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Abstract

Background: Pancreatic cancer is one of the deadliest human malignancies, with few therapeutic options.
Re-activation of embryonic signaling pathways is commonly in human pancreatic cancer and provided rationale to
explore inhibition of these pathways therapeutically. Notch signaling is important during pancreatic development,
and it is re-activated in pancreatic cancer. The functional role of Notch signaling during pancreatic carcinogenesis
has been previously characterized using both genetic and drug-based approaches. However, contrasting findings
were reported based on the study design. In fact, Notch signaling has been proposed to act as tumor-promoter or
tumor-suppressor. Given the availability of Notch inhibitors in the clinic, understanding how this signaling pathway

engineered mouse model of pancreatic cancer.

pathway during pancreatic carcinogenesis.

contributes to pancreatic carcinogenesis has important therapeutic implications. Here, we interrogated the role
of Notch signaling specifically in the epithelial compartment of the pancreas, in the context of a genetically

Methods: To inhibit Notch signaling in the pancreas epithelium, we crossed a mouse model of pancreatic cancer
based on pancreas-specific expression of mutant Kras with a transgenic mouse that conditionally expresses a
dominant negative form of the Mastermind-like 1 gene. MAML is an essential co-activator of the canonical Notch
signaling-mediated transcription. DNMAML encodes a truncated MAML protein that represses all canonical Notch
mediated transcription in a cell autonomous manner, independent of which Notch receptor is activated. As a
result, in mice co-expressing mutant Kras and DNMAML, Notch signaling is inhibited specifically in the epithelium
upon Cre-mediated recombination. We explored the effect of epithelial-specific DNMAML expression on Kras-driven
carcinogenesis both during normal aging and following the induction of acute pancreatitis.

Results: We find that DNMAML expression efficiently inhibits epithelial Notch signaling and delays PanIN formation.
However, over time, loss of Notch inhibition allows PanIN formation and progression.

Conclusions: Epithelial-specific Notch signaling is important for PanIN initiation. Our findings indicate that PanIN
formation can only occur upon loss of epithelial Notch inhibition, thus supporting an essential role of this signaling
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Background

Pancreatic ductal adenocarcinoma (PDA), the most com-
mon form of pancreatic cancer, is a highly aggressive ma-
lignant disease with a very poor prognosis. It is the fourth
most common cause of cancer-related mortality across
the US and other developed countries independent of
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race or sex, as the number of new cases and disease-
related deaths are roughly equal [1,2]. There is a dire
need for new therapeutic options for this disease to in-
crease the dismal 5-year survival, which is currently less
than 5%.

PDA develops through a series of non-invasive precur-
sor lesions, the most common of which are pancreatic
intraepithelial neoplasia or PanINs [3]. Oncogenic muta-
tions in KRAS are widespread in human PanINs and de-
tected in in over 90% of human PDA [3-6]. In addition,
PanIN progression is marked by aberrant activation of
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embryonic signaling pathways, like Hedgehog, Wnt, and
Notch [3-5,7-9]. Expression of oncogenic Kras in genet-
ically engineered mice recapitulates the step-wise pro-
gression of the human disease, and gives rise to one of
the most commonly used mouse models of pancreatic
cancer, the KC mouse [4].

Notch signaling induces the expansion and transform-
ation of an undifferentiated precursor population during
pancreatic cancer progression [9-13]. Extensive analysis of
human pancreatic cancer revealed activation of Notch sig-
naling both in PanINs and in PDA [4,9]. Notch has been
shown to be important for stimulating proliferation in
transformed cells [10]. A recent study used a y-secretase
inhibitor (GSI) to block Notch signaling in KPC mice [10],
resulting in reduced incidence of PanIN lesions and
decreased proliferation of PanINs. These studies and
others imply Notch signaling may regulate proliferation
of transformed acinar-ducal metaplasia (ADM) structures
and PanINs [10]. Nevertheless, GSIs could block other
functions in the cell other than Notch signaling, since y-
secretase targets other proteins in addition to Notch
components [14]. Furthermore, GSIs systemically blocks
all Notch activity independent of cell types, making it dif-
ficult to tease apart the details of Notch signaling in pan-
creatic cancer cells versus effects on the stroma [14].

