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Abstract

Background: Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor,
progesterone receptor and human epidermal growth factor receptor 2. Breast cancers with a BRCA1 mutation are
also frequently triple-negative. Currently, there is a lack of effective therapies and known specific molecular targets
for this aggressive breast cancer subtype. To address this concern, we have explored the cellular responses of
BRCAT1-defective and triple-negative breast cancer cells, and in vitro BRCAT interactions induced by the ruthenium
(I complexes containing the bidentate ligand, 5-chloro-2-(phenylazo)pyridine.

Methods: Triple-negative MDA-MB-231, BRCA1-defective HCC1937 and BRCAT-competent MCF-7 breast cancer cell lines
were treated with ruthenium(ll) complexes. The cytoxoxicity of ruthenium-induced breast cancer cells was evaluated by a
real time cellular analyzer (RTCA). Cellular uptake of ruthenium complexes was determined by ICP-MS. Cell cycle
progression and apoptosis were assessed using propidium iodide and Annexin V flow cytometry. The N-terminal BRCA1
RING protein was used for conformational and functional studies using circular dichroism and in vitro ubiquitination.

Results: HCC1937 cells were significantly more sensitive to the ruthenium complexes than the MDA-MB-231 and MCF-7
cells. Treatment demonstrated a higher degree of cytotoxicity than cisplatin against all three cell lines. Most ruthenium
atoms were retained in the nuclear compartment, particularly in HCC1937 cells, after 24 h of incubation, and produced a
significant block at the G2/M phase. An increased induction of apoptotic cells as well as an upregulation of p53 MRNA
was observed in all tested breast cancer cells. It was of interest that BRCAT mRNA and replication of BRCA1-defective cells
were downregulated. Changes in the conformation and binding constants of ruthenium-BRCAT adducts were observed,
causing inactivation of the RING heterodimer BRCA1/BARD1-mediated E3 ubiquitin ligase activity.

Conclusions: This study has revealed the ability of ruthenium complexes to inhibit cell proliferation, induce cell cycle
progression and apoptosis. Ruthenium treatment upregulated the marker genes involved in apoptosis and cell cycle
progression while it downregulated BRCAT mRNA and replication of HCC1937 cells. Our results could provide an
alternative approach to finding effective therapeutic ruthenium-based agents with promising anticancer activity, and
demonstrated that the BRCAT RING domain protein was a promising therapeutic target for breast cancers.
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Background

Triple-negative breast cancers (TNBCs) are defined by
the lack of expression of an estrogen receptor (ER), a pro-
gesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2). They represent approximately
15% of all breast cancers and account for a higher percent-
age of breast cancer related mortality detected in African
and African-American women [1]. TBNCs share genetic
and morphological abnormalities with basal-like breast
cancer (BLBC), a subgroup of breast cancers defined by
gene expression profiling [2]. Breast cancers with a BRCA1
mutation are also frequently triple-negative and basal-like.
TNBC has important clinical implications including a typ-
ical high grading, and a high rate of proliferation. However,
TNBC has a less favorable clinical outcome in terms of the
nature and progression, compared with other subtypes
of breast cancer. TNBC responds to conventional chemo-
therapy but relapses more frequently than hormone
receptor-positive types, and exhibits poorer outcomes
or prognosis [3]. Poly (ADP-ribose) polymerase (PARP),
EGFR, and mTOR inhibitors are among the therapeutic
agents being studied in patients with TNBC and BRCA1-
associated breast cancers [4]. However, the most recent
outcomes have not been fruitful. In the adjuvant setting,
anthracyclines and taxanes are the drugs of choice for
TNBC patients [5]. Neoadjuvant regimens, including
platinum drugs in combination with taxane, can achieve
high pathologically complete response (pCR) rates in
TNBC [6]. Currently, an approach to the use of platinum
agents, cisplatin and carboplatin to treat TNBC are being
assessed in clinical trials, based on the dysfunction of
BRCA1 and its pathways associated with a specific
DNA-repair defect [7]. TNBC patients with decreased
BRCAL1 expression can be sensitized to cisplatin [8]. In
other word, cisplatin treatment has improved outcomes
for some TNBC patients [9].

Although it is widely used in cancer chemotherapy,
application of cisplatin is somewhat limited because of
its severe toxicity and also because of the development
of drug resistances [10]. Moreover, cisplatin-induced
secondary mutations in the tumors of BRCA1 mutation
carriers have been shown to confer resistance to such a
platinum-based drug [11]. These limitations have conse-
quently motivated extensive investigations into alternative
metal-based cancer therapies. Ruthenium compounds seem
to be the most promising alternatives to platinum com-
plexes for new-generation therapies [12]. Ruthenium com-
pounds offer potential benefits to the antitumor platinum
(IT) complexes such as reduced toxicity, no cross-resistance
and they have a different spectrum of activity. The low
toxicity of ruthenium drugs is attributable to similar
ligand exchange kinetics to those of the platinum(II)
complexes, and different oxidation states under physio-
logical conditions. In addition, ruthenium is capable of
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mimicking iron in binding to carrier proteins such as
transferrin, that has been postulated to be a specific metal
(mainly iron) delivery mechanism to cancer cells that re-
quire higher iron requirement. As a result, ruthenium com-
pounds could be well suited for cancer treatment [12-16].

