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Abstract

breast cancers.

but not in ER-positive MCF-7 cells.

cancer patients.

Background: Ribonucleotide reductase (RR) is an essential enzyme involved in DNA synthesis. We hypothesized
that RR subunit M2 (RRM2) might be a novel prognostic and predictive biomarker for estrogen receptor (ER)-negative

Methods: Individual and pooled survival analyses were conducted on six independent large-scale breast cancer
microarray data sets; and findings were validated on a human breast tissue set (ZJU set).

Results: Gene set enrichment analysis revealed that RRM2-high breast cancers were significantly enriched for
expression of gene sets that increased in proliferation, invasiveness, undifferentiation, embryonic stem/progenitor-like
phenotypes, and poor patient survival (p < 0.01). Independent and pooled analyses verified that increased RRM2 mRNA
levels were associated with poor patient outcome in a dose-dependent manner. The prognostic power of RRM2 mRNA
was comparable to multiple gene signatures, and it was superior to TNM stage. In ER-negative breast cancers, RRM?2
showed more prognostic power than that in ER-positive breast cancers. Further analysis indicated that RRM2 was a
more accurate prognostic biomarker for ER-negative breast cancers than the pathoclinical indicators and uPA. A new
RR inhibitor, COH29, could significantly enhance the chemosensitivity to doxorubicin in ER-negative MDA-MB-231 cells,

Conclusion: RRM?2 appears to be a promising prognostic biomarker and therapeutic target for ER-negative breast

Keywords: Ribonucleotide reductase, Breast cancer, ER-negative, Prognostic biomarker

Background

Over a million new cases of breast cancer are diagnosed
and ~400,000 deaths occur annually [1]. Breast cancer is a
heterogeneous disease that has variable gene expression
and different outcomes that cannot be predicted by patho-
logic grade or clinical stages [2,3]. A comprehensive gene
expression signature has identified four major molecular
subtypes: luminal A, luminal B, HER2-enriched and basal-
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like breast cancers, which are largely comprised of the
triple negative breast cancer (TNBC) subtype. Each sub-
type has a distinct clinical behavior and response to
therapy [4]. Among the four, the TN and HER2-enriched
subtypes are considered to be ER-negative, and account
for 15-17% and 15-20% of invasive breast carcinomas re-
spectively [5]. Recently, therapies that specifically target
the HER2 receptor have significantly increased the sur-
vival of patients with HER2-enriched breast cancers, and
PARP (poly-ADP ribose polymerase) inhibition holds some
promise as a targeted therapy for TNBC [6,7]. Gene signa-
tures that include the 70-gene signature [8], 21-gene recur-
rence score (commercially developed as Oncotype Dx) [9],
PI3K signature [10], core serum response signature (CSR)
[11], and the grade signature [12], have been developed to
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predict the survival of breast cancer patients, and have
been used to predict the outcome for ER-positive patients.
A 7-gene immune response module (IRM) [13] and a
HER2-derived prognostic predictor (HDPP, 158 genes) [14]
were developed to identify ER-negative breast cancers that
were associated with poor prognosis. Multiple-gene-based
signatures potentially enhance the accuracy of prediction.
However, their disadvantages include higher cost and lack
of specific targets for chemotherapeutic agent selection.

Ribonucleotide reductase (RR) is a rate-limiting enzyme
essential for DNA replication. RR catalyzes the formation
of 2'-deoxyribonucleoside diphosphates from correspond-
ing ribonucleotide diphosphates [15]. Human RR is a
heterodimeric tetramer that consists of two large RRM1
subunits and two small subunits, RRM2 and/or RRM2B
[16]. RRM2 overexpression induces cell proliferation and
invasion [17,18] and is positively correlated with higher
grade and muscularis propria invasion in bladder [19]
and gastric cancers [20]. Previously, we showed that high
RRM?2 expression is a prognostic indicator for poor survival
for several kinds of cancers, including lung and colorectal
cancers [21-23]. RRM2 enhances the invasive capacity of
pancreatic adenocarcinoma cells in a NF-kappaB-dependent
manner [24], and RRM2 overexpression can increase angio-
genesis by down-regulating thrombspondin-1 and increas-
ing production of VEGF [25]. Knocking down RRM?2 also
sensitizes cancer cells to the cytotoxic effects of the nucleo-
side analogs [26]. The RRM2 gene (mRNA) has been in-
cluded in some gene signatures, such as the 3D-culture
signature [27] and Five-gene Molecular Grade Index (MGI)
[28,29], and the prognostic significance of RRM2 mRNA
has been evaluated [30,31]. Independent prognostic signifi-
cance of RRM2 protein needs to be further investigated, and
the prognostic performance of RRM2 (mRNA and protein)
also needs to be compared with other existing breast cancer
biomarkers or gene signatures. Especially, the prognostic
value of RRM2 in ER-negative breast cancers is worth fur-
ther evaluation.

