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Abstract

Background: Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer
patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors
exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status,
suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are
integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that
smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by
different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung
tumor biology and patient outcome in the context of smoking status.

Methods: We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94
patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and
never smokers.

Results: We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene
networks, and identified miRNAs that were prognostically significant in a smoking dependent manner.

Conclusions: We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular
pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings
may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention.
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Background
Lung cancer is the most common cause of cancer-related
death [1]. Cigarette smoke is a significant contributor to
morbidity and mortality worldwide, and is the number
one risk factor for lung cancer. However, half of newly di-
agnosed patients are former smokers (FS) and up to 25%
of patients are never smokers (NS) [2,3]. Clinically, smok-
ing history can be used to subclassify histologically similar
tumors based on smoking status-associated molecular and
clinical features, and can inform therapeutic decisions
[3-7]. With the success of smoking cessation programs,
smoking incidence continues to drop in developed
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countries and an increasing proportion of FS and NS pa-
tients are being diagnosed in the clinic. Consequently,
there is an urgent need for an improved understanding of
the molecular mechanisms underlying lung cancer biology
in patients with different smoking histories.
MicroRNAs (miRNAs) negatively regulate mRNA ex-

pression through direct inhibition of translation or induc-
tion of mRNA degradation [8]. They are key contributors
to smoking response, tumorigenesis, progression, and
treatment response, and therefore represent promising
and biologically relevant biomarkers [9-15]. We hypothe-
sized that, analogous to distinct smoking status-related
patterns of DNA and mRNA alterations, miRNAs display
smoking status-specific patterns of disruption in both
non-malignant and malignant lung tissues from lung can-
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cer patients. We investigated the effects of smoking on
the miRNA transcriptome of lung tumors and parenchymal
tissues from current smokers (CS), FS and NS. miRNA-
mRNA gene networks were built to determine the potential
biological consequences associated with miRNA disruption
in these three groups, and we evaluated the potential clin-
ical significance of our findings in relation to patient sur-
vival in the context of smoking status.
Methods
Samples
Fresh-frozen lung adenocarcinoma (LUAC) tumor and
patient-matched non-malignant lung parenchymal tissue
was collected for 94 treatment naïve patients at Vancouver
General Hospital under informed, written patient consent
and with approval from the University of British Columbia-
BC Cancer Agency Research Ethics Board (Table 1). Non-
malignant samples were collected from areas >2 cm away
from the tumor. Tissue microdissection was guided by a
lung pathologist to ensure >80% tumor cell or >80% non-
malignant cell content. Total RNA was extracted using Tri-
zol reagent. For this study, we used the following definitions
to define smoking status: NS are patients who smoked
fewer than 100 cigarettes in their lifetime; CS are patients
who were smoking at the time of diagnosis; and FS are in-
dividuals who had stopped smoking at least one year prior
to diagnosis.
Table 1 Clinical information for lung adenocarcinoma
samples profiled

Characteristic NS1 CS2 FS3

Number 27 43 24

Sex

Male 7 (26%) 13 (30%) 9 (38%)

Female 20 (74%) 30 (70%) 15 (62%)

Average age 71 64 71

Stage

I 16 (59%) 26 (60%) 16 (67%)

II 6 (22%) 11 (26%) 6 (25%)

III 5 (19%) 4 (9%) 1 (4%)

IV 0 2 (5%) 1 (4%)

Ethnicity

Caucasian 8 (30%) 11 (26%) 1 (4%)

Asian 16 (59%) 0 (0%) 0 (0%)

Unknown 3 (11%) 32 (74%) 23 (96%)

Average pack years 0 46 47

Average years quit n/a < 1 15
1NS as patients who smoked fewer than 100 cigarettes in their lifetime. 2CS
were defined as smoking at the time of diagnosis. 3FS as individuals who had
stopped smoking at least one year prior to diagnosis.
MiRNA sequencing
MiRNA-seq transcriptome profiles were generated using
1 μg of total RNA for each sample and were sequenced on
the Illumina HiSeq 2000 platform as previously described
[16]. Raw miRNA sequence libraries and sample informa-
tion have been deposited in the NCBI Gene Expression
Omnibus (GSE62182) (http://www.ncbi.nlm.nih.gov/geo/).
Reads were aligned to NCBI GRCh37 reference genome
and miRBase v18 using the BWA algorithm [17], and mul-
tiple alignment locations resolved as previously described
[16]. Full description of library construction, sequencing,
read pre-processing, alignment and annotation are previ-
ously described [16]. MiRNA expression was quantified as
reads per kilobase per million (RPKM). In total, 1372
unique miRNAs were detected across 188 libraries. MiR-
NAs with RPKMs <1 were considered not expressed, and
miRNAs with no detectable expression across the entire
cohort of tumor or non-malignant samples were disre-
garded, resulting in 927 miRNAs for subsequent statistical
analyses.
The Cancer Genome Atlas (TCGA) cohort
MiRNA sequencing data for lung adenocarcinoma
(LUAC) tumors were obtained from the TCGA for use as
an external cohort for validation purposes as well as for
combining with our own dataset to perform miRNA sur-
vival association analyses. Expression profiles from the
TCGA were processed as described for ‘Level 3 data’ in the
TCGA data compendium (2011 Cancer Genome Atlas Net-
work). Detailed descriptions of the use of TCGA data are
described below.
Statistical analyses
Unsupervised hierarchical clustering of miRNA
expression profiles
Unsupervised hierarchical clustering using Ward’s method
was performed on all samples (n = 188), tumor samples
only (n = 94), and non-malignant samples only (n = 94)
using Partek Genomics Suite software. A Fisher’s Exact test
and Chi-square tests were performed to assess the distri-
bution of tumor and non-malignant profiles, and distribu-
tion of the three smoking types within the identified
clusters, respectively. A Student’s t-test was used to assess
differences in pack years and years quit for CS and FS. A
multivariate analysis of variance (MANOVA) test was per-
formed to determine which clinical factors were most
strongly associated with grouping of non-malignant and
tumor miRNA expression profiles into distinct clusters. A
Kruskal-Wallis (KW) test was performed to identify
miRNA differentially expressed between the clusters iden-
tified for both tumor and non-malignant tissues. For all
statistical tests, a p-value <0.05 was considered significant.