Several ruthenium compounds have exhibited high
cytotoxicity towards cancer cells and for inducing apop-
tosis [15-17]. In addition, extensive investigations of ru-
thenium-based compounds has mainly focused on the
characterization of ruthenium-DNA adducts [12,18-20]
and has paid less attention to other potential cellular tar-
gets. For ruthenium-based drug candidates, their precise
mechanisms of action as anticancer activities remain com-
paratively unexplored. There is evidence to indicate that
ruthenium compounds might directly interfere with spe-
cific proteins involved in the signal transduction pathways,
cell adhesion and migration processes [21-23]. It has been
demonstrated that cancerous cells with inactivated BRCA1
had a defect in the repair of DNA double strand breaks
(DSBs), and this conferred hypersensitivity towards plat-
inum-based chemotherapy drugs and radiation [24,25].
However, the effect of ruthenium compounds on the
BRCA1-mediated DNA repair pathway remains uniden-
tified, in particular, for a potential therapeutic role of
the ruthenium complexes in targeting BRCA1-mediated
ubiquitination in homologous recombination (HR) repair.
Therefore, it is of interest to consider this metal-based
compound as a therapeutic agent perhaps for aggressive
triple-negative and BRCA1-defective breast cancers (TNBC).
In the present study, we have explored the cellular re-
sponses to metallo-intercalator ruthenium(Il) complexes
with the Clazpy ligand, [Ru(Clazpy),bpy]Cl,.7H,O (1) and
[Ru(Clazpy),phen]Cl,.8H,O (2) (Figure 1) [18], in selected
BRCA1-defective and triple-negative breast cancer cells as
well as by testing the possibility that the N-terminal
BRCA1 RING domain protein was a potential biomolecu-
lar target for these ruthenium-based anticancer agents in
breast cancers.

Methods

Cell culture

The cell lines, including human breast adenocarcinoma
cells [MCF-7 (BRCA1 wild-type, ER positive); MDA-
MB-231 (BRCA1l wild-type, TNBC); and HCC1937
[BRCA1 mutant (5382insC), TNBC], were purchased from
the American Type Culture Collections (ATCC, Rockville,
MD, USA). HCC1937 cells were grown in Roswell Park
Memorial Insititute 1640 medium (RPMI 1640) (Life
Technologies, Paisley, UK) without phenol red. MCF-7
and MDA-MB-231 cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM) (Life Technologies,
Paisley, UK) without phenol red. All media were supple-
mented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin. All cell lines were cultured at a
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Figure 1 Chemical structures of ruthenium(ll) complexes with a
chloro-substituted phenylazopyridine ligand. [Ru(Clazpy),bpy]
Cl,.7H,0 (1) and [Ru(Clazpy),phen]Cl,.8H,0 (2) used in this study.

constant temperature of 37°C in a 5% carbon dioxide
(CO,) humidified atmosphere.

Real-time cell growth profiling

The real time growth kinetics of MCF-7, MDA-MB-231
and HCC1937 cells towards the metal-complex treatments
were examined using the Real-Time Cellular Analyzer
(RTCA) (xCELLigence System, Roche Applied Science,
Mannheim, Germany). RTCA utilizes an E-plate that
contains interdigitated micro-electrodes integrated on
its bottom. The cell number, viability, morphology and
degree of adherence of cells in contact with the electrodes
will affect the local ionic environment leading to an in-
crease in the electrode impedance. This is represented
as the Cell Index (CI) and reflects a calculation (via an
internal system algorithm) of the frequency-dependent
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electrode impedance with or without attached healthy
cells present on the surface of the wells. For each experi-
ment, 100 pL of medium was added into 96-well E-plates
and the background readings were recorded. A cell sus-
pension (100 pL) at a cell density of 5 x 10* cells/well was
added to each well of the E-plate. The attachment, spread-
ing and proliferation of the cells was monitored every
15 min over the following 7 h for the MCE-7 cells and
HCC1937 cells and for 18 h with the MDA-MB-231 cells
(this allows for cell attachment, spreading and cells entering
their logarithmic growth phase). When the cells entered
the logarithimic phase, the plate was removed from the
RTCA machines. The cells were washed once with PBS to
remove any cell debris, and either fresh medium containing
various concentrations of the metal complexes or fresh
medium (control) was added to each well. The plate was
reinserted into the RTCA machine and the proliferation of
the cells were further assessed every 15 min for the next
24 h. After a 24 h incubation time, the medium containing
the metal complexes was removed, the wells were again
washed once with PBS and fresh medium was added to all
wells. The plate was then reinserted into the RTCA
machine for a further 24 h to assess the degree of cellular
recovery in the absence of the metal complexes. Experi-
ments were performed in triplicate.

Cellular uptake and distribution

About 5 x 10° cells were seeded into 75 cm?® cell culture
flasks. The cells were treated with 1 and 2 at their ICsy,
values (Table 1) and then incubated at 37°C in 5% CO,
for 2, 12, 24 and 48 h, respectively. The medium was
removed and washed twice with 5 mL of PBS buffer [26].
The ruthenium content in three fractions (cytoplasm,
mitochondria and nuclear fraction) was analyzed by in-
ductively coupled plasma-mass spectrometer (ICP-MS)
(Agilent Technologies, USA).

Cell cycle analysis

About 10° cells were seeded into 6-well culture plates.
Cells were incubated in the absence and the presence of
the ICs concentration of 1 and 2 for 24 h. Following

Table 1 IC5o values (uM) for 1, 2, and cisplatin on MCF-7,
MDA-MB-231 and HCC1937 cells after 24 h of treatment
(data reflect the mean and + SD of results from three
separate experiments, each performed in triplicate)

Metal 1C50 (M)
complexes MCF-7 MDA-MB-231 HCC1937
Cisplatin 422+8"" 1282+7 " 234+7 "7
1 107406 " 141405 " 99402 """
2 82+01"" 132403 ™" 18+01 "

Statistical significance differences are indicated by *p < 0.01, compared the
ICs values of the same complex on cell lines, and **p < 0.01, compared the
ICs values of the complexes on each cell line.



Nhukeaw et al. BMC Cancer 2014, 14:73
http://www.biomedcentral.com/1471-2407/14/73

incubation the cells were trypsinized, washed twice with
0.5 mL of PBS and centrifuged at 300 g for 5 min and then
10°cells were collected and fixed in cold 70% ethanol at
-20°C overnight. The fixed cells were washed twice with
PBS. The cell pellets were resuspended in 1 mL of PBS
(100 pg/mL of RNase A, 50 pg/mL of PI, and 0.1% of
Triton-X 100), and then further incubated at 37°C in the
dark for 30 min. The fluorescence of 20000 cells was mea-
sured using a FACSCanto flow cytometer. The cell cycle
distribution was analyzed with MultiCycle software. The
proportions of cells in the sub-G1, GO/G1, S, and G2/M
phases were represented as DNA histograms.

