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Xiaoshan Feng'", Ying Wang', Zhikun Ma'", Ruina Yang', Shuo Liang', Mengxi Zhang', Shiyuan Song’,
Shuoguo Li', Gang Liu'", Daiming Fan®" and Shegan Gao'~

Abstract

Background: An increasing body of evidence indicates that miRNAs have a critical role in carcinogenesis and
cancer progression; however, the role of miRNAs in the tumorigenesis of adencarcinoma of gastric esophageal
junction (AGEJ) remains largely unclear.

Methods: The SGC7901 and BGC-823 gastric cancer cell lines were used. The expressions of miR-645 and IFIT2
(Interferon-induced protein with tetratricopeptide repeats 2) were examined by gRT-PCR, The expressions of IFIT2
was examined by western blotting and immunohistochemistry assay. The cell apoptosis was determined by FACS.
MiR-645 inhibitor, mimics and plasmid-IFIT2 transfections were performed to study the loss- and gain-function.
Caspase-3/7 activity was examined by caspase-3/7 assay.

Results: In the present study, we have reported an increased expression of miR-645 in AGEJ clinical specimens
compared with paired non-cancerous tissues. We also observed a significant miR-645 up-regulation in two gastric
cancer (GC) cell lines, SGC7901 and BGC-823, which were used as cell models because there was no available AGEJ
cell lines established to date. We found that inhibition of miR-645 could sensitize dramatically SGC7901 and
BGC-823 cells to both serum starvation— and chemotherapeutic drug-induced apoptosis by up-regulating IFIT2, a
mediator of apoptosis via a mitochondrial pathway, with a potential binding site for miR-645 in its MRNA’s 3’UTR.
Further investigation exhibited that IFIT2 expression decreases in SGC7901 and BGC-823 cells and AGEJ tissues. IFIT2
ectopic expression leads to promotion of cell apoptosis, indicating that IFIT2 may function as a suppressor in the
development of AGEJ. Furthermore, inhibition of miR-645 induces up-regulation of IFIT2 and increased caspase-3/7
activity compared with control groups.

Conclusions: Our data suggest that miR-645 functions as an oncogene in human AGEJ by, at least partially through,
targeting IFIT2.
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Background
Recent studies have suggested that adencarcinoma of gas-
tric esophageal junction (AGE]) is distinct from that of
distal stomach, with different risk factors, tumor charac-
teristics, and biological behavior [1-4]. Moreover, the inci-
dence of AGE] has been increasing over the past 30 years,
especially in United States and north China [5-9].
microRNAs (miRNAs) are a group of endogenously
expressed, non-coding small RNAs, 20-25 nucleotides
in length, which are known to negatively regulate gene
expression through suppressing translation or decreas-
ing the stability of mRNAs by directly binding to the 3'-
untranslated region (3'-UTR) of target mRNAs [10,11].
Accumulating evidence indicates that miRNAs have im-
portant roles in regulating physiological and pathological
processes, including development [12], metabolism [13],
cell proliferation [14], differentiation [15] and apoptosis
[16]. In addition, aberrant post-transcriptional regulation
of mRNAs by miRNAs is related with tumorigenesis
[17,18]. The abnormal expression profiles of miRNAs have
been reported to be detected in various types of human
tumors including lung [19], breast [20], prostate [21], liver
[18], colon [22] and gastric cancer [23]. Moreover, some
miRNAs can act as oncogenes [24-26] or tumor supres-
sors [27,28] by regulating the expression of their target
genes which have important roles in some key pathways
involved in cell cycle progression, apoptosis or prolifera-
tion. miRNAs down-regulated in tumour specimens such
as miR-22 [29,30], miR-101 [31,32], and miR-7 [33,34]
usually function as suppressive miRNAs, while miRNAs
upregulated in tumour specimens such as miR-17 [35,36],
and miR-21 [37,38] usually exert oncogenic roles. These
studies suggest that dysregulation of miRNAs is frequently
involved in carcinogenesis and cancer progression.