Several studies have used genetic approaches to ablate
individual Notch receptors and study the effect on pan-
creatic carcinogenesis. Interestingly, these experiments
resulted in contrasting findings depending on the spe-
cific Notch receptor being targeted, with either tumor
suppressive or tumor promoting effects being observed
[10,12,13,15-17]. Thus, a study addressing complete ab-
lation of Notch signaling in the pancreatic epithelium in
KC mice was so far missing.

Here, we report the use of a dominant negative form
of MAML1 (DNMAML), a critical regulator of canonical
Notch activity, to address the requirement of Notch sig-
naling within the tumor epithelium during pancreatic
tumorigenesis [18].

Methods

Mouse strains

Animals were housed in pathogen-free conditions and
maintained in facilities of the University of Michigan
Comprehensive Cancer Center and this study was in-
cluded in our animal use protocol, approved by the
University of Michigan University Committee on Use and
Care of Animals (UCUCA). P48-Cre (Ptfla-Cre) [19]
(provided by Christopher V. Wright, Vanderbilt University,
Nashville, Tennessee, USA) and LSL-KrasS'?P [20] (pro-
vided by David Tuveson, Cambridge Research Institute,
Cambridge, United Kingdom) were crossed to generate KC
mice, as previously described [4,20]. ROSAPNMAML/+
mice [21,22] were crossed with KC mice to generate KC;
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DNMAML mice. Wild type mice and animals having a
combination of Kras allele and/or DNMAML, but not
the Cre allele were used as controls. Allele-specific PCR
on mouse tail DNA, was used to verify the presence of
each allele. DNMAML induction was monitored through
GFP expression in pancreas epithelium. 5 animals per co-
hort (=5 mice/cohort) were aged 15 and 26 weeks before
euthanasia. Tissues were collected for histopathological
analysis.

Genotyping

Tail DNA was extracted using hot sodium hydroxide
and tris (HotSHOT) DNA extraction protocol, as previ-
ously described [23]. The primers used for p48-Cre,
Kras®'P, and ROSAPNMAML Y ere as follows: p48-Cre,
5’-catgcttcatcgtcggtcc- 3’ (forward) and 5’-gatcatcagcta
caccagag-3’ (reverse); Kras®'?P, 5'-agctagccaccatgagtaa
gtctgea-3’ (forward) and 5’-cctttacaagegcegeagactgtaga-3’
(reverse); Rosa”"MAML-GEP/* 50 aaagtcgctctgagttgttat-3’
(Rosal), 5’-gcgaagagtttgtcctcaacc-3’ (Rosa2), and 5'-gga
gcgggagaaatggatatg-3’ (Rosa3). PCR cycling conditions
were as follows: p48-Cre, Kras®?", 95°C for 3 min, 95°C
for 30 s, 60°C for 30 s, and 72°C for 45 s for 34 cycles,
followed by 72°C for 5 min; Rosa®™™AML-GFP/* g5 for
3 min, 95°C for 30 s, 59°C for 30 s, and 72°C for 1 min
for 34 cycles, followed by 72°C for 5 min. Amplified
PCR products were run on 2% agarose gels with molecu-
lar weight markers. PCR products were visualized under
Alpha Innotech UV transilluminator.

Induction of acute pancreatitis

Animals were administered caerulein (Sigma-Aldrich) by
intraperitoneal injections in two series of 8 hourly at a
concentration of 75 pg/kg over a 48 hour period, as previ-
ously described [24]. Age-matched controls were injected
in parallel with experimental mice.

Immunohistochemistry and immunofluorescence

Pancreatic tissues from experimental and control mice
were dissected and fixed overnight in 10% neutral-
buffered formalin (Fisher Scientific) embedded in paraf-
fin and sectioned (4—5 pm). The University of Michigan
Cancer Center Histopathology Core performed all em-
bedding and sectioning. Paraffin-embedded tissue sec-
tions were processed using 2 x xylene for 5 min, 2 x
100% ethanol for 5 min, 2 x 95% ethanol for 2 min, and
rinsed under running deionized water for 5 min. Antigen
retrieval was performed using citrate buffer (BioGeneX)
in the microwave and cooled. Blocking of endogenous
peroxidase activity was achieved using 3% hydrogen per-
oxide for 10 min, and then sections were blocked using
5% albumin from bovine serum (BSA; Sigma-Aldrich) for
30 min. Hematoxylin/Eosin (H&E), Periodic Acid Staining
(PAS), Gomori trichrome, and immunohistochemistry
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staining was performed as previously described [5]. For
a list of antibodies used, see Additional file 1: Table S1.
Images were taken with an Olympus BX-51 microscope,
Olympus DP71 digital camera, and DP Controller software.