Annexin V apoptosis detection assay

About 10° cells were seeded into 6-well culture plates.
Cells were incubated in the absence and the presence of
the ICs5o concentrations of 1 and 2 for 24 h. Following
incubation the cells were trypsinized, washed twice with
0.5 mL of PBS and centrifuged at 300 ¢ for 5 min. The
pellet was resuspended in 100 mL of 1x Annexin-binding
buffer. Alexa Fluor 488 Annexin V, 5 pL, and 1 pL of PI
(100 pg/mL) were added to each cell suspension which
were then further incubated at room temperature for
15 min. Then, 400 pL of 1x Annexin-binding buffer was
added and mixed gently. Annexin V binding was analyzed
on a FACSCanto flow cytometer equipped with a fluores-
cence emission at 530 and 575 nm using a fluorescence
excitation at 488 nm.

Cellular BRCA1 damage using QPCR

About 10° cells were incubated with various concentrations
of 1 or 2 at 37°C for 48 h in 5% CO,. Genomic DNA of the
ruthenium-treated or untreated (control) cells was isolated,
and the 3426-bp fragment of the BRCA1 exon 11 of the
cells was then amplified by PCR, electrophoresed on 1%
agarose gel, stained with ethidium bromide and then visual-
ized under UV light [20]. The quantitative PCR (QPCR)
method was used to assess the polymerase inhibiting effect
of DNA ruthenation. The amplification products were
quantified using a Bio-Rad Molecular Imager, and the
amount of DNA amplification (%) was plotted as a func-
tion of the concentration [20].

Real-time quantitative RT-PCR

The breast cancer cells were plated and cultured in
complete medium and allowed to grow for 48 h followed
by the addition of the ICs, concentrations of 1 and 2.
The cells were further incubated at 37°C. The cells
were harvested and the total RNA was extracted from
cultured cells using the RNeasy® Mini Kit (Qiagen,
Germany). cDNA was obtained by reverse transcription of
total RNA using QuantiTech Reverse Transcription
(Qiagen, Germany). The primer sequences were as follows:
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BRCA1: 5-GCCAGTTGGTTGATTTCCACC-3/
(forward) and 5'-GTCAAATGTGCTCCCCAAAAGC-3/
(reverse)

p53: 5-GGTCTCCCCAAGGCGCACTGG-3/
(forward) and 5'-AGGCTGGGGGCACAGCAGGCC-3’/
(reverse)

p21: 5-GACACCACTGGAGGGTGACT-3' (forward)
and 5-CAGGTCCACATGGTCTTCCT-3’ (reverse)
B-Actin: 5-GGACTTCGAGCAAGAGATGG-3/
(forward) and 5-AGCACTGTGTTGGCGTACAG-3’
(reverse).

Real-time PCR reactions were then carried out in a
total volume of 25 pL including 100 ng of the cDNA
template, 12.5 pL of QuantiFast SYBR green PCR master
mix, and the final concentration of primers of 0.5 pM.
The PCR conditions were as follows: 5 min at 95°C, and
35 cycles of 10 sec at 95°C, 30 sec at 60°C. Fluorescence
was measured during the annealing step on an ABI-Prism
7300 analytical thermal cycler (Applied Biosystems). Data
were analyzed according to the 2:24€ method [27], and
normalized by f-Actin mRNA expression in each sample.
Experiments were performed in triplicate.

Plasmid constructions, expression and purification

The N-terminal BRCA1 RING domain protein containing
the 304 amino acid residues was prepared by PCR-
mediated cloning as previously described [24]. The puri-
fied protein was identified on 12% Coomassie blue-stained
SDS-PAGE and subsequently confirmed by sequencing
the tryptic digested peptides.

Circular dichroism

The N-terminal BRCA1 (1-304) proteins (10 uM) were
prepared in deionized water, according to the Bradford
assay using BSA as standard. ZnCl,, ruthenium polypyri-
dyl complexes (1 and 2) were prepared as 1 mM stock
solutions in deionized water. BRCA1 protein with and
without pre-incubation of 3 mol-equivalent ratio of Zn**
were treated with 1 and 2 at various concentrations.
Metal-dependent folding of the protein was monitored
by acquiring a CD spectrum over a range of 200-260 nm
using a Jasco J720 spectropolarimeter (Japan Spectroscopic
Co., Ltd., Hachioji City, Japan). Measurements of ruthe-
nium complex binding were carried out at 20°C using a
0.1 cm quartz cuvette. The spectrum was averaged from
five separate spectra with a step size of 0.1 nm, a 2 s re-
sponse time and a 1 nm bandwidth. Data were baseline-
corrected by the subtraction of each metal complex
concentration. The secondary structures of proteins were
predicted using the CONTIN program [28]. The effect
of ruthenium complex binding on the protein con-
formation was determined in the absence and presence
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of a 3 mol-equivalent ratio of Zn>* to protein. The binding
constant was determined as described previously [29].

In vitro ubiquitination assay and western bloting

The ubiquitin ligase reactions (20 pL) contained 20 uM Ub,
300 nM E1, 5 uM UbcH5c¢, 3 pg BRCA1 or Ru-BRCA1
adduct, and 3 pg BARDI in a buffer [50 mM Tris
(pH 7.5), 0.5 mM DTT, 5 mM ATP, 2.5 mM MgCl,, and
5 uM ZnCl,]. Two separate reactions were incubated at
37°C for 3 h, and then terminated by adding an equal
volume of SDS-loading dye before electrophoresis on 10%
SDS-PAGE. The separated protein was then transfered to
the PVDF membrane and immunodetected with anti-Hisg
HRP (Horseradish Peroxidase) conjugated (chemilumines-
cent method, QIAGEN) at a dilution of 1:2000 performed
according to the manufacturer’s protocol. The blot was
detected by chemiluminescence (SuperSignal TM, Pierce)
on X-ray film. The relative E3 ligase activity of the BRCA1
adducts was quantified by normalizing the density of an
apparent band of the ubiquitinated-protein conjugates
to that of the parental BRCA1 as the control, using a
Bio-Rad GS-700 Imaging Densitometer.

Data processing and statistical analysis

Values are shown as the standard error of the mean unless
indicated otherwise. Data were analyzed and, where
appropriate, the significance of the differences between
the mean values was determined using one-way ANOVA.
A probability of 0.01 was deemed statistically significant.
The following notation was used throughout: * p <0.01,
relative to control.