In this study, we evaluated the prognostic value of
RRM2 by analyzing seven independent breast cancer
data sets, both individually and in a pooled manner.
RRM?2 expression was significantly correlated with poor
survival in a dose-dependent manner, particularly for
ER-negative breast cancers. Moreover, the prognostic
value of RRM2 was comparable to the 70-gene signature
and 21-gene recurrence score for breast cancer overall,
and superior to these biomarkers and pathoclinical indi-
cators for ER-negative breast cancers.

Methods
Patients
Microarray data sets

A total of 10 published microarray data sets including:
Ivshina (GSE4922), Chin (E-TABM-158), Wang (GSE2034),
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Pawitan (GSE1456), Desmedt (GSE7390), Expo (GSE2109),
Huang [32], Bild (GSE3143), Sortiriou (GSE2990) and
NKI [33] with clinical annotations were downloaded
from the combined microarray dataset BRAVO (Bio-
marker recognition and validation on-line). The Expo
set was excluded because it lacks survival data. Based
on BLAST results, the data sets of Huang, Bild and
Sortiriou were excluded because of using low similarity
probes (36922_at) (Additional file 1: Figure S1A). The
NKI set was selected for RRM2 prognostic evaluation
because the probe (Agilent Technologies) for RRM2
also is 100% similarity to sequence of > gi|260064012|
ref[NM_001165931.1|, and it contains information of
most gene signatures’ classification. Finally, six independ-
ent microarray data sets include Ivshina [12], Chin [34],
Wang [35], Pawitan [36], Desmedt [37] and NKI [33] were
chosen for this study. The summarized microarray data
sets are shown in Additional file 2: Table S1. The signifi-
cant correlation between signals yielded from two RRM2
probes (201890_at and 209773_s_at) in the Ivshina set
was shown in Additional file 1: Figure S1B (R* = 0.736,
p <0.001). Neither 201890_at nor 209773_s_at corre-
lated with the expression of RRM2B or RRM1 (Additional
file 1: Figure S1C to 1E), indicating that the signal was spe-
cific for RRM2 expression.

ZJU set

The protocol for the use of human tissues was reviewed
and approved by the Institutional Review Board (IRB) of
the Second Affiliated Hospital of Zhejiang University
(ZJU) (Zhejiang, China). Prior to the study, all patients
gave their written informed consent to allow us to use
leftover tissue samples for scientific research. All eligible
participants had received modified radical mastectomy
and the primary tumor samples were obtained from sur-
gical specimens. The exclusion criteria were: 1) no in-
formed consent obtained, 2) multiple cancers, 3) lack of
histological diagnosis, and 4) no follow-up information.
After applying the selection criteria, a total of 175 breast
cancer patients who were diagnosed from 2002 to 2006
were enrolled in the ZJU set (Additional file 2: Table S2).
All patients recruited were Chinese females with a me-
dian age of 50.0 years (range 20—84 years). The pathocli-
nical and demographic data was collected by reviewing
the hospital records. Of the 175 patients, 46 patients
with local advanced breast cancer( Stage IIIA, IIIB and
IIIC) received neo-adjuvant chemotherapy before sur-
gery, 140 patients with positive lympho node or aggres-
sive potential(Including: Age <35, Tumor size equal or
more than 2 c¢m, grade 2-3, lymphovascular invasion ,
and ER/PR negative) were treated with adjuvant chemo-
therapy (primarily an anthracycline-based regimen) and
9 patients with large tumor size (equal or lager than
5 cm) received post-surgical radiotherapy. After surgery,
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all patients in the ZJU set were followed up twice a year
until September 2010. Median follow-up time was
73.6 months (range: 8.9-104.9) for overall survival (OS)
and 71.2 months (range: 2.5-104.9) for progression-free
survival (PES).