For immunofluorescence, secondary-antibodies labeled
with Alexa Fluor 488 (Life Technologies). Cell nuclei
were counterstained with 4;6-diamidino-2-phenylindole
(DAPL Invitrogen). The immunofluorescent images were
acquired using an Olympus IX-71 confocal microscope
and FluroView FV500/IX software.

Hes1 staining

Paraffin-embedded tissue sections were processed as de-
scribed. Hes1 antibody (a gift from Ben Stanger, University
of Pennsylvania, Philadelphia, PA, USA) at a 1:1500 dilu-
tion was amplified using Tyramide Signal Amplification
system (PerkinElmer). Alexa Fluor 5. was used to visualize
staining by immunofluorescence (Life Technologies).

Quantitative real time PCR

Tissue for RNA extraction was stabilized through over-
night incubation in RNA/ater-ICE (Ambion) at -20°C,
then isolated using RNeasy Mini Kit (QIAGEN) accord-
ing to manufacturer’s instructions. Reverse transcription
reactions were conducted using a High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems). Samples
for quantitative RT-PCR were prepared with 1x Power
SYBR Green PCR Master Mix (Applied Biosystems) and
various primers (Additional file 1: Table S2). All primers
were optimized for amplification under reaction condi-
tions as follows: 95°C for 10 min, followed by 40 cycles
of 95°C for 15 s and 60°C for 1 min. Melting curve ana-
lysis was performed for all samples after completion of the
amplification protocol. Cyclophilin and Gapdh were used
as the reference gene expression controls. HesI primers
were acquired from Applied Biosystems; Mouse Hesl
(MmO01342805_m1), Mouse Gapdh (Mm99999915_gl).
Amplification was preformed using the StepOnePlus
System (Applied Biosystems), and experiments were
performed in triplicates. The results were calculated fol-
lowing the 2AC, method using the StepOne Software
(Applied Biosystems). A two-tailed unpaired t test was
used for statistical analysis.

Histopathological analysis

The histopathological analysis was performed as previ-
ously described [25]. In brief, 5 randomly selected, non-
overlapping high-power images (20x objective) were
taken for each slide. A minimum of 50 total acinar or
ductal clusters was counted from at least three inde-
pendent animals for each group. Each cluster counted
was classified as acinar, ADM, PanIN1A, PanIN1B,
PanIN2, and PanIN3 based on the classification consen-
sus [26]. Prism software was used to perform statistical
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tests and assess statistical significance. (GraphPad; Mac
version 6.0). A P values were calculated according to
multiple t test and were considered significant when less
than 0.05 and highly significant when less than 0.01.

Results

Epithelial-specific inhibition of Notch signaling

To block Notch signaling during pancreatic carcinogen-
esis, we crossed a mouse model of pancreatic cancer,
based on pancreas-specific expression of mutant Kras
(p48-Cre; LSL-Kras“'?P; hereby referred to as KC) with
a transgene expressing a Dominant-Negative form of
Mastermind-likel (DNMAML), which encodes for a
truncated form of MAMLI1 (aa 13-74) fused to GFP,
downstream of a LoxP-flanked stop cassette [5,6,21]
(Figure 1D). The DNMAML-GFP fusion product is a
potent inhibitor of Notch 1-4 signaling in vivo and
in vitro and interferes with the NICD-CSL/RBPJ-MAML
complex formation, which is essential for transcriptional
activation of Notch target genes in a cell autonomous
manner [18,27] (Figure 1A). The DNMAML-GFP allows
tracking recombination events in individual cells by tak-
ing advantage of the GFP fusion protein [21].