http://www.ncbi.nlm.nih.gov/geo/
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MiRNAs modulated in response to smoking
To identify miRNAs whose expression is likely modulated
in response to smoking, we performed a non-parametric
permutation test using 10,000 permutations, between
non-malignant CS and NS tissues (CSN and NSN, re-
spectively). Permutation scores were corrected for mul-
tiple testing using the Benjamini and Hochberg (B-H)
method. miRNAs that had a B-H corrected p <0.05 and
an average fold change >2.0 or <0.5 were considered dif-
ferentially expressed (DE) between CSN and NSN tissues.
To identify miRNAs recurrently, aberrantly expressed in
lung tumors of each smoking group (i.e., CS, FS, and NS),
we applied the following criteria: i) pairwise Wilcoxon
Sign Rank test B-H multiple testing corrected p <0.05, and
ii) tumor/normal fold change >2 (overexpression) or <0.5
(underexpression) in at least 25% of the tumors for that
particular smoking group. MiRNAs satisfying these cri-
teria in only one group, were considered smoking status-
specific and further investigated in the TCGA cohort.
Tumor tissues from 80 FS, 42 CS, and 16 NS were used to
investigate the reproducibility of miRNAs we identified as
disrupted in a smoking status-specific manner. Low num-
bers of non-malignant lung parenchymal tissues at the
time of writing for the various smoking groups (12 FS, 9
CS and 2 NS) precluded us from validating our non-
malignant tissue findings and required us to use pooled
non-malignant samples of matched smoking history to
calculate miRNA fold change for each TCGA tumor.
Therefore, miRNAs were considered validated if the fre-
quency of over- or underexpression was found to signifi-
cantly differ between groups (Fisher’s exact test, p <0.05)
and there was a minimum disruption frequency difference
of 15% between groups in the TCGA cohort.

Generation of predicted miRNA-transcript interaction
networks
MiRNAs identified as preferentially disrupted in one
smoking status group were inputted into the microRNA
Data Integration Portal ver 2 (miRDIP; http://ophid.
utoronto.ca/mirDIP), which integrates 13 microRNA tar-
get prediction algorithms and six microRNA prediction
databases to predict miRNA-transcript (mRNA) interac-
tions [18]. For this study, we used stringent miRNA tar-
get prediction criteria by considering only predictions
that were supported by at least six sources. Interactions
between miRNAs and their predicted mRNA targets
were then visualized as networks using NAViGaTOR
v2.14 (http://ophid.utoronto.ca/navigator) [19,20]. Two
interaction networks were generated: 1) a network based
on miRNAs specifically deregulated in one smoking
group using all significant gene targets identified by
miRDIP, and 2) a network based on miRNAs specifically
disrupted in CS, FS, or NS and miRNAs commonly dis-
rupted between all groups using only significant gene
targets identified by miRDIP that are known to be associ-
ated with lung cancer patient survival [21]. Only the most
highly connected miRNAs were used to build and
visualize the networks. Pathway analysis was performed
on biologically validated mRNA targets (miRTarBase v3.5)
of miRNAs disrupted in a smoking status-specific manner
using Ingenuity Pathway Analysis.