A recent study has indicated that miR-645 may exert the
tumor suppressor role in advanced serous ovarian cancer
for miR-645 is negatively associated with overall survival
of it [39]. In the present study, we found that miR-645 ex-
pression was significantly increased in AGEJ clinical speci-
mens compared with paired non-cancerous tissues using
microRNA chips. However, the role of miR-645 in the
tumorigenesis of AGE] has not been studied yet. Further
study showed that miR-645 was also significantly up-
regulated in two gastric cancer (GC) cell lines, SGC7901
and BGC-823, which were used as alternative cell models
in the present study. Inhibition of miR-645 in SGC7901
and BGC-823 cells significantly suppressed the apoptosis
of SGC7901 and BGC-823 cells in the condition of serum
starvation or chemotherapeutic drug by up-regulating
IFIT2, a mediator of apoptosis, with a potential binding
site for miR-645 in its mRNA’s 3'UTR. The expression
pattern of miR-645 and IFIT2 in AGE] clinical samples
were negatively correlated, further suggesting that IFI72 is
a target gene of miR-645. Moreover, inhibition of miR-645
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results in increased caspase-3/7 activity, which is activated
by IFIT2. In this study, we investigated whether miR-645 is
up-regulated in human adencarcinoma of gastric esopha-
geal junction and inhibits apoptosis by targeting tumor
suppressor IFIT2.

Methods

Ethics statement

For tissue samples, written informed consent was obtained
from patients. The procedures used in this study were ap-
proved by the Institutional Review Board of the Henan
University of Science and Technology and was conformed
to the Helsinki Declaration, and to local legislation.

Cell lines and culture conditions

Gastric cancer cell lines SGC-7901, BGC-823 and im-
mortalized normal gastric epithelial cell line, GES-1
were kindly bestowed by Prof. Daiming Fan. All the cell
lines were maintained in our institute according to recom-
mended protocols. Cells were cultured in RPMI-1640
medium (Invitrogen, Carlsbad, CA, USA) supplemented
with 10% fetal bovine serum (FBS) (Invitrogen, Carlsbad,
CA, USA) at 37°C in a 5% CO2 incubator.

Human specimens

All experimental procedures were approved by the Institu-
tional Review Board of the Henan University of Science
and Technology. Written informed consent was obtained
for all patient samples. Human AGE] specimens (n =43)
and patient paired non-cancerous specimens were ob-
tained from patients at the first affiliated hospital, Henan
University of Science and Technology, with informed
consent from each patient.

RNA purification, cDNA synthesis, and quantitative real-
time PCR (qRT-PCR)

Total RNA of cultured cells was extracted with TRIzol re-
agent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s protocol and RNAs were stored at —80°C
before qRT-PCR analysis. Mature miR-645 expression was
detected using a mirVana TM qRT-PCR miRNA Detection
Kit (Ambion Inc. Austin, Texas), with U6 as an internal
control. IFIT2 expression was detected with primers F:
5'AGCGAAGGTGTGCTTTGAGA 3, R: 5’GAGGGT
CAATGGCGTTCTGA3" (product length: 125 bp; Tm:
60°C; GC%: F-50%, R-55%; start-end: 643-748 bp) and
GAPDH was used as an internal control. PCR products
were separated on an ethidium bromide-stained 1.5%
agarose gel and visualized with UV.

Cell transfection

The human miR-645 duplex agomir (400 nM), antago-
mir (400 nM) and negative control were designed and
provided by Ribobio (Guangzhou, Guangdong, China).
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Plasmid-IFIT2 and the negative control plamid were pur-
chased from Ribobio Inc (Guangzhou, Guangdong, China).

miRNA target prediction

To find potential miRNA target genes, TargetScanHu-
man website (http://www.targetscan.org/) was used, the
binding free energy was calculated and biding sites were
analyzed using http://bibiserv.techfak.uni-bielefeld.de/
rnahybrid website.

Vector constructs and luciferase reporter assay

To construct IFIT2-3'UTR plasmid, a wild-type 3'-UTR
fragment of human IFIT2 mRNA (1226-1233 nt, Gen-
bank accession no. NM_001547.4) containing the putative
miR-645 binding sequence was amplified by RT-PCR and
cloned into the site between Xho I and Not I downstream
of the luciferase reporter gene of the psiCHECK™ vector
(Promega, USA). A mutant of the single miR-645 binding
site (5'- AGCCTAG -3’ to 5'- TCGGATC -3’) in the 3'-
UTR of IFIT2 was included by Site-Directed Mutagenesis
Kit (SBS Genetech, Beijing, China). Wild and mutant types
of pmirGLO-IFIT2-UTR vectors were validated by DNA
sequencing.

The nucleotide sequences of primers for IFIT2-3'UTR
(WT) clone:

IFIT2XholF2: 5'CCGCTCGAG AGAATAGAGATGTG
GTGCCCACTAGGCTACTGCTG 3.

[FIT2NotIR2: 5'ATAAGAATGCGGCCGC TTAAAATG
GAATCAGTGACTTTTATTTCTCATAACAGAG 3'.