Study design

This is a population-based, retrospective outcome study
(Additional file 1: Figure S2). The PFS was defined as
the time from initial surgery until tumor recurrence, in-
cluding local relapse and metastasis. The OS period was
calculated as the time from initial surgery to the date
the patient was last seen. Only deaths from metastasis
and local relapse of breast cancer were considered as the
end of the survival period. According to calculations
conducted using nQuery Advisor 6.01 software, 170
cases would be sufficient for 80% study power with a
two-sided « of 0.05, so the sample size in the ZJU set is
sufficient to reach meaningful conclusions.

To normalize the mRNA expression levels among the
above data sets, we re-stratified the scores of RRM2 and
other related genes in to four grades (Q1, Q2, Q3 and
Q4) based on the percentile for each independently
downloaded data set. For Cox analysis, less than the
value of the median was regarded as RRM2-low, and
greater or equal to the median was RRM2-high.

Gene set enrichment analysis (GSEA)

The detailed GSEA protocol can be obtained from the
Broad Institute Gene Set Enrichment Analysis website
(www.broad.mit.edu/gsea) and related references [38].
The GSEA software v2.0.13 was run using a JAVA 7.0
platform. The dataset (.gct) and phenotype label (.cls)
files were created and loaded into GSEA software, and
gene sets were downloaded from the Board Institute
website. The number of permutation was set to 1000,
and the phenotype label was RRM2-high versus RRM2-
low. The ranked-list metric was generated by calculating
the signal-to-noise ratio, which is based on the difference
of means scaled according to the standard deviation.

Quantitative immunohistochemistry (IHC) assays

The specimen of primary breast cancers specimens in
the ZJU set was assembled and built into a Multiple-
tissue array (MTA) as previously described [22]. Anti-
bodies against RRM2 and RRM2B were previously
generated, selected and tested in our lab [23]. Antibodies
against ER (Clone: SP1), PR (Clone: PgR636), HER2
(Clone: A0485) and Ki67 (Clone: MIB-1) were purchased
from Dako company, and the p53 antibody (Clone: DO-7)
was purchased from Vector Lab. Proteins were stained in
tissue sections from the MTAs using a deparaffinization
and staining protocol previously described [22]. The cut-
off values for ER, PR, HER2 or Ki67 positivity were based
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on previous reports [2,39]. Based on the above IHC stain-
ing, all participants were classified into four intrinsic sub-
types Luminal A, Luminal B, HER2 positive and Basal-like
TNBC [40]. For breast cancers, the CD44*/CD24"°" was
an indicator for the tumor stem/progenitor cells [41].
Double staining of CD44/CD24 was performed using the
Autostainer (Dako) and EnVision G|2 Doublestain System
for Rabbit/Mouse (DAB+/Permanent Red) (Dako) accord-
ing to the manufacturer’s instructions. CD44 was detected
with diaminobenzidine (DAB) and CD24 was detected
with Permanent Red.

RRM2 was located mainly in cytoplasm, but some nu-
clear staining was also observed. The immunoreactivity
in the cytoplasm was scored according to percentage
and intensity of the staining. The staining intensity scored
as 0: negative, 1: weak, 2: moderate, and 3: strong. Because
of heterogeneity of cancer cells, the IHC staining in each
cell was varying. In our score system, only more than 10%
cells of whole cells with positive staining were taken into
consideration. Highest staining staining would be scored
final score. Finally, the expression level of the proteins was
divided into four subgroups: negative (-), weak positive
(+), positive (++), and strong positive (+++). In Cox ana-
lysis, (-) and (+) were defined as RRM2-low, whereas (++)
and (+++) were defined as RRM2-high.

To avoid observer bias, all the slides were evaluated
independently by two different observers with training
in pathology in a double-blind manner. Discrepancies
were jointly reviewed by the two readers, and missing
samples were left blank.

Small interfering RNA, invasion and cytotoxicity assay
RRM?2 and scrambled control siRNA were purchased
from Santa Cruz Biotechnology Inc. Cells were seeded at
2% 10° cells per well in 6-well plates filled with 2 mL
antibiotic-free normal growth medium supplemented
with FBS and then incubated at 37°C in a 5% CO, incu-
bator for 24 hours. A total of 4 pL of 10 nmol/mL
RRM?2 or control siRNA was transfected into MDA-MB-
231 or ZR-75-1 cells by using the transfection RNAi-
MAX reagent (Invitrogen, Carlsbad, CA). Cells were in-
cubated in the transfection medium for 6 hours and
then placed in normal cell culture medium. The inhib-
ition of RRM2 and RRM2B was measured by using
Western blot analysis.