MiRNA survival associations in lung cancer cohorts
Associations between miRNA expression and patient sur-
vival were assessed using a log rank, Mantel-Haenszel test,
with a p <0.05 considered significant. Patients were di-
vided into tertiles based on miRNA expression, and sur-
vival for patients in the top and bottom tertiles was
compared. Only miRNAs detectably expressed in at least
two thirds of patients were assessed to ensure adequate
separation between high and low expressing groups
for statistical analysis. To enable assessment of smoking
status-specific survival associations, we combined miRNA
expression and outcome data for our own patient cohort
(n = 91; 22 FS, 42 CS, 27 NS) and the TCGA LUAC cohort
(n = 127; 80 FS, 33 CS, and 14 NS). In total, the combined
cohort contained 218 patients including 102 FS, 75 CS,
and 41 NS. Survival analyses were performed on all pa-
tients and each specific smoking group. Kaplan-Meier
plots were generated using GraphPad Prism 6 software.
Cox proportional hazards (COXPH) multivariate survival
analyses were also performed to determine the influence
of miRNA expression and other clinical covariates (age,
gender, ethnicity, tumor stage, and smoking status) on pa-
tient outcome considering all LUAC patients for the com-
bined cohort (n = 218). A COXPH p <0.1 was considered
significant. A multivariate analysis of variance (MAN-
OVA) was also performed on the entire LUAC cohort to
determine whether miRNA expression was significantly
associated with any of these clinical covariates. A MAN-
OVA p-value <0.05 was considered significant. Expression
data for 38 CS LUAC profiles used to calculate the associ-
ation of EZH2 expression with patient survival was ac-
quired from the Early Detection Research Network (EDRN,
http://edrn.nci.nih.gov/science-data), and processed as pre-
viously described [7,22]. EZH2 survival analysis was per-
formed as described above.

Results
MiRNA expression profiles cluster based on malignancy
and smoking histories
To determine whether miRNA expression was associated
with smoking status in non-malignant and lung tumor tis-
sues, we performed unsupervised hierarchical clustering
on 927 miRNAs with detectable expression across the 188
lung tumor and non-malignant tissues. Clustering revealed
miRNA expression segregated samples based on malig-
nancy and smoking status (Figure 1). When all profiles

http://ophid.utoronto.ca/mirDIP
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http://edrn.nci.nih.gov/science-data
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Figure 1 (See legend on next page.)
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Figure 1 Unsupervised hierarchical clustering of lung tumor and non-malignant miRNA expression profiles. Clustering of all 188 miRNA
expression profiles revealed two distinct clusters, one comprised of non-malignant samples (teal), and the other comprised of mostly tumors
(pink) (A). The clusters identified were associated with malignancy, as clusters 1 and 2 were significantly enriched for non-malignant and tumor
profiles, respectively (Fisher’s Exact test p =2.2 × 10−16) Clustering of non-malignant tissues only (B) and tumors only (C) revealed three clusters.
(D). Assessment of the distribution of CS, FS, and NS within the clusters identified in non-malignant samples revealed enrichment for CS and FS
in clusters 1 and 2 compared to cluster 3 (Chi-square test p =5.0 × 10−4) (E). The same trend was observed in the clusters identified based on
tumor profiles (Chi-square test p =0.023) (F).
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were considered, tumor and non-malignant samples clus-
tered separately, with a significant difference between the
two clusters (Figure 1A and D, Fisher’s Exact test, p =2.2 ×
10−16). Clustering of non-malignant profiles revealed three
clusters that were significantly different in smoking status
composition (Figure 1B and E, Chi-square test, p =5.0 ×
10−4). A similar clustering pattern was observed for tumor
profiles (Figure 1C and F, Chi-square test, p =0.023). As-
sessment of the miRNAs differentially expressed between
the identified clusters revealed that similar miRNAs con-
tribute to cluster grouping in both tumor and non-
malignant tissue. For example, 57% of miRNAs that were
significantly differentially expressed across the three tumor
clusters were also differentially expressed across the three
non-malignant clusters, while 36% of miRNAs signifi-
cantly differentially expressed between the non-malignant
clusters were also differentially expressed across the
tumor clusters (Additional file 1). Multivariate analysis re-
vealed smoking to be the clinical variable most strongly
associated with cluster grouping in non-malignant tissue
(F-value =10.05, p =2.3 × 10−3), whereas in tumors, age
and years quit were the most significant variables asso-
ciated with clustering (F-value =3.13, p =0.015 and F-
value =15.80, p =0.038, respectively) (Additional file 2).
We also observed a significant difference in pack years
for FS tumors among the two clusters dominated by CS
and FS tumors (Student’s t-test, p =0.030); however,
pack years was not a significant factor between clusters
of non-malignant tissues or between clusters dominated
by CS tumors. Collectively, these results suggest miRNA
expression profiles in both tumor and non-malignant
lung tissues are dependent on smoking histories, but
that heterogeneity within ever-smoking groups (i.e. CS
and FS) exists.

MiRNAs are differentially expressed between non-malignant
lung tissues of CS and NS with lung cancer
Based on the observed clustering patterns, we aimed to
identify miRNAs differentially expressed in non-malignant
tissues of CS (CSN) and NS (NSN), as these two groups
represent the most extreme smoking phenotypes. 37 miR-
NAs were significantly differentially disrupted between
CSN and NSN; 25 of which were overexpressed and 12 that
were underexpressed in CSN relative to NSN (Additional
file 3). Several of these miRNAs have been previously
implicated in lung cancer including miR-106a, miR-107,
miR-136, miR-142, miR-19a, miR-212, miR-339, miR-34b,
miR-34c, and miR-449a.

MiRNA expression in non-malignant tissue can be
irreversibly altered in FS
Protein coding genes deregulated in response to active
smoking display either reversible or irreversible expression
upon smoking cessation [23-25]. Genes upregulated in re-
sponse to smoking that remain overexpressed in lung tis-
sues of CS and FS with lung cancer may indicate those
smoking-related events involved in lung tumor develop-
ment. We investigated this phenomenon with respect to
miRNA expression in FS non-malignant tissue (FSN), and
identified two miRNAs exhibiting patterns consistent with
reversible expression and 15 with irreversible expression
in FSN (Additional file 4). Interestingly, the majority of
these miRNAs have been associated with cancer, and four
specifically in lung cancer (miR-107, 142, 339, and 34c).