The nucleotide sequences of primers for IFIT2-3'UTR
(MT) clone:

mutlFIT2F2: 5'TTCTAGGTAGATGCTGAATTCGGA
TCACATCAAAGTTGGTGTGAAC 3.

mutlFIT2R2: 5'"GTTCACACCAACTTTGATGTGATC
CGAATTCAAGEJTCTACCTAGAA 3.

Cells were transfected with the miR-645 mimics, NC
and pmirGLO plasmid in 24-well plates using lipofecta-
mine™ 2000 (Invitrogen) according to the instructions.
48 h later, cells were harvested and analyzed for lucife-
rase activity using the Dual-Luciferase Reporter Assay
System (Promega, USA) and detected by the GloMaxTM
20/20 detection system (E5331, Promega).

caspase-3/7 assay

The activity of caspase-3 and caspase-7 was detected in
96-well format (2 x 10° cells/well) using the Caspase-Glo
3/7 Assay (Promega) according to the instructions. 100 pL
Caspase-Glo 3/7 reagent were supplemented into each
well and then incubated at room temperature for 1 h fol-
Iwong the luminescence was detected using the M200
microplate fluorescence reader (Tecan). The background
luminescence associated with cell culture and assay re-
agent (blank reaction) was subtracted from experimental
value.
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MTT assay

Cells were transfected with 100 nM miR-645 inhibitor
(Genepharma, Shanghai, China), mimics (Ribobio Inc.,
Guangzhou, Guangdong, China) or 100 nM plamid-IFIT2
(Ribobio Inc., China). Twenty-four later, cells were seeded
in 96-well plates (2 x 10*/well). The viability of cells was
examined by MTT (3-2, 5-diphenyl tetrazolium bromide)
assay (Sigma, USA) according to instructions at designated
time.

Western blotting

Total protein from cultured cells were lysed by Lysis Buffer
containing PMSF on ice. Then protein were electropho-
resed through 12% SDS polyacrylamide gels and were then
transferred to a PVDF membrane (Millipore). Membranes
were blocked with 5% non-fat milk powder at room
temperature for 1 h and incubated overnight with primary
antibodies. Membranes were incubated with secondary
antibodies labeled with HRP for 1 h at room temperature
after three 10 min washes in TBS-T (triethanolaminebuf-
fered saline solution with Tween). Finally, the signals were
detected using ECL kit (Pierce Biotech., Rockford, IL,
USA) and the membranes were scanned and analyzed
using a Bio-Rad ChemiDoc XRS +imaging system with
imaging software (version quantity 1). The protein expres-
sion was normalized to an endogenous reference (Tubulin)
and relative to the control. The Spectra multicolor broad-
range protein ladder (Fermentas) was used as molecular
marker. All the antibodies used in western blot assay are
listed in Additional file 1: Table S1.

Immunohistochemistry and immunohistochemical scoring
Paraffin sections, 4-pm in thickness, were baked for 2 h at
65°C and deparaffinized. Antigen retrieval was performed
using citrate sodium buffer (PH 7.2) at 95°C for 15 minutes
and then slides were cooled at room temperature for
30 minutes. After being treated with 3% hydrogen perox-
ide for 15 minutes to block the endogenous peroxidase,
the sections were treated with normal goat serum confi-
ning liquid for 30 minutes to reduce non-specific binding
and then rabbit polyclonal anti-IFIT2 (1:500, HPA003408,
Sigma-Aldrich. Shanghai, China) was incubated the sec-
tions for 12 h at 4°C. After rewarming for 1 h and washing
for 5 times, sections were incubated with secondary anti-
body for 30 minutes at room temperature. Diaminobenzi-
dine (DAB) was used for color reactions. Subsequent
immunohistochemical staining was scored as previously
described [40].

Statistical analysis

Data were expressed as Mean + SD of three independent
experiments. For statistical tests, SPSS statistical software
package, version17.0 (SPSS, Chicago, IL, USA) was used.
The student’s t-test, the one-way ANOVA and two-way
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ANOVA test were performed for relative band density of
western blotting and MTT OD values. The correlation be-
tween miR-645 and IFIT2 was analyzed with Spearman
rank correlation. P values <0.05 were considered statisti-
cally significant.