For the invasion assay [22], 2.5 x 10* cells were seeded
on the Matrigel™ (BD company) insert of the 24-well
chamber. After incubation for 72 hours in 5% CO, at
37°C, the top of the Matrigel™ inserts were wiped with a
cotton-tipped swab to remove cells that had not migrated
through the membrane. The cells on the lower surface of
the membrane were stained with 0.5% Coomassie blue
(dissolved in 50% ethanol) and counted. Each experiment
was performed three times.
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Cytotoxicity was assessed using the MTS assay, ac-
cording to the manufacturer’s instructions (CellTiter 96
AQueous Assay reagent; Promega) on 10 replicates of
2,500 cells per well in a 96-well plate treated with test
drugs for 72 hours.

Data management and statistical methods

The database was downloaded, converted, constructed
and managed by using MS-Excel. The JMP 10.0 software
(SAS Institution, Cary, NC) was used for general statis-
tical analysis. Group comparisons for continuous data
were performed using t-tests for independent means or
one-way analyses of variance. Categorical variables were
compared using y2 analysis, Fisher’s exact test or the bi-
nomial test of proportions. Kaplan-Meier analysis and
Cox hazard proportional hazard models were used to
analyze OS and PFS. In PFS analysis, patients with dis-
tant metastatic breast cancer not completely resected
were excluded. Multivariate Cox analysis was applied to
adjust for covariate effects, and stratification analysis was
used to reduce the confounding effect on estimation of
Hazard Ratio (HR). Missing data were coded and excluded
from the analysis. Meanwhile the Comprehensive Meta-
analysis V2 software was used for meta-analysis. A Fixed-
effect model was used to adjusted the HR of RRM2.

Results

Oncofetal characteristics of RRM2 in breast cancers

The GSEA was conducted to determine the correlation
between RRM2 expression and oncogenic pathways in the
Desmedt set. Samples were re-stratified as RRM2-high
(equal or greater than median, n = 80) or RRM2-low (less
than median, n = 79), according to the expression levels of
RRM2 mRNA. Genes that were significantly enriched in
RRM?2-high breast cancer subgroups controlled cancer
undifferentiation, Sarrio’s epithelial-mesenchymal transi-
tion, breast cancer progenitor-like phenotypes, prolifera-
tion gene signature, Chang’s core serum response gene
signature, and the Naderi breast cancer prognosis (up)
gene signature (Figure 1A through 1F). These findings
suggested that RRM2 might be associated with poor dif-
ferentiation and proliferation, and promote the invasive-
ness of breast cancer.

The association of RRM2 protein levels with clinico-
pathological features of breast cancer was analyzed in
the ZJU set. The Figure 2A shows the IHC staining of
RRM2-, +, ++ and +++ samples. Increased RRM2 pro-
tein levels were associated with larger tumor size, posi-
tive lymph nodes and relapse/metastasis (p < 0.05), but
not with patient age or histological type (Additional
file 2: Table S2). CD44*/CD24™°¥ is considered to be the
biomarker for the tumor stem/progenitor cell phenotype
in breast cancers [41]. Representative CD44"/CD24" and
CD44"/CD24™'°% cells are displayed in Figure 2B. The
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high expression of RRM2 protein was significantly cor-
related with CD44*/CD24°""°", a tumor stem/progenitor
cell indicator (Trends p = 0.044), and Ki-67, a prolifera-
tion indicator (p =0.018) (Additional file 2: Table S2,
and Figure 2C and D). In addition, RRM2 levels were
significantly correlated with poorly differentiated breast
cancers (p <0.001) (Figure 2E). Moreover, the percent-
age of RRM2-high in Luminal A, Luminal B/HER2-,
Luminal B/HER2+, TNBC and HER2-positive molecu-
lar subtypes were 46.0%, 55.9%, 70.0%, 65.4% and
66.7%, respectively (Additional file 2: Table S2). It was
indicating that RRM2 protein levels were higher in the mo-
lecular subtypes with poor outcomes. The relation between
RRM2 mRNA levels and molecular subtypes of breast
cancer also could be seen in the Pawitan set (Figure 2F)
(p <0.05).