MiRNAs are recurrently altered in tumors from CS, FS and
NS patients
To identify miRNAs recurrently differentially expressed in
tumors from each smoking group, we compared expression
profiles for tumor and patient-matched non-malignant lung
tissues of CS, FS and NS. This analysis revealed 232 overex-
pressed and 58 underexpressed miRNAs in current smoker
tumors (CST); 257 overexpressed and 47 underexpressed
miRNAs in former smoker tumors (FST); and 263 overex-
pressed and 41 underexpressed miRNAs in never smoker
tumors (NST) (Additional file 5). Overall, the majority of
miRNAs were overexpressed (304/366, 83%). 65% (196/
304) of overexpressed miRNAs and 58% (36/62) of under-
expressed miRNAs were shared between CS, FS and NS
tumors. Many of these (miR-17, miR-21, miR-106a let-7a,
let-7c, miR-101, and miR-143, for example) are well known
lung cancer miRNAs (Additional file 6). The identification
of shared patterns of miRNA deregulation within CS, FS
and NS lung tumors suggests that miRNAs likely partici-
pate in common mechanisms of tumorigenesis in lung
adenocarcinoma (LUAC).
66 miRNAs were frequently altered in only one tumor

group: 25 in CS (14 overexpressed and 11 underexpressed),
14 in FS (12 overexpressed and 2 underexpressed), and 27
in NS (26 overexpressed and 1 underexpressed) (Additional
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file 7). We refer to these miRNAs, including those preferen-
tially disrupted in NS, as smoking status-specific. In
addition to recurrent expression deregulation in tumor
relative to non-malignant tissue, miRNAs affected by
smoke exposure could be expected to exhibit differential
expression between CS and NS tumor tissues. Of the 25
CS-specific and 27 NS-specific miRNAs, 8/25 and 4/27 also
showed differential expression when CS and NS tumors
were compared (irrespective of status in non-malignant tis-
sues) (Additional file 7). The established cancer-related
functions of some of the smoking status-specific miRNAs,
such as overexpression of miR-7, miR-27a, miR-93, miR-
372, and underexpression of miR-138, miR-381, miR-582
[26-33], suggest miRNAs are also likely involved in promot-
ing tumorigenesis in a smoking status-dependent manner.
To assess the robustness and reproducibility of our

findings we analyzed expression of our smoking status-
specific miRNAs in an external cohort. Of the 66 miR-
NAs altered in a smoking status-specific manner, 57
were annotated in the LUAC dataset from The Cancer
Genome Atlas (TCGA); however, 12 of these 57 miRNAs
were not detectably expressed in the smoking group of
interest. Therefore, 45 miRNAs were amenable to valid-
ation testing. In addition to a low number of patient-
matched tumor and non-malignant tissues pairs (n = 23),
inspection of the TCGA data revealed lower overall
RPKM (Reads Per Kilobase of transcript per Million
mapped reads) counts for most miRNAs detected in
comparison with our own dataset (Additional file 8).
Thus, we had to apply a different analysis strategy for
validation (see Methods), resulting in 4 of the 45 assess-
able miRNAs validating as altered in a smoking status-
specific manner: miR-129 overexpressed in CS, miR-152
overexpressed in NS, miR-3065 underexpressed in CS,
and miR-511 underexpressed in CS (Additional file 9).

Disrupted miRNA networks in tumors indicate selection of
smoking status-specific target genes
To elucidate signaling pathways and biological processes
disrupted by smoking status-specific miRNAs, mRNA tar-
get genes were identified using miRDIP (microRNA Data
Integration Portal) with stringent filters (i.e. prediction by
at least 6 different algorithms). Smoking status-specific
miRNAs were predicted to affect a large number of unique
mRNA targets in CS (n = 1,162 genes), FS (n = 770 genes),
and NS (n = 927 genes), which could indicate that distinct
cellular pathway selection occurs in different smoking and
non-smoking environments (Figure 2, left side). Con-
versely, common mRNA target genes (n = 1,399) (Figure 2,
right side) may indicate selection of genes deregulated in
LUAC in general. While the number of connections (i.e.
network edges) between miRNA and mRNA targets did
not differ between CS, FS, and NS tumor groups, CS
tumor (CST)-specific miRNAs targeted mRNAs with
numerous Gene Ontology functions, including cellular fate
and organization, metabolism, genome maintenance, tran-
scription, and translation, whereas in FS tumor (FST)- and
NS tumor (NST), mRNA targets largely corresponded to
similar functions, including transport and sensing (Figure 2).
As an independent method of assessing the potential bio-
logical implications of miRNA disruption, we performed
pathway analysis on biologically validated targets of miR-
NAs (as annotated in miRTarBase v3.5) specifically deregu-
lated in one smoking group. We found not only expected
commonalities in known cancer pathways across all groups,
but also biological pathways that were uniquely disrupted
in specific smoking groups; for example, SAPK/JNK signal-
ing in NS and ERK5 in CS (Additional files 10 and 11).