Results

Anti-proliferative effects of ruthenium(ll) polypyridyl
complexes with the bidentate ligand 5-chloro-2-(phenylazo)
pyridine

The real-time monitoring of these breast cancer cell prolif-
eration on the 96-well E-plates were monitored at 15 min
intervals from the time of plating until the cells entered
their logarithmic growth phase (Figure 2), following which
the cells were treated with different concentrations of the
metal complexes. After treatment, the cell index (CI) values
were read at 15 min intervals for 24 h. With the MCEF-7
cells, it was observed that there was a rapid decrease in the
CI value that occurred 5 h after treatment with 100 pM,
50 uM, and 10 pM of 2, and a rapid decrease in the CI
value at 15 h after treatment with 100 uM and 50 uM of 1
(Figure 3A). This indicated that MCE-7 cells were sensitive
to both of these complexes but the rate of the responses
was different. In the HCC1937 cells, there was a rapid
decrease in the CI value that occurred as early as a few
hours after treatment with 100 uM, 50 uM, and 10 pM
of 2 and 1, respectively (Figure 3C). However, both
complexes showed a more rapidly decrease in the CI
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value of HCC1937 than for the MCF-7 cells. These results
were supported by the MTT assay that both complexes
had lower ICs, values in HCC1937 than MCF-7 cells
(Additional file 1: Table S1). This indicated that both com-
plexes appear to be more active against the HCC1937
cell lines than the MCEF-7 cells. Furthermore, the MDA -
MB-231 cells that had been treated previously with both
complexes showed a rapid decrease in the CI value, that
occurred as early as a few hours after treatment with
100 M, 50 pM, and 10 uM. However, the MDA-MB-231
cells exhibited more sensitivity to 2 than 1 (Figure 3B).
2 appeared to be more active against MCF-7 and
MDA-MB-231cells than 1, indicating a higher degree
of effectiveness to HCC1937 cells than the MCF-7 or
MDA-MB-231 cells. Moreover, the transient increase
of the CI value in all cell lines that was observed in all
experiments, indicated a change in cell interactions in
response to treatment before induction of cell death.
The ICs5 values at 24 h post-treatment with 1 and 2
for MCF-7, MDA-MB-231, and HCC1937 cells are
summarized in Table 1. To determine whether the metal
complexes have sustained effects on these cells, following
their removal, the cellular recovery was assessed within a
24 h period post replacement of the metal complex
medium with fresh media. The cell lines tested did not
recover from the suppressive effects of both 1 and 2 at the
concentration of 100 pM, 50 uM, and 10 puM, but a transi-
ent recovery was observed at lower concentrations of
these complexes. However, after a few hours of recovery,
the cells did die. MCF-7, HCC1937 and MDA-MB-231
cells still died when the metal complexes were removed
after 24 h. This indicated that irreparable cell damage had
occurred.

Differential cellular accumulation

The distribution of ruthenium in cells after exposure to
1 and 2 is summarized in Figure 4. It was apparent that
both ruthenium complexes reached the nuclear fraction
of the tested breast cancer cells within 24 h of incubation.
It was of interest that, in the HCC1937 cells, 2 entered
and was retained in the nuclear fraction as the largest
portion after 12-48 h of incubation, while 1 deposited
the largest amount of ruthenium atoms in the nuclear
fraction at 48 h of incubation. Our data indicated that
HCC1937 cells have a preferential uptake of 2 rather than
1. The retention of ruthenium atoms in the nuclear
compartment could damage DNA, and ultimately lead
to cancer cell death or apoptosis.

[Ru(Clazpy),phen]Cl,.8H,0 (2) produced a significant
block at the G2/M phase with prominent induction of
apoptosis in triple-negative MDA-MB-231 cells

The effects of the ruthenium complexes at their ICs, on
cell cycle progression were analyzed by propidium iodide
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Figure 2 Real time growth profiling of human breast cancer MCF-7, HCC1937 and MDA-MB-231 cells was examined using the Real-Time
Cellular Analyzer (RTCA) (xCELLigence System, Roche Applied Science, Mannheim, Germany). The results acquired from three separate

3x 10° cells

flow cytometry at 24 h. It was of interest, that treatment  cancer cells. In particular in the HCC1937 cells, a 10-fold
with 2, induced G2/M cell cycle arrest, as evidenced by increase in the population of G2/M cells was observed,
accumulation of cells in the G2/M of all three tested and there was a concomitant increase in the population of
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Figure 3 Real-time monitoring of the ruthenium(ll) polypyridyl complexes, 1 and 2, effects on human breast cancer cells using the
xCEELigence system. Cells [MCF-7 (A), MDA-MB-231 (B), and HCC1937 (C)] were seeded onto the E-plate and allowed to grow prior to the introduction
of the metal complexes at various concentrations. After addition of the metal complexes, cells were allowed to grow for 24 h in the presence of 1 or 2.
The complexes were then removed and fresh medium was added. Cells were then allowed to grow for 24 h to assess the recovery of cell proliferation
after ruthenium treatments. The cell index (Cl) was recorded every 15 min. Each concentration was performed in triplicate.

sub-G1 cells (2-fold). There was no significant alteration
in the S phase observed for the BRCA1-associated breast
cancer cells. However, 1 slightly diminished the number of
MDA-MB-231 and MCEF-7 cells at G2/M (Figure 5). These
results can be interpreted to mean that 1 and 2 have dis-
tinct modulations on the arrest of cell cycle progression.
Ruthenium-induced apoptosis was assessed in all three
tested cancer cells. A prominent induction of apoptosis
was apparent at their ICs, concentrations. A significant in-
crease in apoptotic cells in triple-negative MDA-MB-231
cells was observed with slightly less apoptotic cells in
HCC1937 and MCF-7 cells, respectively (Figures 6 and 7).