The prognostic significance of RRM2 for breast cancers

Uni- and multivariate Cox analyses of the data were
used to evaluate the prognostic value of RRM?2 for breast
cancer patient outcome. The analysis of OS and PFS re-
vealed that high levels of RRM?2 were significantly asso-
ciated with poor survival in the Desmedt, Pawitan,
Wang, Ivshina and NKI sets, except in Chin set. The ad-
justed HR values for OS were 2.21(95% CI 1.16-4.24),
0.76(95% CI 0.38-1.49), 2.48(95% CI 1.03-6.36) and 2.31
(95% CI 1.38-4.02) among the Desmedt, Chin, Pawitan
and NKI sets respectively (Table 1), and the adjusted HR
values for PFS were 2.16(95% CI 1.32-3.54), 0.80(95% CI
0.40-1.62), 3.28(95% CI 1.43-7.89), 2.20(95% CI 1.44-
3.39), 2.21(95% CI 1.37-3.64) and 1.96(95% CI 1.31-2.98)
among Desmedt, Chin, Pawitan, Wang, Ivshina and NKI
sets respectively. The HR values from the pooled ana-
lysis were 2.19 (95%CI 1.28-3.49) and 2.34 (95% CI
1.62-3.41) for OS and PFS respectively. Meta-analysis
(Fixed effect model) also yielded similar result (Table 1). It
was revealed that RRAM2 mRNA levels were significantly
associated with poor outcome in breast cancer patients.

RRM?2 was negatively correlated with the survival of
breast cancer patients in a dose-dependent manner.
Kaplan-Meier analysis revealed that RRAM2 mRNA levels
(either 209773_s_at or 201890_at) significantly and
negatively impacted the PFS of breast cancer patients in
the Pawitan and Ivshina sets (Figure 3A and B). As
RRM2 mRNA levels increased, the outcome for the
breast cancer patient became worse, and the relative risk of
death increased in a dose-dependent manner (Figure 3C).
Similar results were also observed for all others except the
Chin set (Additional file 1: Figure S3A to J).

The prognostic performance of RRM2 mRNA levels
was also compared with some of the prognostic gene
signatures and the TNM stage in the NKI dataset. The
Cox analyses revealed that the increase in HR was stead-
ily and significantly correlated with increases in RRM?2
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mRNA levels (Figure 3C). The prognostic performance
of RRM2 was similar to the 70-genes, wound response
genes and 21 gene recurrence score. Also, both the
RRM?2 mRNA levels and the gene signatures were more

efficient prognostic indicators than the TNM stage.

The prognostic significance of RRM2 protein was also
validated in the ZJU set. Multivariate Cox proportional
hazard analysis confirmed that high levels of RRM2 pro-
tein were significantly and negatively associated with OS

cancers

of breast cancer patients. After adjusting for RRM2B, ER,
PR, pre-operation chemotherapy, adjuvant chemotherapy,
radiotherapy and other factors, the HR of RRM2 was 9.84
(95% CI 2.00-80.03, P = 0.003) (Figure 3D and E).

The prognostic significance of RRM2 in ER-negative breast

ER-negative breast cancers (including the HER2-positive
and TNBC subtypes) have poorer prognosis [48]. A
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(See figure on previous page.)

Figure 2 RRM2 is a potential progenitor-like biomarker for breast cancer. Protein expression levels of RRM2 and other markers were
determined by immunohistochemical (IHC) staining. The representative images are: A) multiple staining with CD44/CD24, ki-67 and RRM2,

B) CD447/CD24" sample negative for ki-67 and RRM2 in the left panel, CD44"/CD24 Slow positive for ki-67(+) and RRM2 (+) in right panel. RRM2 is
correlated with CD**/CD24”°" and ki-67, as shown in (C) and (D), respectively. (E) RRM2 expression was significantly associated with poor
differentiation. (F) RRM2 was highly expressed in Luminal B, HER2-positive and TNBC molecular subtypes.

Kaplan-Meier analysis of the Pawitan set revealed that
RRM?2 mRNA levels, similar to uPA, which is a validated
prognostic biomarker for ER-negative breast cancer [49],
were significantly associated with poor OS and PFS in a
dose-dependent manner in ER-negative, but not ER-
positive, breast cancers (Additional file 1: Figure S4).
Pooled analysis results also suggested that RRM2 mRNA
levels were significantly correlated with poor OS and
PES (Figure 4A and B). Further multivariate Cox analysis
indicated that the HR value for OS increased steadily as
the levels of RRM2 increased in the ER-negative, but not
in ER-positive, subgroup (Figure 4C). For PFS, RRM?2
was prognostic for poor survival in both the ER-negative
and ER-positive breast cancers, but was more significant
for the ER-negative breast cancers (Figure 4D). Similar
results were also seen from the ZJU set. A multivariate
Cox analysis indicated that the protein levels of RRM2
were significantly associated with poor OS in the ER-
negative subgroup (n =64, HR =22.4, 95% CI 2.2-285.0)

(Figure 4E), but not in the ER-positive subgroup (n =96)
(Figure 4F).