Lung cancer prognostic genes are targeted by miRNAs
disrupted in a smoking status-specific manner
To assess the potential prognostic implications of miRNA
deregulation in lung cancer, we used a curated list of 1,066
lung cancer prognostic genes compiled by Zhu et al. [21]
to build a miRNA-transcript interaction network com-
prised of both smoking status-specific miRNAs (n = 66,
Figure 3, colored square nodes) and miRNAs frequently
altered across all LUAC groups (n = 232 Figure 3, white
square nodes). Of the 1,066 prognostic genes, 358 (34%)
were predicted targets of the most highly connected miR-
NAs (n = 75) used to derive the network (Additional file
12). Interestingly, the majority of miRNAs were highly
connected to the same lung cancer prognostic genes, and
vice versa. For instance, miR-372, a miRNA identified as
specifically overexpressed in CST, was connected to 31 dif-
ferent lung cancer prognostic genes. Conversely, nuclear
factor I/B (NFIB), a critical regulator of fetal lung matur-
ation and lung mesenchymal and epithelial cell prolifera-
tion [34,35], was identified as a target of 16 unique
miRNAs, highlighting the potential importance of this
gene in LUAC. Moreover, of the miRNAs disrupted in a
smoking status-specific manner, CS (blue) and FS (green)
miRNAs demonstrated a higher number of connections to
lung cancer prognostic genes than NS-specific miRNAs
(red). Taken together, the miRNAs targeting prognostic
genes and the smoking specificity we observed, empha-
sizes not only the biological relevance of miRNA dis-
ruption but also the potential clinical implications of
these miRNA.

MiRNAs disrupted specifically in CS, FS, or NS tumors are
associated with lung cancer patient outcome
Due to the scarcity of publically available cohorts large
enough to enable statistical analyses of survival for pa-
tients with different smoking histories, analysis of
miRNA expression in relation to CS, FS or NS lung
cancer patient survival has, to our knowledge, not been
previously assessed. By combining miRNA expression



Figure 2 Network interactions between deregulated lung tumor miRNAs and their predicted mRNA targets. MiRNAs specifically disrupted
in CST, FST, or NST tumors were inputted into mirDIP to identify their predicted gene targets (i.e., mRNA transcripts predicted by at least six
miRNA target prediction algorithms). The network of identified miRNA-mRNA interactions was then generated and visualized using NAViGaTOR.
Only the most highly connected miRNAs were used to build the network. miRNAs specifically deregulated in CST, FST, and NST are indicated by
blue, green, and red colored square nodes, respectively. Predicted mRNA targets are represented as circular nodes. Edges indicate miRNA-mRNA
interactions, and are color-coded to match smoking group specificity of miRNA deregulation. Numerous target genes were shared by miRNAs
specifically deregulated in CS, FS, and NS, as shown to the right of the miRNAs list in the centre. Conversely, targets unique to specific smoking
groups are indicated to the left of the list. Predicted targets uniquely mapping to miRNAs disrupted in one smoking status group are represented
by circles on the left; 1,162 mRNA targets were unique to miRNAs altered in CST, 927 to NST miRNAs, and 770 to FST miRNAs. Conversely, 1,399
mRNA-miRNA targets were shared between miRNAs altered uniquely in each smoking status group. MiR-532 was underexpressed in CST and
overexpressed in NST. Gene Ontology terms associated with predicted target genes are indicated by target gene shading.
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and patient survival data from our LUAC cohort (n =
91) with the TCGA LUAC cohort (n = 127; combined
cohort n = 218 with 102 FST, 75 CST and 41 NST), we
addressed these challenges and performed the first
smoking status-specific miRNA survival analysis
of LUAC.
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Figure 3 Predicted interaction between prognostic lung cancer genes and deregulated lung tumor miRNAs. MiRNAs specifically
disrupted in CS, FS, or NS tumors as well as miRNAs frequently disrupted across the groups were inputted into mirDIP to identify their predicted
gene targets. The network of identified miRNA-mRNA interactions was then generated and visualized using NAViGaTOR, but was restricted to
predicted target genes that are known to have prognostic significance in lung cancer. MiRNAs specifically deregulated in a single smoking group
are indicated by colored square nodes. MiRNAs disrupted in multiple groups are indicated by white square nodes. Connections for miRNAs
commonly disrupted among the smoking groups are indicated by grey edges, while blue, green and red edges indicate miRNA-mRNA interactions
specific to CST, FST, and NST, respectively. Predicted targets are depicted as circular nodes, with shading corresponding to Gene Ontology terms
associated with gene function. The degree of connectivity for gene targets is depicted by the target node size, where larger circular nodes indicate
genes targeted by a greater number of different miRNAs. In total, the network is comprised of 75 miRNAs and 385 prognostic target genes. Most
miRNAs are well connected to prognostic genes, with more connections for CST- and FST-specific miRNAs and fewer connections for NST-specific
miRNAs. MiR-372, miR-607, and miR-543 were among the miRNAs most highly connected to lung cancer prognostic gene targets.
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Of the 75 miRNAs connected to lung cancer prognostic
genes (Figure 3), 15 were significantly associated with pa-
tient survival (Mantel Haenszel, logrank p <0.05), includ-
ing miR-1 and miR-153 (Figure 4A and B and Additional
file 13). When we assessed the association of any altered
miRNAs with lung cancer patient survival in general (i.e.
all lung tumor groups as a whole), we identified 76 miR-
NAs as significantly associated with LUAC patient survival
(Mantel-Haenszel, logrank p <0.05), 22 of which were
significant after correcting for multiple testing (B-H
p <0.05) (Additional file 14). These included miRNAs
previously associated with LUAC patient survival
(miR-1247, let-7g, miR-146a, miR-126) [36-39] and re-
currence (miR-200b) [40]. miR-187, which has been as-
sociated with brain metastasis in lung cancer patients
[36] and which we observed as overexpressed in all
smoking groups, was the most significant miRNA asso-
ciated with survival when all LUAC were considered
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expression and LUAC patient survival were assessed for miRNAs identified as deregulated in LUAC using a logrank, Mantel-Haenszel test. Survival
analyses were performed independently for tumors from all smoking status groups, CS, FS, and NS patients. Numerous miRNAs commonly
disrupted across CS, FS, and NS were significantly associated with LUAC patient survival, including miR-1 (A) and miR-153 (B) (B-H p <0.05) which
were both connected to multiple lung cancer prognostic genes from Figure 3. MiR-138, which was preferentially underexpressed in CS tumors,
was also significantly associated with CS LUAC patient outcome, with low expression associated with poor survival (C) (p <0.05). High expression
of EZH2, a biologically validated target of miR-138, showed a significant association with poorer survival in CS LUAC patients (D) (p <0.05). OE,
overexpressed. UE, underexpressed. NS, never smokers. CS, current smokers. FS, former smokers. B-H, Benjamini-Hochberg multiple-test-corrected.
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together (Benjamini-Hochberg corrected p =0.018,
Additional file 15). Within individual smoking groups,
11 miRNAs were associated with patient survival in CS,
71 in FS, and 12 in NS (Table 2 and Additional file 14).
Low expression of the CST-specific tumor suppressor miR-
138 was also associated with poor survival in CS (p =0.009)
(Figure 4C). High expression of EZH2, recently validated as
a target of miR-138 in LUAC cells, was concordantly asso-
ciated with poor patient survival (p =0.021, Figure 4D), fur-
ther emphasizing the prognostic significance of miR-138.
Since miRNA survival associations could be confounded