Ruthenium (ll) complexes slightly blocked BRCA1
amplification

DNA is a key cellular target for cancer chemotherapy
including platinum-based chemotherapy. Platinum drugs

exert their antitumor effects by binding to DNA, thereby
changing the replication of DNA and inhibiting the growth
of the tumor cells. For ruthenium-based drugs, there has
been some evidence demonstrating an interaction between
ruthenium complexes and DNAs [18,20,30]. Our previous
study has demonstrated that 1 and 2 bound to the specified
DNA fragment of the human breast cancer suppressor gene
1 (BRCA1) through the intercalative mode into the base
pairs of DNA, and the DNA-binding constants (K};,) for 1
and 2 were 7.09 x 10* M and 5.19 x 10> M', respectively.
This data indicated that the binding affinity of these two
complexes to DNA was dependent on the aromatic planar-
ity and hydrophobicity of the intercalative polypyridyl
ligand [18]. We further investigated whether the ruthe-
nium(II) complexes with the bidentate ligand 5-chloro-
2-(phenylazo)pyridine were capable of blocking BRCA1
amplification. To address this question, the QPCR method
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Figure 4 Cellular uptake of 1 and 2 in MCF-7 (A), MDA-MB-231 (B) and HCC1937 (C) cells. MCF-7, MDA-MB-231 and HCC1937 cells were
exposed to an appropriate ICsq concentration of 1 or 2 (Table 1) for 2, 12, 24 and 48 h. The intracellular ruthenium content was subsequently
determined by ICP-MS. Percentage localizing in the cell fragments calculated on the basis that their sum was 100%.

was used to monitor the progress of the DNA poly-
merization. Both 1 and 2 caused a similar reduction of
BRCA1 amplification as the concentration of the ru-
thenium complexes increased (Figure 8). This implied
that both 1 and 2 can blocked the replication of the
BRCA1 gene as the dose increased. It was a surprise
that at equimolar concentrations, this class of ruthenium
(II) polypyridyl complexes caused much more damage
in HCC1937 than in the MCF-7 and MDA-MB-231 cells,
respectively. It was also notable that both ruthenium com-
plexes blocked 50% DNA amplification of the BRCA1

exon 11 of HCC1937 cells at their ICs, concentrations
(Figure 8C, Table 1) calculated by the RTCA assay. The
MCE-7 cells seemed to be slightly more damaged than
MDA-MB-231 cells up to 500 uM (Figure 8A).

mRNA expression induced by the ruthenium(ll) complexes

The real-time quantitative RT-PCR results of mRNA
expression induced by 1 and 2 are shown in Figure 9A
and B. The data indicated that 1 upregulated the expression
of p53 and BRCA1 mRNA in all three cell lines but the ex-
pression of p21 mRNA in the MCF-7 and MDA-MB-231
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Figure 5 Flow cytometric analysis of the cell cycle phase distribution in response to 1 and 2. MCF-7 (A), MDA-MB-231 (B), and HCC1937
(C) cells were treated with appropriate ICsy concentrations of 1 and 2 for 24 h, and the DNA content was then analyzed by propidium iodide (PI)
staining. The results were expressed as a histogram display of their DNA content (x-axis: Pl fluorescence) versus counts (y-axis). The phases of the
cell cycle from the left to the right were sub-G1-phase, GO/G1-phase, S-phase, and G2/M-phase, respectively.

cells was unchanged (p <0.01). 2 upregulated the expres-
sion of p21 and p53 only in the MDA-MB-231 and MCE-7
cells but not BRCA1 mRNA in the BRCAI1-defective
HCC1937 cells (Figure 9C). It could be interpreted that 2
was capable of inhibiting the expression of BRCA1 mRNA.
Of more interest was that the MDA-MB-231 and MCEF-7
cells treated with 2 showed a significant 17-fold increase in
the expression of p53 mRNA compared to the HCC1937
cells. The induction of p53 mRNA expression could be
correlated with the apoptotic cell death. In this situation, it
is likely that these cell lines use p53-dependent apoptosis
pathways [4].

Changes in secondary structure of the N-terminal BRCA1
RING protein induced by metallo-intercalator ruthenium
(I1) complexes

Presently, two main controversial aspects are whether
ruthenium compounds target DNA or proteins. However,
a major limitation in this framework is their unknown
mode of action, and the lack of a specific biological target.
Extensive investigations of the ruthenium-based compounds
has mainly focused on the characterization of ruthenium-
DNA adducts and has paid less attention to other potential
cellular targets. For ruthenium-based drug candidates,
their precise mechanisms of action as anticancer agents
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Figure 6 Ruthenium(ll) polypyridyl complexes induced apoptosis in MCF-7 (A), MDA-MB-231 (B) and HCC1937 (C) cells treated with appropriate
1Cso concentrations of 1 or 2 (Table 1) for 24 h. Flow cytometric profiles of Annexin-V FITC staining in a representative experiment are shown.
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Figure 7 Ruthenium(ll) polypyridyl complexes induced apoptosis in MCF-7, MDA-MB-231 and HCC1937 cells treated with appropriate

1C5o concentrations of 1 (A) or 2 (B) (Table 1) for 24 h. The percentage of apoptotic cells was detected by analyzing for the Annexin

V-FITC and PI binding using flow cytometry.
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Figure 8 DNA amplification of the 3,426-bp fragment of BRCA1 exon 11 after cellular treatment with the ruthenium(ll) polypyridyl
complexes. MCF-7 (A), MDA-MB-231 (B), and HCC1937 (C) cells were treated with various concentrations of 1 and 2 at 37°C for 24 h before
genomic DNA was isolated. Genomic DNA was then amplified with forward/reverse primers for the 3,426-bp fragment of the BRCA1 gene in a
PCR reaction mixture for 30 cycles. PCR products were electrophoresed on 1% agarose gel. The gel was stained with ethidium bromide and
visualized under UV illumination. Amplification products were quantified as described in the materials and methods section. The amount of DNA
amplification (%) was plotted as a function of the drug concentration. The mean + the standard error of experiments realized in duplicate is
plotted. Statistical significance differences from the untreated control are indicated by * p <0.01.
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remain comparatively unexplored. There is evidence to in-
dicate that ruthenium compounds might directly interfere
with specific proteins involved in the signal transduction
pathways, cell adhesion and migration processes [21,22].
However, the molecular mechanism and the signaling
pathways still remain unidentified. Recently, a novel
approach for cancer therapy involved alterations to the
double strand breaks (DSBs) repair processes by which
the cancerous cells with dysfunctional DNA repair path-
ways to accumulate high levels of DNA damage that even-
tually resulted in major genomic instability and cell death
[31-35]. The breast cancer suppressor protein 1 (BRCA1)-
mediated the DNA repair pathway, one of the important
DNA damage response pathways, that plays a vital role in
the maintenance of the genome integrity. Several lines
of evidence have demonstrated that cancerous cells
with inactivated BRCA1 had a defect in the repair of
DSBs [36,37], and this conferred hypersensitivity to the

