lysis between polymorphisms and sural amplitude or i90
week 4, with a priori covariate cumulative paclitaxel dose,
was not significant for either GSK3B rs6438552, MAPT
rs242557 or MAPT haplotype.

Discussion
The present study examined the potential effects ofMAPT
haplotype, expression levels, and GSK-3β mediated tau
phosphorylation on the development of paclitaxel-induced
neuropathy in vivo. Clinical, neurophysiological and gen-
omic approaches, combined with patient questionnaires
identified that GSK3B polymorphisms may influence the
severity of paclitaxel-induced neurotoxicity, with the C/C
Table 2 Analysis of polymorphism status and maximum
neurotoxicity grade

Genotype (N = 21) NCI grade 0/1 NCI grade 2/3

MAPT haplotype

11 67% 67%

12 25% 33%

22 8% 0%

MAPT rs24255

11 42% 17%

12 42% 33%

22 16% 50%

GSK3B rs6438552

CC 0% 50%

TC 75% 50%

TT 25% 0
genotype of the rs6438552 polymorphism associated with
greater severity of neurotoxicity. In contrast, there were
no identified effects of MAPT haplotype or the rs242557
polymorphism on neurotoxicity.
A number of genetic polymorphisms have been previ-

ously examined with regards to paclitaxel-induced neuro-
toxicity, including in drug detoxification pathways [16]
and DNA repair mechanisms [17]. The most commonly
associated candidate polymorphisms have been in the
genes ABCB1 and CYP2C8, associated with the drug me-
tabolism and transport pathways [16,18-20]. Further, a
two-fold increase in severe neurotoxicity with paclitaxel
treatment has been identified in patients with polymor-
phisms in FANCD2, associated with defective DNA repair
in the FA/BRCA pathway [17]. Genome-wide association
studies in paclitaxel-treated patients have identified some
additional associations, but these remain to be confirmed
[18,21,22]. Such approaches have indicated that polymor-
phisms in ephrin type A receptors involved in neural
injury and repair may be associated with risk of paclitaxel-
induced neurotoxicity [23]. However, genetic contribu-
tions to paclitaxel-induced neurotoxicity seem likely to
be polygenic, with different genes producing multiplier
effects on overall neurotoxicity risk [21,24]. A suite of 4
polymorphisms associated with drug receptors, transcrip-
tion, apoptosis, and pain perception lead to a cumulative
increased neurotoxicity risk of 62% [24].
A recent study of 1303 patients investigated polymor-

phisms in 50 genes to address this variability, identifying
that polymorphisms in the P-glycoprotein transporter
gene ABCB1 and β-tubulin gene TUBB2A were the most
significantly associated with paclitaxel-induced neurotox-
icity, suggesting the role of the tubulin pathway in the
pathogenesis of paclitaxel-induced neuropathy [18]. Fur-
ther, TUBB2A polymorphisms were identified in a prior
study as protective against paclitaxel neurotoxicity, and
found to increase transcription [25]. Similarly, β-tubulin
isotype and tau tumour expression are associated with
clinical response to paclitaxel [9,26]. Accordingly, β-
tubulin/tau pathway may be relevant in determining
toxicity risk and response to paclitaxel treatment.
The H1 haplotype and MAPT polymorphism rs242557

increase MAPT transcription [6,27]. Further, the poly-
morphism rs6438552 in GSK3β has functional splicing
consequences, with the T allele leading to increased tran-
scription of the splice isoform lacking exons 9 and 11 [22].
The absence of these exonic sequences in GSK3B in-
creases the ability to phosphorylate tau, so there is a 3.8
fold increase in tau phosphorylation in the T/T variant
compared to the C/C isoform [28].
The present study identified that the T allele of the

GSK3B polymorphism rs6438552 may be protective against
paclitaxel-induced neurotoxicity, with no patients with the
homozygous T allele demonstrating neurotoxicity greater
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than grade 1. However, there were no identified effects of
MAPT haplotype or the polymorphism rs242557. As dis-
cussed, the GSK3B rs6438552 T/T polymorphism increases
tau phosphorylation [28], which reduces microtubule sta-
bility and the proportion of tau associated with microtu-
bules [10]. Further, GSK3β mediated phosphorylation of
MAPT may be protective against axonal damage in vivo
[29], suggesting a rationale for risk reduction. Transgenic
mice models overexpressing MAPT developed antero-
grade axonal transport deficits and axonopathy in central
axons due to excess tau which stabilised microtubules
[29]. However, these effects could be ‘rescued’ by phos-
phorylation from excess GSK3β, mediated potentially via
protection of axonal transport.
While in neurodegenerative disease GSK3β-mediated

phosphorylation of tau results in neuronal degradation
[30], in paclitaxel-induced neurotoxicity, a reduction in
microtubule stabilization may be beneficial to axonal in-
tegrity. Both tau and paclitaxel produce enhanced stability
of microtubules, interfere with axonal transport, and may
share a binding site on β –tubulin [13]. Microtubules are
dynamic structures and small changes in microtubule
organization have major impacts on function and on
axonal transport [2]. While the present study identi-
fied that polymorphisms in GSK3B may be associated
with paclitaxel-induced neurotoxicity, a limitation relates
to sample size. As such, these findings are preliminary and
require confirmation in a larger series. However, an
advantage was that objective neurophysiological data was
obtained to demonstrate neuropathy, while prior studies
utilized clinician-based scales.

Conclusions
While further studies in a larger cohort will be required to
confirm these results, polymorphisms in tau-associated
genes (GSK-3B rs6438552) may contribute to the develop-
ment of paclitaxel-induced neurotoxicity. However, it is
important that appropriate clinical, patient-focused and
objective neurophysiological outcomes are collected.
Paclitaxel-induced neurotoxicity remains a prominent
complication of treatment, resulting in early treatment
discontinuation and impacts on quality of life. The inter-
individual variability in the onset and severity of paclitaxel-
induced neurotoxicity suggests that patient-specific factors
such as genetic polymorphisms may be important in iden-
tification of at-risk patients.
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