by association of the miRNAs with other clinical prognos-
tic factors such as tumor stage, we determined the miR-
NAs most robustly associated with patient outcome using
a multivariate survival analysis. We performed a Cox pro-
portional hazards (COXPH) model on survival data for
the 218 LUAC patients, considering miRNA expression,
age, gender, stage, ethnicity and smoking status as clin-
ical covariates potentially influencing patient outcome.
In total, 103 miRNAs were detectably expressed in at least
two-thirds of the 218 tumors. Of these 103 miRNAs
assessed, 31 were associated with survival independently
of tumor stage (COXPH p <0.1, Additional file 16). Inter-
estingly, a corresponding multivariate analysis of variance
(MANOVA) revealed that expression levels of all but one
(miR-135b) of these 31 miRNAs were not related to tumor
stage, suggesting they are indeed stage-independent lung
cancer prognostic indicators (Additional file 16). Among



Table 2 Top 10 miRNAs significantly associated with lung adenocarcinoma patient survival in CS, FS, and NS

miRNA CS p-value Status in tumors miRNA FS p-value Status in tumors miRNA NS p-value Status in tumors

hsa-mir-1287 0.0022 OE in ALL hsa-mir-133a 0.0001 UE in ALL hsa-mir-338 0.0006 UE in ALL

hsa-mir-138 0.0086 UE in CST hsa-mir-429 0.0002 OE in ALL hsa-let-7 g 0.0036 OE in ALL

hsa-mir-326 0.0131 OE in FST and NST hsa-mir-642a 0.0005 OE in ALL hsa-mir-184 0.0103 UE in CST and FST

hsa-mir-331 0.0146 OE in ALL hsa-mir-153 0.0006 OE in ALL hsa-mir-150 0.0143 OE in NST

hsa-mir-30d 0.0282 UE in ALL hsa-mir-187 0.0010 OE in ALL hsa-mir-139 0.0200 UE in ALL

hsa-mir-204 0.0291 UE in ALL hsa-mir-21 0.0013 OE in ALL hsa-mir-133b 0.0304 UE in ALL

hsa-mir-664 0.0331 OE in FST and NST hsa-mir-26b 0.0018 OE in ALL hsa-mir-664 0.0307 OE in FST and NST

hsa-mir-148a 0.0429 OE in ALL hsa-mir-135b 0.0021 OE in ALL hsa-mir-598 0.0326 UE in ALL

hsa-mir-195 0.0436 UE in CST hsa-mir-3607 0.0022 OE in ALL hsa-mir-10a 0.0342 UE in CST and FST

hsa-mir-1270 0.0462 OE in ALL hsa-mir-99b 0.0027 OE in CST and FST hsa-mir-92b 0.0351 OE in ALL

OE = overexpression; UE = underexpression.
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the 31 miRNAs robustly associated with patient outcome
were let-7g, miR-21, miR-1, and miR-138 (Figure 4), all of
which have been previously implicated with lung cancer
survival [39,41-43]. Collectively, these analyses provide
evidence of the biological importance and prognostic
value of miRNA expression in the context of patient
smoking history. Moreover, they provide additional ration-
ale for smoking status-specific stratification of patients
and evaluation of the roles of miRNA in LUAC biology in
the context of smoking.