cancerous cells towards platinum-based chemotherapy
drugs and y-irridation [24,25,38,39]. To our knowledge,
the effect of the ruthenium(II) complexes on a DNA
repair protein BRCA1 has not been studied. Therefore,
it was of great interest to investigate the effect of the
ruthenium(II) complexes with the bidentate ligand 5-
chloro-2-(phenylazo)pyridine, 1 and 2, on BRCA1 binding
and its secondary structure.

Circular dichroism (CD) was used to monitor the con-
formational changes of the N-terminal BRCA1 RING
protein. The CD spectra of the Ru-induced holo-form of
the BRCA1 RING protein (with bound Zn**) showed
similar profiles in shape with some differences in their
amplitudes, and both proteins were maintained and
underwent more folded structural rearrangements after
the metal complex concentrations were increased, as
judged by an increase in the negative CD spectra at 208
and 220 nm. In the present study, a 2-induced BRCA1
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Figure 9 mRNA determination. MCF-7 (A), MDA-MB-231 (B), and HCC1937 (C) cells were treated with appropriate ICs, concentrations of 1 or 2
(Table 1) for 24 h. The transcript abundance of the genes was assessed by a real-time quantitative RT-PCR, normalized with the expression of (3-
Actin and relative to the expression of untreated control cells. Data were analyzed according to the 2 method [27]. All experiments were per-

BRCAIl

RING showed a more enhanced increase in the negative
CD spectra at 208 and 220 nm than for the 1-induced
BRCA1 RING (Figure 10A and B). This indicated that 2
can bind better to BRCA1 than 1. Surprisingly, the CD
spectra amplitudes of the BRCA1 RING proteins were
obviously decreased in their negative CD spectra at 208
and 220 nm at high concentrations of both complexes
(100 uM) when compared with the metal-free BRCA1
protein, and this indicated that both complexes interfered
with the structural folding of the BRCA1 protein and
induced protein aggregation. Based on the CONTIN
program, the secondary structure of BRCA1 RING pro-
teins were predicted (Figure 11A and B). Both complexes
showed a similar increase in a-helical content and a de-
crease of p-sheets of the BRCA1 RING proteins. This indi-
cated that the binding of metal complexes to proteins
perturbed the secondary structure of the BRCA1 protein.
In addition, the CD spectra amplitudes of the BRCA1
RING proteins were obviously decreased in their negative
CD spectra at 208 and 220 nm at high concentrations
of both complexes (100 uM) when compared with the
control untreated proteins. This implied that the chelating
interactions were disrupted, to cause a decrease in the CD
spectra amplitudes of the protein [40,41]. In addition, the

binding constant of the Ru-induced BRCA1 protein was
found to be 6.53 +0.09 x10° M with a free energy of
binding (AG) of —252.95 cal mol™ of the 2-induced and
3.18 + 0.05 x 10° M with the free energy of binding of
679.22 cal mol ™" of the 1-induced, respectively.

The N-terminal BRCA1 protein-mediated E3 ligase is
inactivated by the ruthenium-based drugs

To achieve a potentially targeted therapy with this class
of ruthenium-based drugs, the BRCA1 RING domain
protein has been used for an in vitro functional assay of
BRCA1-mediated E3 ubiquitin ligase activity induced by
1 and 2. The E3 ligase activity decreased as the concen-
tration of ruthenium complexes increased. Both 1 and 2
are promising agents that can interfere with the E3 ligase
activity (Figure 12B and C). However, 2 exhibited a slightly
higher ability to inhibit E3 ligase activity than 1. The E3
ligase activity was reduced by half at concentrations of
50 uM for 2, and 70 uM for 1, respectively.

Discussion

Recently, EGFR, mTOR, and Poly (ADP-ribose) polymerase
(PARP) inhibitors were among the therapeutic agents being
studied in patients with TNBC and BRCAI1-associated
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breast cancers [4]. However, the outcomes of those inhibi-
tors have not been successful. Therefore, the development
of new targeted therapies for TNBC is clearly needed
to help this patient population. It has been reported
that different platinum-based regimens showed higher
chemosensitivity against TNBC compared with other
breast cancer subtypes, both in the neoadjuvant and
metastatic settings [8,42]. In addition, treatment with
platinum-based drugs alone or in combination with other
anticancer compound has improved outcomes for TNBC
patients. However, the platinum drugs are limited by their
severe toxicity and tendency to induce drug resistance
[43]. Furthermore, cisplatin-induced secondary mutations
in the tumors of BRCA1 mutation carriers have been
shown to confer resistance to such a platinum-based drug
[11,44]. For these reason, ruthenium-based drugs are be-
ing developed and have offered potential advantages over
the antitumor platinum(II) complexes including reduced

toxicity, a novel mechanism of action, the prospect of no
cross-resistance and a different spectrum of activity [12].
Several lines of evidence have indicated that ruthenium
polypyridyl complexes inhibit the proliferation of cells
by inhibiting cell proliferation, cell cycle progression
and inducing apoptosis [16,19,45,46].