The prognostic value of RRM2 for the HER2-positive
and TNBC subtypes was also evaluated. In the ZJU set, a
total of 12 HER2-positive breast cancer and 28 TNBCs
were identified. Among these patients, none of the RRM2-
low cases (n = 15) died of breast cancer during the follow-
ing up period (Log rank P =0.025). However, due to the
small number of cases there was no statistical significance
in the HER2-positive or TNBC subsets when separated.

Prognostic performance of RRM2 in ER-negative breast
cancers

The efficiency of RRM2 in predicting the outcome for
patients with ER-negative breast cancer was compared
with other prognostic markers for this subtype including
ki-67, HER2, tumor invasiveness, lymph node involve-
ment, distant organ metastasis, Elson histological stage
and uPA. The uPA marker has been reported as a powerful

Table 1 Uni- and multivariate analysis for RRM2 and survival in microarray data sets

Data set Overall survival

Progression-free survival

HR (95% Cl)

Adjusted HR (95% Cl)*

HR (95% Cl) Adjusted HR (95% CI)*

Desmedt set
227 (1.32-4.04)*

Chin set
0.690 (0.37-1.29) 0.76 (0.38-1.49)
Pawitan set
310 (1.59-649) 248 (1.03-636)"
Wang set
N/A N/A
lvshina set
N/A N/A
NKI set

341 (209-581)F
Pooled Analysis

209 (1.26-349)
Meta analysis*

211 (157-2.83)F

221 (1.16-4.24)

2.31 (1.38-4.02)*

2.19 (1.28-3.79)

178 (1.28-248)"

1.75 (1.15-2.68) 2.16 (1.32-3.54)*

0.80 (0.41-1.54) 0.80 (0.40-1.62)
365 (1.85-7.87)° 3.28 (143-7.89)*
2.14 (143-3.26)F 2.20 (1.44-3.39)*
233 (145-3.84)" 221 (137-3.64)F
246 (1.69-3.64)F 1.96 (1.31-2.98)*
232 (1.72-3.14)F 234 (162-341)

2.06 (1.70-2.50)* 1.99 (1.62-2.46)"

Note: Uni- and multivariate analysis were conducted to evaluate HR of RRM2 (high vs. low).

*For multivariate analysis, HR was adjusted by age, ER status, Elston Grade in the Desmedt set; In the Chin and Ivshina data sets, HR was adjusted by age. In the
Pawitan set, it was adjusted by Elston grade, ER and HER2 status. For the Wang set, HR was adjusted by ER status. The NKI set was adjusted by age and grade.
*The meta analysis was conducted unsing Comprehensive Meta-Analysis V2 software with a Fixed —effect model.

TStatistical significance, P < 0.05; *Statistical significance, P < 0.01.
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Figure 3 The prognostic significance of RRM2 for the public breast cancer microarray data sets and the ZJU set. Kaplan-Meier analysis for
RRM2 mRNA levels and PFS of breast cancer patients in the Pawitan set (A) and Ivshina set (B). Breast cancer patients were stratified into four
subgroups based on their RRM2 expression levels. Q1 was 0 to the 25th percentile; Q2 was the 25th percentile to the median; Q3 was the median
to the 75th percentile; and Q4 was the 75th percentile to the maximum. The subgroups of Q1, Q2, Q3 and Q4 represent mRNA of RRM2 from
low to high. The method used to stratify is described in Materials & Methods. The Cox analyses for RRM2, the 70-gene signature, wound-response
gene signature, 21-gene recurrence score and TNM stage are shown for the NKI set (C). The protein expression levels of RRM2 in the ZJU set were
determined by IHC and the standard scores are shown in (D). Multivariate Cox analysis for RRM2 levels and OS are shown in (E). * P < 0.05; **P < 0.01.

J

prognostic predictor of breast cancer [49] and its perform-
ance was comparable to the Immune Response Module
(IRM, 7 genes) and HER2- Derived Prognostic Predictor
(HDPP, 158 genes) signatures [14]. In the pooled dataset,
the HR of RRM?2 increased steadily in a dose-dependent
manner both for OS and PFS (Figure 5A and B). It was
comparable to distant organ metastasis for the analysis of
both OS and PFS. Furthermore, RRM2 was more accurate
than ki-67, HER2, lymph node involvement, tumor grade
and uPA for classifying a subgroup of ER-negative breast
cancer patients that were at higher risk. Similar results
were obtained using the ZJU set (Figure 5C). However, be-
cause there are no data about distant metastasis in the ZJU
patient set, we could not make this comparison.