Discussion
Cigarette smoke is associated with specific modifications
to the genomic and epigenomic landscapes of airways
and lung tissues [1,44], affecting the transcriptional
regulation of both genes and microRNAs (miRNAs)
[12,45-47]. Recent evidence suggests that histologically
similar lung tumors harbor distinct molecular profiles
based on smoking status, and that these alterations
underlie observed clinical disparities between lung tu-
mors in smokers and NS [3]. Since large LUAC cohorts
with well annotated smoking histories have only recently
become available, few studies have directly investigated
smoking-associated molecular features of lung tumors on a
genome-wide scale. To our knowledge, such a study de-
signed to assess miRNA deregulation in the context of pa-
tient smoking history has yet to be performed. The LUAC
dataset we have compiled is the largest lung miRNA-
sequencing tumor cohort with well-defined smoking
history and matched non-malignant lung tissue for every
patient generated to date (n = 94 LUAC patients, 188
miRNA sequencing profiles).
Hierarchical clustering revealed that while smoking sta-

tus and malignancy were associated with miRNA expres-
sion patterns, heterogeneity amongst CS and FS is present
(Figure 1). It is likely that, in addition to other non-
miRNA molecular alterations, inter-individual genetic var-
iants involved in the biological response to smoking may
underlie this observed heterogeneity [48-50]. Analogous
to observations for protein-coding genes [23,24], we iden-
tified miRNAs differentially expressed between CSN and
NSN and either irreversibly (miR-107, −378c, −142 and
-34c) or reversibly (miR-3648 and miR-3687) expressed in
FSN (Additional file 4). It is plausible that altered expres-
sion of miRNAs in CSN and FSN tissues may be an early
event related to smoking-associated tumorigenesis, al-
though without interrogation of lung tissues from CS, FS
and NS individuals without lung cancer it is difficult to
distinguish smoking-induced alterations from those that
are related to lung cancer itself. Investigation into the bio-
logical contribution of these “irreversible” miRNAs is war-
ranted to determine whether they do indeed contribute to
lung tumorigenesis.
The majority of frequently disrupted miRNAs in LUAC

relative to non-malignant lung tissues were commonly
disrupted across all tumor groups, indicating that despite
different smoking histories, common biological mecha-
nisms largely underlie LAUC tumorigenesis. However, we
found smoking status-specific miRNAs that were pre-
dicted to target unique mRNA transcripts, suggesting that
miRNAs may also contribute to mechanisms of LUAC
tumorigenesis specific to distinct smoking environments.
For example, gene targets unique to miRNAs disrupted in
CST, FST or NST could be indicative of the importance of
these miRNAs to LUAC biology specifically in these
groups. Conversely, genes heavily targeted by different
miRNAs distinctly altered in CST, FST or NST may indi-
cate the importance of these genes to LUAC biology, irre-
spective of smoking status.
We acknowledge that the lack of validation of the smok-

ing status-specific miRNA deregulation we observed in ex-
ternal datasets is a limitation of this study. Due to i) small
sample sizes, ii) lack of smoking history annotation, iii)
lack of patient-matched non-malignant tissue profiles for
defining miRNAs as over- or under-expressed in individ-
ual tumors, and iv) use of miRNA expression arrays for



Vucic et al. BMC Cancer 2014, 14:778 Page 11 of 14
http://www.biomedcentral.com/1471-2407/14/778
profiling which drastically reduces the number of mea-
sureable miRNAs, existing external miRNA LUAC expres-
sion datasets are not directly appropriate for validation.
The TCGA, which represents the largest public repository
for LUAC miRNA expression data generated by sequen-
cing, contains a small number of NST (n = 16) and few
patient-matched LUAC tumor and non-malignant profiles.
However, the large number of miRNA sequencing expres-
sion profiles with annotated smoking histories from the
TCGA were integral in enabling smoking status-specific
survival analyses in LUAC patients. We note that our find-
ings may still be limited by small sample size, especially
the CS and NS groups. Another potential caveat to our
study is the large proportion of never smoker patients of
Asian ethnicity. Thus, we stress that validation of our find-
ings in external cohorts is necessary. As the cost and sam-
ple requirements associated with accruing such data
continue to decline, and the importance of considering
smoking status in lung cancer patient management is in-
creasingly appreciated, the availability of large, annotated
lung cancer datasets will undoubtedly grow, enabling val-
idation of our findings.
A large number of lung cancer prognostic genes were