In this study, we used triple-negative MDA-MB-231,
BRCAI1-mutated HCC1937 and sporadic BRCAl-com-
petent MCF-7 cell lines as models of breast cancer cell
growth and progression. Dynamic evaluation by the
RTCA system showed that 1 and 2 quickly inhibited
the proliferation of MCF-7, MDA-MB-231 and HCC1937
cancer cells within a few hours after treatment with the
ruthenium complexes. This indicated a direct cytotoxic
response towards these complexes. A continuous drop
in the CI was observed at high concentrations of the
complexes. Comparing the ICsq values of 1 and 2, 2
appeared to have a higher cytotoxicity against all three
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Figure 11 The secondary structure and titration curve of the binding of metal complexes to the apo-form of the BRCA1 protein
(without Zn?*). (A) The effect of the ruthenium(ll) complexes on the secondary structures of proteins was predicted by the CONTIN program.
The relative secondary structure of the Ru-BRCA1 adducts at 50 uM of the complexes were plotted. (B) Changes in the ellipticity of the protein at
208 nm with increasing metal concentrations were plotted.

breast cancer cell lines than 1. Each ruthenium complex
was differently absorbed by these cells and had distinct
modulations on the arrest of cell cycle progression. 2
induced a significant block at the G2/M cell cycle arrest
with a pronounced increase in apoptotic cells in the
triple-negative MDA-MB-231 and BRCA1-defective cells.
Our data may be attributed to the larger size, lipophilic
characteristics of the polypyridyl ligand, and thereby
enhancing their passage through the cell membrane. It
has been reported that the intracellular uptake is to a
major extent determined by the carrier ligand [15,18]. The
hydrophobicity of the ruthenium-based drugs could also
minimize the impact of the decreased accumulation of
resistance mechanisms [19]. It has been shown that
NAMI-A [47] inhibited the invasion and metastasis of
cancer cells by arresting them at the G2/M stage and
that it is a likely consequence of the accumulation of
an inactive phosphorylated form of Cdkl, caused by

the lack of Cdc25 phosphatase activity [21]. In addition,
RAPTA-C inhibited cell proliferation by triggering the
G2/M phase cell cycle arrest and the subsequent apoptosis
[22]. Tt is well established that cell cycle progression is a
tightly ordered and regulated process that involves mul-
tiple cellular checkpoints. These checkpoints respond to a
variety of growth and transduction signals of the cells. In
response to DNA damage, the checkpoints delay or stop
in the cell cycle, at critical points before or during DNA
replication (G1/S and intra S) and before cell division
(G2/M).

A significant increase in apoptotic cells in the triple-
negative MDA-MB-231 cells could result from an alterna-
tive breast cancer progression pathway defined through
over-expression of the epidermal growth factor (EGF)-
induced nuclear factor kB (NF-kB) that can be activated
for ER- negative breast cancer cells [48]. NF-«kB controls
the cell-cycle progression by modulating the action of
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Figure 12 In vitro ubiquitination. The reactions, lacking a defined reactant, were incubated at 37°C for 3 h, and assayed for ubiquitin ligase
activities. The reactions were terminated by adding an equal volume of SDS-loading dye before electrophoresis on 10% SDS/PAGE. The separated
protein was then transferred to a PVDF membrane and immunodetected with conjugated anti-Hisg Horseradish Peroxidase. The blot was detected by
chemiluminescence on an X-ray film (see materials and methods). The loading control of E3 ligase activity and an apparent ubiquitination product was
indicated by filled diamond (A). The effects of 1 and 2 on E3 ligase activity were compared with the non-treated control BRCAT1 (B). The relative E3
ligase activity of the BRCAT adducts was quantified by normalizing the density of an apparent band of the ubiquitinated-protein conjugates to that of
the parental BRCAT as the control, using a Bio-Rad GS-700 Imaging Densitometer. The relative E3 ligase activity of the BRCAT adducts (%) was plotted
as a function of the concentration of the ruthenium(ll) polypyridyl complexes (C). The significant reduction of E3 ligase activity of the BRCAT adducts
induced by 1 or 2 was compared using one-way ANOVA ¢ =p < 001), relative to control.

cell-cycle regulatory proteins. In addition, this triple-
negative cell could trigger multiple pathways towards
apoptosis, including those involving endonuclease G,
caspases, and c-Jun N-terminal kinase [49]. MDA-MB-231
cells that lacked ER appeared to be less sensitive to tested
metal-based drugs compared with its counterpart ER-
harboring the MCE-7 cells. This data could be interpreted

to mean that the ER plays a vital role in cell proliferation
and cell viability of breast cancers. In the ER-positive
breast cancer cells, ER exists in an inactive status as a
complex with an inhibitory heat shock protein 90 (hsp90).
Upon estrogen binding, hsp90 is released, and ER converts
to an active conformation that interacts with its respon-
sive DNA element, ERE. This ER-ERE interaction leads to
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the expression of hormone-responsive genes [50]. It was
also a surprise, to find that HCC1937 cells that harbored
a BRCA1 mutation (5382insC) and lacked an estrogen
receptor were 10—20 fold more sensitive than the MDA -
MB-231 cells. This implied that the increase in the
ruthenium sensitivity in BRCA1 defective breast cancer
cells might be related to a dysfunctional BRCA1 that is
unable to repair DNA damage produced by ruthenium
treatment, and ultimately led to breast cancer cell death
[51]. Recently, the loss of BRCA1 led to an increase in
the expression of the epidermal growth factor receptor
(EGFR) in mammary epithelial cells, and inhibition of
EGER prevented ER-negative cancers in BRCA1l-mutant
mice [52].

In cancer cells, damage to the BRCA1l gene by the
ruthenium-based drugs could lead to a loss of its func-
tions and ultimately result in the death of the cancer
cell. To address this concern, we further investigated
whether these metallo-intercalator ruthenium complexes
had any effect on cellular DNA damage that was affected
by the BRCA1 gene. It was a surprise when both ruthenium
complexes at their ICs, values caused a dramatic decrease
in BRCA1 replication in HCC1937 cells while they pro-
duced only slight damage at equimolar concentrations or
even at their ICsy concentration in MCF-7 and MDA-
MB-231 cells. This may be in part due to the biology and
cellular responses of each cancer subtype to ruthenium
treatment [2,53]. This has provided the first evidence with
regard to the inhibition of DNA replication of the BRCA1
gene in BRCA1-defective HCC1937 cells that was induced
by this class of the ruthenium complexes, and this closely
correlated to our previous result performed with the
platinum-based drugs [54]. However, a lower dose of
ruthenium complexes is required than for either cisplatin
or carboplatin to achieve the 50% inhibition of DNA repli-
cation in such a cell line. A higher degree of inhibition of
BRCA1 polymerization was induced by 2 in HCC1937
than in MCF-7 and MDA-MB-231 and this is most
probably linked to the increased accumulation of 2 in
the nuclear compartment of cancerous cells. Consequently,
it can more easily damage the DNA and signal transduction
pathways involved in cell cycle progression and apoptosis.