Inhibition of RRM2 reduced invasion ability and enhanced
the drug sensitivity to doxorubicin in ER-negative breast
cancer cells

The above findings suggested that RRM2 inhibitors
might be a promising anti-cancer agent for reducing in-
vasion ability and enhancing the chemosensitivity in ER-
negative breast cancers. Here, the RRM2 siRNA was
used to inhibit the expression of RRM2 in MDA-MB-
231(ER-negative) and ZR-75-1(ER-positive) breast cancer
cell lines. It was shown that the protein expression levels
of RRM2 were significantly reduced by RRM2 siRNA in
both cell lines (Figure 6A). As with inhibition of RRM2,
the invasion abilities of cells were significantly reduced
about 50% in both MDA-MB-231 and ZR-75-1 cells
(p<0.05) (Figure 6B and C). This phenomenon also
could be seen in MCF-7, another ER-positive breast
cancer cell line (Data not shown). This is compatible
with our previous findings [23,50].

A novel RR inhibitor, COH 29, was reported to inhibit
RR activity by blocking RRM2 binding to RRM1, thus
inactivating the RR holoenzyme [51]. Here, we have pre-
liminarily demonstrated that inhibition of RRM2 by
COH29 could significantly reduce the growth of MCF-7
and MDA-MB-231 breast cancer cells. Also, we found
that COH29 also could significantly enhance the chemo-
sensitivity of breast cancer cells to doxorubicin in ER-
negative MDA-MB-231 cells, but not in ER-positive
MCE-7 cells (Figure 6D). This synergetic effect also

could not be seen in ZR-75-1 cells (Data not shown).
Therefore, the RRM2 might be served as a therapeutic
biomarker for application of RR inhibitor to treatment
of ER-negative breast cancers.

Discussion

A recent investigation demonstrated that the reproduci-
bility of current preclinical cancer researches was only
11% [52]. A similar result was also seen in another re-
port [53]. Therefore, third party validations play a very
important role in proving the reliability of research re-
sults. Open access public microarray databases provided
an opportunity for researchers to validate their findings
in a non-biased platform. Here, we demonstrated that
RRM?2 impacted the survivability of breast cancer patients
in 6 of 7 independently microarray data sets (except Chin’s
set), which indicates the high reproducibility of this result.
The reason why RRM2 did not impact poor survival in
Chin’s set might be of the small sample size (only 118
cases), which did not have enough power to detect signifi-
cant differences. We showed that increased RRM?2 expres-
sion was accompanied by increased expression of other
widely used biomarkers and gene sets of proliferation,
undifferentiation, and stem/progenitor phenotypes. The
role of RRM?2 in malignancy has been demonstrated in
several solid cancers including bladder [19], pancreatic
[54], gastric [20] and colorectal cancers [23], and has been
attributed to increased proliferation and invasion [20].
Previously, gene expression profiling has uncovered mo-
lecular signatures that influence the choice for breast can-
cer treatment. Four distinct subgroups are characterized
by different gene expression patterns and show diverse
epidemiologic, histopathology and clinical features, re-
spond to different therapeutic strategies. Multiple stud-
ies have shown the outcomes are much poorer for
patients with ER-negative breast cancer [8]. This study
demonstrated that either protein or mRNA of RRM2
was highly expressed in the molecular subtypes of
TNBC, HER-2 positive and Luminal B, which were sub-
types with relative poorer outcome. The protein expres-
sion of RRM2 was also positively and significantly
associated with CD44"/CD24”'°%, a tumor stem/pro-
genitor cell biomarker. In addition, RRM2 levels were
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Figure 4 Prognostic value of RRM2 in ER-negative breast cancers. For the public breast cancer microarray data, we pooled all eligible breast
cancers after normalizing. We performed Kaplan-Meier analysis of RRM2 for the OS (A) and PFS (B) of breast cancer patients. Cox proportional
analysis results are shown for OS and PFS in (C) and (D). Findings were verified in the ZJU set. The prognostic performance of RRM2 for ER-negative

and ER-positive breast cancers is shown in (E) and (F), respectively.

significantly correlated with poorly differentiated breast
cancers (p <0.001). Overall, RRM2 was significantly re-
lated to aggressiveness and associated with poor out-
come in breast cancers, especially in ER-negative breast
cancer. These findings were validated in many inde-
pendent studies including participants with different
genetic and socio-economic background, which indi-
cates the reliability of this study. In 3D-signature study,
the RRM2 could not impact poor survivability in ER
negative breast cancer [27]. This is because there were
insufficient ER negative samples in their study.