To verify the ability of DNMAML to inhibit Notch
signaling in the pancreas, we harvested pancreata from
15 week old wild type, KC, and KCG;DNMAML mice and
analyzed the expression of Notch target genes in whole-
tissue mRNA (5 mice/cohort). Expression of Hesl, Heyl,
and Hey2, common targets of Notch signaling was
assessed by quantitative real time polymerase chain reac-
tion (RT-qPCR) [28-30] (Figure 1B). We observed elevated
levels of Hesl, Heyl, and Hey2 in KC mice compared to
WT control samples, in accordance with previously pub-
lished data showing Notch signaling upregulation in
PanINs and PDA [4,9,10]. Importantly, the Notch target
genes were downregulated in KG;GDNMAML mice com-
pared to KC. Thus, DNMAML expression successfully
inhibited Notch signaling in the pancreas in vivo.

Epithelial Notch signaling is important for PanIN initiation
In order to determine the effects of Notch inhibition in
the epithelial compartment during pancreatic carcino-
genesis, we harvested tissue from age-matched KC and
KC-DNMAML mice at 15 (n = 5) and 26 (n = 28) weeks
of age and examined tissue histology for neoplastic pro-
gression. In 15 week-old samples we observed a significant
reduction in the number of PanINs in KC;DNMAML
mice compared to KC mice (Figure 1E). Thus, inhibition
of Notch signaling delayed or blocked PanIN formation.
Analysis of those PanINs that were present in KGC;
DNMAML mice did not reveal any significant histological
difference compared to PanINs in KC mice. Then, we ex-
amined the pancreata of KCG;GDNMAML and KC mice dis-
sected at 26 weeks of age (Figure 1F). At this time point,
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Figure 1 Epithelial-specific inhibition of Notch signaling in DNMAML model. (A) Scheme of DMAML-mediated inhibition of Notch signaling.
The Notch intracellular domain (NICD; blue) forms a complex with suppressor of hairless and lag-1 (CSL; purple lined), Mastermind-like1 (MAML;
pink), and co-activators (yellow lined), to activate transcription of Notch target genes. The DNMAML-GFP fusion protein blocks formation of the
activation complex, thus preventing transcription of the target genes. (B) Pancreata from 15 week-old wild type (WT), p48Cre,LSL-""*¢1?P (KC), and
p48Cre;L SI-KC12P mice (KGDNMAML) were analyzed for the expression of common Notch target genes, Hes7 (green column), Hey1 (yellow
column) and Hey?2 (red column) by gRT-qPCR. The expression levels were normalized to Gapdh. Data represent mean + SEM. (C) Quantification
of pancreatic intraepithelial neoplasia (PanIN) of age-matched KC and KG;DNMAML mice (n = 3-5 mice/genotype). Color-coding: acini (dark
purple), acinar-ductal metaplasia (ADM; green), PanINTA (light blue), PanIN2B (blue), PanIN2 (red), PanIN3 (dark red). Data represent mean + SEM.
The statistical difference was determined by two-tailed Student t-test. *p < 0.05, ***p < 0.0001. (D) Genetic makeup of KGCDNMAML mice. (E) Analysis
of 15-week old mice. H&E staining (20x); collagen deposition (Gomori Trichrome; 20x); mucin accumulation (Periodic Acid Staining; PAS; 20x);
a PanIN-specific marker (Claudin18; 40x), and proliferation (Ki67; 40x). (F) Analysis of 26-week old mice.

.

there was no significant difference in the number of
PanINs between KC and KCG;DNMAML mice. There re-
sults were consistent with Notch inhibition being insuffi-
cient to block PanIN formation, or with loss of Notch
inhibition through a negative selection process. We per-
formed histological and molecular analysis of PanINs in
KC and KC;DNMAML tissues. PanIN lesions from both
genotypes expressed typical markers such as Claudinl8
and showed intracellular mucin staining (PAS staining), in
addition to collagen deposition (Gomori Trichrome stain-
ing). To compare the proliferation index among the two
genotypes, we performed Ki67 staining [31]. At 15 weeks
and 26 weeks, we observed elevated Ki67 staining in both
the tumor epithelium and stromal compartment, inde-
pendent of genotype (Figure 1E,F). We then analyzed
apoptosis, by cleaved Caspase3 staining and did not ob-
serve any difference in the two sets of mice (data not
shown). Thus, once PanINs had formed, they had the ex-
pected proliferation and cell survival rate.