identified as predicted targets for both commonly dis-
rupted and smoking status-specific miRNAs [21]. CST-
specific miR-372 targeted the most lung cancer prognostic
genes and is a known oncogenic miRNA associated with
poor outcome and aggressive disease in multiple cancers;
in lung cancer, it is a strong candidate for use as an early
detection sputum-based biomarker [26,27,51-53]. The nu-
merous mRNA targets of miR-372 were recently described
in a LUAC comparative proteomic analysis, further allud-
ing to the extensive pro-tumorigenic role of this miRNA
in lung cancer [54]. However, despite its frequent overex-
pression in CST (26%), the low variability in miR-372 ex-
pression levels across CST prevented us from statistically
assessing the association between miR-372 expression
levels and lung cancer patient survival in our study.
The degree of overlap between miRNAs and prognostic

mRNA targets was particularly high for miRNAs specific-
ally disrupted in CST or FST. We suspect this is due to
the fact that the lung cancer prognostic signatures we ana-
lyzed were based on typical lung cancer patient cohorts
which contain small numbers of NST. Our findings under-
score the potential clinical significance of miRNAs fre-
quently altered in LUAC and illustrate that disruption of a
small number of miRNAs can potentially introduce an
enormous amount of biological complexity.
In contrast to previous studies where the association

of miRNA expression and survival was conducted in re-
lation to NSCLC histological subtypes, mutational sta-
tus, or tumor stage [36,55-58], we conducted an analysis
of miRNA expression associated with lung cancer pa-
tient survival in relation to smoking status. We identified
numerous miRNAs significantly associated with patient
prognosis in different smoking status groups or in LUAC in
general (Table 2 and Additional file 14). Significantly, sev-
eral of these miRNAs were associated with survival inde-
pendent of tumor stage based on a Cox proportional
hazards multivariate model of patient outcome (Additional
file 16). Of interest, miR-195, miR-138 and miR-150, which
demonstrated recurrent, aberrant expression in a specific
smoking status group, were also significantly associated
with survival in that same group.
Low expression levels of miR-195 are associated with

poor patient prognosis in glioblastoma and colon cancer
[59,60], consistent with the prognostic association we
identified for this miRNA in LUAC of CST. In the con-
text of cigarette smoke and non-malignant lung disease,
miR-138 may have a role in hypoxic pulmonary vascular
remodelling and pulmonary arterial hypertension
through its role in the negative regulation of pulmonary
artery smooth muscle cell apoptosis [61]. A recent study
by Zhang et al. not only validated an anti-tumorigenic
role for miR-138, but also demonstrated that this action
occurred through targeted inhibition of EZH2 by miR-
138 [62]. This study provides independent validation of
our target prediction methods and provides further bio-
logical evidence of the importance of miR-138 to lung
cancer. MiR-150 is a candidate oncogenic miRNA, al-
though its role in lung cancer is ambiguous [63-65]. Sun
et al. report that expression of miR-150 is significantly
downregulated in tumor tissues and embryonic lung tis-
sues compared to normal lung tissues, although prefer-
entially in tumors from smokers [63]. Two additional
studies identified upregulation of miR-150 in lung tumors,
demonstrating a link between lung cancer cell prolifera-
tion and miR-150 through targeted inhibition of TP53
[64,65]. We observed frequent (40%) overexpression of
miR-150 specifically in NST, and found its overexpression
was associated with better prognosis in NS LUAC patients.
Thus, the mechanisms contributing to the prognostic sig-
nificance of miR-150 in LUAC may be related to the biol-
ogy underlying lung tumorigenesis in NS.
It is worthy to note that pending additional external

cohort validation of our findings, the miRNAs we have
identified may serve as clinically relevant biomarkers or
therapeutic targets, as has been demonstrated for nu-
merous miRNAs deregulated in cancer [66-68]. Given
the stability of miRNAs in biological samples such as
blood and the relative ease with which miRNAs can be
extracted from clinical specimens, miRNAs are ideal
molecules to investigate as biomarkers. For instance, if
detectable in surrogate tissues the candidate miRNAs
we have identified as overexpressed could be evaluated
for their potential to detect malignancy in lung samples
such as bronchial brushings or bronchoalveolar lavage
or even in blood. Moreover, it has been proposed that
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miRNAs may represent therapeutic intervention points
[69,70]. For example, miRNA sponges may be used to
“mop up” overexpressed miRNAs to prevent them from
inhibiting their respective mRNA targets, and under-
standing the biological pathways miRNA deregulation
affects could also shed light on new therapeutic strat-
egies. Since the clinical relevance of the candidates we
have revealed could be promising, future studies to
evaluate whether these miRNAs have clinical utility are
warranted.

Conclusions
In conclusion, our study suggests that patterns of miRNA
deregulation promote smoking-specific LUAC biology, but
also highlights shared biology underlying LUAC tumori-
genesis across all smoking and non-smoking groups.
Given the relatively small sample size and the associated
potential confounding factors including ethnicity, which
was not matched across the smoking groups we studied,
external validation of our findings in prospective cohorts
is warranted. Nevertheless, our results reaffirm the extent
to which miRNAs can contribute to the molecular com-
plexity of cancer genomes and suggest that miRNA dis-
ruption may contribute to the differential development
and distinct clinical features observed in CS, FS, and NS
lung cancer patients.
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