Currently, prognostic/predictive factors including pri-
mary tumor size, lymph node stage, histological grade
and hormone receptor status are used routinely in clin-
ical practice to choose systemic therapies [55]. However,
breast cancers are significantly heterogeneous even be-
tween patients whose tumors have similar clinical and
pathological characteristics. Therefore, distinguishing pa-
tients who will be more prone to relapse and will need
more intensive therapy is an urgent problem for oncolo-
gists. Based on high throughput gene expression, a series
of multiple gene signatures have been developed for pre-
dicting the survival of breast cancer patients. RRM2 also
has been included in some gene signatures [27-30].
Overall, our data also indicate that the 70-gene, 21-gene
recurrence score and wound-response gene signatures
are more efficient than TNM stage for predicting patient
outcome. Although multiple-gene-based signatures sig-
nificantly enhance the accuracy of prediction, they also
dramatically increase the diagnostic cost. Interestingly,
the prognostic performance of RRM2 was comparable to
all of the above gene signatures for breast cancers overall
in the NKI set. Furthermore, RRM2 was more accurate
for predicting the outcome of patients with ER-negative
breast cancer than uPA, Ki-67, HER2 and Elson grade.
Therefore, determining the RRM2 mRNA or protein
levels could be more accurate and cost-effective for pre-
dicting the outcome of patients with ER-negative breast
cancers.

Out of all breast cancers diagnosed, approximately
15% to 20% are HER2-enriched and another 15%-17%
are TNBC [48]. These two types typically experience a
poorer prognosis than the ER-positive subtypes and bio-
markers predicting their prognosis and therapeutic re-
sponse are urgently needed. Several studies have revealed
that RRM2 expression is also related to resistance to
gamma radiation and chemotherapeutic agents [56,57],

which is presumably due to the essential role of RRM2 in
DNA repair [58]. Many studies have shown that using
small interfering RNA (siRNA) to inhibit RRM2 overex-
pression significantly reverses cancer cell resistance to
chemotherapy agents and gamma radiation [56,57]. In a
previous study, we demonstrated that using hydroxyurea
to inhibit RRM2 significantly enhanced the chemosensitiv-
ity of KB cells (a head and neck cancer cell line) to gemci-
tabine [59]. Cell culture studies also indicate that
expression of siRNAs targeting RRM2 significantly re-
duced the invasion ability in MDA-MB-231 and ZR-75-1
breast cancer cells, which was consistent with our previ-
ous studies on other cancers [23,50]. Similar to the way
that HER?2 is used to identify subtypes that are likely to re-
spond to trastuzumab, RRM2 may be a predictive marker
that can stratify the more fatal types of ER-negative breast
cancers to identify breast cancer subtypes that will re-
spond to RRM2 inhibitors. Alternatively, sorting patients
who have ER-negative breast cancers according to their
levels of RRM2 expression may prevent over-treatment of
the low expressers. The COH29 is a newly developed RR
inhibitor that inhibits RR activity by blocking RRM2 bind-
ing to RRM1, thus inactivating the RR holoenzyme [51].
Here, our pilot study indicated that inhibition of RRM2 by
COH29 could significantly reduce the growth of breast
cancer cells. Also, it could significantly enhance the sensi-
tivity of MDA-MB-231 (ER-negative) cell to doxorubicin,
a common therapeutic agent for breast cancers. Neverthe-
less, we will perform further clinical trials using novel
RRM?2 inhibitors (such as RRM2 siRNA nanoparticles
and COH29) to address this hypothesis. According to
our data, further investigating and understanding the
effect of RRM2 expression on breast cancer malignancy
could lead to a novel approach for treating ER-negative
breast cancers.

Conclusions

Our study revealed RRM2 was not only an indicator for
breast cancers’ proliferation and invasiveness, but also a
biomarker for undifferentiation and stem/progenitor-
like phenotypes. The prognostic performance of RRM?2
was superior to the current pathology stages and bio-
markers in ER-negative breast cancers. Targeting on
RRM?2 might be a promising therapeutic method to en-
hance the chemosensitivity for ER-negative breast can-
cer patients.
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