Histopathological analysis of de-identified slides con-
firmed our initial observations. Namely, KCG;DNMAML
samples had more acinar clusters compared to KC sam-
ples (80% and 30% respectively) and less ADM (20% and
35%, respectively) at 15 weeks. KC pancreata displayed a
greater degree of disease progression with a higher pro-
portion of PanIN1A (20%), PanIN1B (8%), and PanIN2
(1%) compared to age-matched KC;DNMAML mice
(Figure 1C). At 26 weeks, we observed significantly fewer
PanINs and more acini in KCG;DNMAML mice compared
to KC. Moreover, KC;(DNMAML had lower-grade PanINs
than KC samples, reflecting the delay in lesion onset
(Figure 1C). Thus, PanINs were delayed, but their forma-
tion was not blocked, upon inhibition of epithelial Notch
signaling. This finding might be explained by progressive
loss of Notch-dependency (possibly due to compensation
by other signaling pathways) or by loss of Notch inhib-
ition due to competitive disadvantage —thus elimination-
of DNMAML expressing cells.

In order to determine whether DNMAML expression
had been lost over time, or whether Notch signaling was
still inhibited in the epithelial compartment, we analyzed
Hes1 and GFP protein localization by immunofluorescence

(Figure 2). At 15 weeks, Hesl was upregulated in KC
samples but not in KC-DNMAML tissues as predicted.
GFP staining overlapped with DAPI nuclear staining,
suggesting that DNMAML was localized in the nuclear
compartment (Figure 2A and C). At 26 weeks, Hesl ap-
peared further upregulated in KC samples, and we also ob-
served Hesl expression in the PanINs of KC-DNMAML
tissues, suggesting increased Notch activity (Figure 2B
and C). Moreover, we observed loss of nuclear GFP, and
concurrent appearance of cytoplasmic or membrane
GFP. While we can'’t fully explain the mechanism under-
lying the latter finding, we nevertheless were able to con-
clude that the DNMAML-mediated inhibition of Notch
signaling was lost over time, either by loss of DNMAML
expression or DNMAML-expressing cells, or by inappro-
priate subcellular localization of the DNMAML-GEFP fusion
protein. Thus, the loss of phenotype in KCG;GDNMAML mice
over time coincided with re-activation of Notch signaling.
These data thus support an essential requirement for
epithelial Nocth signaling during PanIN formation.

To further our analysis of KGGDNMAML mice, we in-
vestigated whether inhibition of Notch signaling affected
the activation of other embryonic signaling pathways that
are upregulated in PanIN formation and important for
their progression, such as Hedgehog and Wnt [5,8,32-35].
Thus, we harvested tissue from 15 and 26 week old KC;
DNMAML and age-matched KC mice and extracted
mRNA to analyze Hedgehog and Wnt associated gene
expression, such as Patched-1 (Ptchl), a Hedgehog path-
way component and target gene, and Wnt3a (Wnt3a), a
Wnt ligand [5,8] (Figure 2D).

In the same set of experiments, we measured Hesl ex-
pression by qPCR, to determine the degree of Notch inhib-
ition in the individual samples (Figure 2D). At 15 weeks,
we observed a trend towards a decrease in HESI in KC-
DNMAML samples (n >3) when compared to KC sam-
ples, as predicted. Our data did not reach statistical
significance, possibly due to the heterogeneous nature of
whole tissue samples. At 26 weeks, there was no difference
in HES1 expression between KC and KC-DNMAML sam-
ples, corroborating our immunostaining-based results de-
scribed above. At neither time point did we observe a
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Figure 2 Progressive loss of Notch inhibition. Pancreata were harvested at the indicated time points from 15-week (A) and 26-week old

(B) wild type (WT), p48Cre,'LSL—KrasG’ZD (KO), and p48Cre;LSL—KrasG’ZD; Rosg?NVAMEGHF/+ (KGDNMAML) mice. Immunofluorescence images represent Notch
activity (Hes1; red; 80x) and DNMAML expression (GFP; green; 60x). To identify the nucleus, all sections were stained with DAPI. (C) Quantification of
DNMAML expression (GFP) within the nucleus or within the cytoplasm at 15 weeks and 26 weeks. Data represents mean + SEM. ***, P < 0.001.

(D) RT-gPCR analysis of Hedgehog signaling component, Patched 1(Ptch1) and Wnt ligand, Wnt3a (Wnt3a) in KC and KG;DNMAML mice at the
indicated time points. Each point represents 1 mouse. Data represents mean + SEM. Gapdh and Cyclophilin were used as reference genes.

difference in Ptch-1 and Wnt3a expression. Thus, inhibit-
ing Notch signaling had no effect on Hedgehog and Wnt
activity.