The quantitative RT-PCR data demonstrated that
treatment with 1, upregulated the expression of p53 and
BRCA1 mRNA in all tested cell lines while 2 slightly
downregulated the expression of BRCA1 mRNA in
BRCA1l-mutated HCC1937 cells. An increase in p53
mRNA reflected cellular responses to DNA-damaging
agents, presumably to allow the cells to perform critical
repair functions prior to passing through the cell cycle
[55]. In this situation, it is likely that these cell lines use
p53-dependent apoptosis pathways [4]. In the present
study, it revealed that 2 did suppress or damage the
BRCA1 gene in the HCC1937 cell lines, and the inhibition
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of transcription by 2 was a critical determinant of cell-
cycle arrest in the G2/M phase because cells could not
synthesize the mRNA necessary to pass into mitosis, and
this eventually led to apoptosis. Low BRCA1 mRNA
expression was correlated with an increased response rate
and median overall survival in cisplatin-based chemother-
apy or chemoradiotherapy [56]. This might lead to an in-
sufficiency of BRCA1 function in cancer cells. In contrast,
the up-regulation of BRCA1 mRNA induced by 1 in both
MCE-7 and MDA-MB-231 cells could partly contribute to
cellular resistance to 1. In addition, the over-expression of
BRCA1 mRNA in MCF-7 cells has also been reported to
have increased resistance to cisplatin [57]. The levels of
BRCA1 mRNA expression predicted outcomes following
cisplatin-chemotherapy [58]. Cancer patients treated
with cisplatin, or those with low or intermediate levels
of BRCA1 mRNA also attained a significantly better re-
sponse, disease-free survival and overall survival than
those with high levels [59,60].

To further characterize whether these ruthenium
complexes affected the BRCA1 protein, we performed
ruthenium-BRCA1 interactions in vitro, and utilized the
N-terminal BRCA1 RING domain protein (1-304 amino
acid residues without mutating BRCA1 that play a vital
role in E3 ubiquitin ligase activity) as a representative of
all breast cancer cell lines used in this study. Our study on
the Ru-BRCA1 interactions indicated that 1 and 2 both
interacted with the holo-form of the BRCA1 protein and
affected the overall conformation of the Zn**-bound
BRCAL. In addition, the effect of 2 was more effective
than 1. This might be attributable to the chemical struc-
ture of the phenanthroline ligand of 2 that is more planar
and hydrophobic than the bipyridyl ligand of 1. However,
this observation is not the explanation for the anticancer
platinum drug cisplatin [29]. In that case the affinity of
Zn** or cisplatin to the holo-form of the BRCA1 RING
protein has been demonstrated to occur in a different
way. The Pt binding to BRCA1 had a binding constant
of 3.00 x10° M, equivalent to that of the Zn** binding
(2.79 x10° M™Y. The calculated free energy of cisplatin
and Zn** bindings were -8.68 and —8.64 kcal mol™, re-
spectively. The difference of the binding constant and free
energy can be explained by the compact structure of the
protein molecule. In addition, changes in the structural
consequences of some protein conformations in the pre-
sence of ruthenium complexes, such as the binding of the
ruthenium(III) complex KP1019 to cytochrome ¢ induced
conformational changes in the protein. This confor-
mational change was subsequently expected to play a vital
role in the biological activity of cytochrome ¢, in particu-
lar, in its ability to induce cell apoptosis [23].

For BRCA1-mediated ubiquitination, a reduction of the
BRCA1 E3 ligase activity by both ruthenium complexes
could reflect an altered interaction between the RING
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heterodimer domains of BRCA1 and BARDI. A slight
difference in the reactivity toward the BRCA1 RING
domain protein may be due to the geometry of each ru-
thenium complex [15]. This observation also agreed
very well with the above mentioned ruthenium binding
to the N-terminal BRCA1 RING domain protein. It is also
notable that inactivation of BRCA1 E3 ligase activity
induced by 1 and 2 was similar to that induced by the
platinum-based drugs [24]. BRCA1 plays a vital role in
the maintenance of genomic integrity through multiple
functions including DNA damage repair, transcriptional
regulation, a cell cycle checkpoint and protein ubiquitina-
tion. Cancerous cells with inactivated BRCA1 had defects
in the repair of DNA double strand breaks (DSBs). These
cells have increased sensitivity to DNA-damaging agents
that eventually result in major genomic instability and cell
death. Several investigations have revealed the relevance
of the BRCA1l-mediated ubiquitination to DNA repair
functions. Mutations in the BRCA1 RING domain re-
sulted in a loss of the E3 ubiquitin ligase activity, and
conferred hypersensitivity of the cancerous cells to chemo-
therapy that causes DNA damage [24,25,61]. Therefore,
targeting the BRCA1 RING domain protein through the
disruption of the BRCA1 E3 ligase activity by this class of
ruthenium complexes might be an effective approach to
eradicate breast cancers. However, future trials need to be
considered before utilizing BRCA1 as a promising thera-
peutic target for breast cancer treatment.

Conclusions

This study revealed the ability of ruthenium complexes
to inhibit cell proliferation, induce cell cycle progression
and apoptosis. Ruthenium treatment upregulated the
marker genes involved in apoptosis and cell cycle progres-
sion while it downregulated BRCA1 mRNA and replica-
tion of BRCA1-defective breast cancer cells. Changes in
conformation and the binding constant of ruthenium-
BRCA1 adducts were observed, causing inactivation of the
RING heterodimer BRCA1/BARD1-mediated E3 ubiqui-
tin ligase activity. Our results could provide an alternative
approach to finding effective therapeutic ruthenium-based
agents with promising anticancer activity, and have identi-
fied the BRCA1 RING domain protein as a promising
therapeutic target for breast cancers.
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