To complement the qPCR-based experiments, we
analyzed the expression of downstream effectors of
Kras, Hedgehog, and Wnt signaling by immunostaining
(Figure 3). To analyze the activity of Kras effector path-
ways, we performed immunostaining for AKT and
MAPK signaling components (ERK). Immunostaining of

the activated form of ERK and AKT (phospho-ERK1/2
and phospho-AKT) at 15 and 26 weeks revealed elevated
p-ERK and p-AKT in PanINs, independent of genotype.
While we did not observe changes in Kras effector path-
ways, the progressive loss of Notch inhibition in our
model does not allow a rigorous epistatic analysis of
these pathways.

To examine whether Notch inhibition in the tumor
epithelium affected the expression of Hedgehog ligands,
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Figure 3 Histological analyses of Kras, Hedgehog, and Wnt signaling components. (A) Pancreata was harvested and analyzed from

15-week old wild type (WT), p48Cre;L SL-Kras®'?P (KC), and p48Cre;L SL-Kras®'?P; Rosa®™MAMECFP (KCDNMAML) mice. H&E staining at a high

magnification (40x) compare the pancreatic histology in WT, KC, KGDNMAML mice. Tissues were stained for downstream targets of Kras signaling
(p-AKT and p-ERK), Hedgehog ligand (Shh), and downstream Wnt component (Beta-catenin). (B) Analysis of 26-week old mice.
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we performed immunostaining against Sonic Hedgehog
(Shh). Shh is commonly upregulated in PanIN lesions
[5,32,33,36]. Studies have shown that upregulation of
Hedgehog signaling promotes tumorigenesis [5,32,33,36].
We detected Shh in the PanIN epithelium and not in the
surrounding stroma, in both KC and KC-DNMAML;
thus the expression of the Hedgehog pathway ligand Shh
was not regulated by Notch signaling. To assess Wnt sig-
naling activity in vivo, we performed immunostaining
against beta-catenin. We did not observe changes in ex-
pression or subcellular localization of beta-catenin in the
PanIN epithelium comparing KC and KC-DNMAML
mice.

Determining the requirement of Notch signaling during
pancreatitis-driven PanIN formation

In our previous set of experiments, KC and KC;
DNMAML mice developed PanINs spontaneously, over

time. Several studies have reported that, in mice, the in-
duction of acute pancreatitis synergizes with oncogenic
Kras to induce rapid and extensive PanIN formation
[6,24,37-39]. To investigate the potential requirement for
active Notch signaling during pancreatitis-induced car-
cinogenesis, we administered a cholecystokinin (CCK)
agonist (caerulein), which induces acute pancreatitis in
mice (8 injections/day; 2 day treatment). We collected
tissues from age-matched wild type (control), KC, and
KCDNMAML mice 2, 3, and 4 weeks following acute
pancreatitis (Figure 4A). Acute pancreatitis leads to aci-
nar damage, mainly represented by ADM, edema of the
tissue, and infiltration of inflammatory cells both in WT
and KC mice. However, while WT mice rapidly recover,
with complete tissue repair usually observed within a week,
KC mice are unable to undergo tissue repair (Figure 4B).
In contrast, in KC mice, the pancreas becomes progres-
sively fibrotic and the ADM becomes more extensive
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SEM. n.s.: not statistically significant.

Figure 4 Effect of Notch inhibition during pancreatitis-induced PanIN formation - Preliminary data. (A) Age-matched wild type (control),
p48Cre;L5L—KrasG]2D (KC), and p48Cre;LSL—KrasG72D; Rosg”"MAMEGEF+ («C.DNIMAML) mice were administered intraperitoneal injections of caerulein, a
cholecystokinin agonist, over the course of 48 hours. Pancreata was harvested and analyzed for PanIN development. (n = 2 mice/time point). (B) H&E
staining of caerulein-treated wild type (control), p48Cre;L SL-Kras®'?? (KC), and p48Cre;L SL-Kras®'?C: Rosa®MAMECF+ (KCDNMAML) pancreata at high
magnification (20x). (n = 2 mice/time point). (C) Quantification of pancreatic intraepithelial neoplasia (PanIN) at the indicated time points of
age-matched p48CreL SI-Kras®™?” (KC), and p48Cre;L SL-Kras®'?°: Rosa”™"M=CF7+ (KCGDNMAML) mice (n = 2 mice/genotype). Color coding as follows:
acini (dark purple), acinar-ductal metaplasia (ADM; green), PanINTA (light blue), PanIN1B (blue), PanIN2 (red), PanIN3 (dark red). Data represents mean +

over the course of the first week after treatment. Then,
the pancreas forms tissue-wide PanINs. The WT and KC
cohorts in our experiment behaved as expected.. Simi-
larly, KCGGDNMAML developed PanlNs, although they
retained more acinar clusters 2 and 3 weeks after pan-
creatitis, compared to KC animals (Figure 4B,C). How-
ever, by 4 weeks after pancreatitis the two cohorts were
indistinguishable. Based on our results from mice aging in
absence of pancreatitis, this result might reflect progres-
sive loss of Notch inhibition paralleling PanIN formation.

Discussion

The Notch signaling pathway plays an important role in
embryonic development of the pancreas, in homeostasis of
the adult pancreatic tissues, and it is reactivated during
pancreatic cancer [4,5,17,40-42]. Several studies showed ac-
tivation of Notch signaling as an early event in the develop-
ment of pancreatic cancer [9-12], making inhibition of
Notch signaling an attractive therapeutic target. Inhibition
of Notch signaling in all cellular compartments by GSI
treatment revealed that Notch is important for the initial
development of PanINs and their progression to advanced
PDA in mice [10]. A caveat to using GSIs is that they not
only inhibit Notch signaling within the epithelium, but also
in the tumor microenvironment (i.e. stellate cells, immune
cells, fibroblasts). Thus, the ability of GSIs to globally inhibit
Notch signaling, regardless of cell type, creates a challenge
when teasing apart its role in epithelial cells. Mouse models
that conditionally ablate Notch receptors in the pancreas
epithelium demonstrated that Notch2, but not Notch3, is
critical for PanIN initiation [16], although Notch3 is also
upregulated during PanIN/PDA development [9,10]. A limi-
tation of genetic inactivation of individual Notch receptors
is that they have been shown to functionally compensate for
each other [43]. Thus, none of these previous studies has
addressed the role of epithelia-specific Notch signaling
mediated by any of the Notch receptors.

In this study, we used an approach that allowed condi-
tional, tissue-specific inhibition of canonical Notch signal-
ing specifically in the pancreas epithelium (in a cell
autonomous manner). Using a dominant negative form of
Mastermind-likel (DNMAML), we successfully inhibited
transcriptional activation of Notch target genes, independ-
ent of Notch receptor input [21,22], in the pancreatic

epithelium. DNMAML expression was previously shown to
lead to impaired endocrine cell differentiation [44,45].
While a comprehensive characterization of the endocrine
cells went beyond the scope of the current study, the mice
presented with morphologically normal islets, probably
reflecting differences in transgene expression levels or tim-
ing of expression. Our results showed delay, but not block-
ade, of PanIN formation. In part, this finding might be due
to an escape mechanism allowing Notch signaling to be
reactivated even in DNMAML expressing mice — either
through transgene silencing, or possibly though sequestra-
tion of DNMAML away from the nucleus. Thus, epithe-
lial Notch signaling appears to be required for the onset
of PanIN formation. However, selection mechanisms lead
to accumulation of cells with active Notch signaling. Our
data do not address the potential role of Notch signaling
in other cellular compartments, such as fibroblasts or the
immune system. However, an initial analysis revealed lit-
tle presence of Notch target components in fibroblasts.
The status and potential role of Notch signaling in im-
mune cells at different stages of cancer formation cannot
be discounted and should be addressed in future studies.

Conclusion

Notch signaling is important for disease initiation early
in PanIN development. However later in carcinogenesis,
the role of Notch signaling in the tumor epithelium
remains unclear. Future studies examining the role of
Notch signaling in other cells within the tumor micro-
environment (immune cells) may explain a purpose for
maintaining Notch signaling throughout carcinogenesis.
Notch inhibition is still an attractive target for neo-
adjuvant or prophylactic treatment in high-risk patients,
but more work is needed.
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