Results

Expressions of miR-645 are up-regulated in AGEJ clinical
samples

To assess the role of miR-645 in the tumorigenesis of
AGEJ, we first used qRT - PCR method to measure miR-
645 expression of 43 human AGE]J clinical tissues, and
found that miR-645 was significantly up-regulated in AGE]
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clinical tissues compared with patient paired gastric cardiac
non-cancerous tissues (Figure 1A). To gain further insights
into the observation mentioned above, we examined the
relationship between miR-645 expression and patients clin-
ical parameters. Analysis showed that miR-645 expression
was irrelevant with age, sex, tumor differentiation, lymph-
node metastasis and TNM stage (Table 1: The relationship
between clinical parameters and miR-645 expression in
primary gastric cardia adenocarcinoma), but was in a posi-
tive correlation with the tumor size, namely, tumor size
greater than or equal to 5 cm group showed significant in-
creased miR-645 expression compared with tumor size less
than 5 cm group (Figure 1B & Table 1, t-test, *P = 0.045).
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Table 1 The relationshipbetween clinical parameters and miR-645 (Mean + SEM)

Clinical parameters N(%) Relative expression p-value
Age(years)
260 23(53.5) 2.8665 + 1.55917 0.4420
<60 20(46.5) 2.532 + 1.17116
Gender
Male 33(76.7) 2.7273 + 1.43615 0.8915
Female 10(23.3) 2.5267 + 1.28027
Size
25 22(51.2) 3.2022 + 1.56502 0.045 *
<5 21(48.8) 2.1962 + 0.96541
Histologic differentiation
Well(w) 18(41.9) 2.5167 + 1.2349 0.4476
glclJOoc:ﬁura(tS_‘g) 25(58.1) 2.8508 + 1.4954
Lymphatic metastasis
No 9(20.9) 2.64 + 1.35236 0.86693
Yes 34(79.1) 2.7297 +1.41462
TNM stage
Stage I/1I 15(34.9) 2.83 + 1.41413 0.4536
Stage I11/IV 28(65.1) 2.4887 * 1.35213

Figure 1 Expressions of miR-645 are up-regulated in AGEJ clinical samples. A. expression of miR-645 in 43 human AGEJ clinical samples
relative to the adjacent paired normal human gastric cardiac non-cancerous tissues, was measured by quantitative RT-PCR (The values indicate
the mean + SEM, n =3, t-test,* p < 0.05, ** p < 0.01, *** p < 0.001). B. comparison of relative expression of miR-645 in human AGEJ clinical samples
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Table 1 The relationship between clinical parameters and
miR-645 expression in primary gastric cardia
adenocarcinoma

Clinical parameters N (%) Relatives expression p-value
(Mean + SEM)

Age (years)

260 15 (50) 2.1286 + 0.59201 0.568

<60 15 (50) 1.9571 + 0.52402

Gender

Male 18 (60) 21111 £ 042783 0462

Female 12 (40) 2.3333 £ 0.65328

Size

25 13 (43.3) 27385+ 100128 0.004*

<5 17 (56.7)  1.8235 + 152214

Histologic differentiation

Well (W) 15 (50) 2.138 £ 0.1866 0.9427

Poorly (P) 15 (50) 2.198 + 0.1903

Lymphatic metastasis

Yes 12 (40) 24583 + 0.77864 <0.001**

No 18 (60) 14944 + 1.36273

TNM stage

Stage I/1l 16 (533) 29125 + 1.33660 <0.001**

Stage IllI/IV 14 (46.7) 14857 + 0.73991

(*p < 0.05; **p <0.001).

Depletion of miR-645 promotes apoptosis of gastric can-
cer cells

To investigate the role of miR-645 in the phenotypic char-
acteristics of AGE] progression, we used two gastric can-
cer (GC) cell lines, SGC7901 and BGC-823 as cell models.
qRT-PCR results showed that miR-645 expression was sig-
nificantly up-regulated compared with immortalized GC
cell line, GES-1 (Additional file 2: Figure S1, P < 0.001).

SGC7901 and BGC-823 cells were transiently transfected
with mature miR-645 mimics, inhibitor, mock transfected,
or miR-NC. As shown in Figure 2A and D, quantitative
RT-PCR results show that expression of miR- 645 mimics
or inhibitors significantly up-regulate or down-regulate the
expression level of miR-645, respectively, in SGC7901 and
BGC-823 cells from the first to fifth day post transfection
(Figure 2A, P <0.001; Figure 2D, P<0.001) compared to
NC and mock controls.

SGC7901 and BGC-823 cells transfected with miR-645
inhibitors and mimics showed significantly lower and
higher levels of cell proliferation, respectively, comparision
with the NC or mock groups in the presence of ADR
(0.2 pg/mL) as determined by MTT assay (Figure 2B,
P <0.001; Figure 2E, P <0.001).

Anniex Vapoptosis assay exhibited significant increased
and decreased apoptosis rates of miR-645 depletion and
ectopic expression groups compared with NC groups in
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the serum-free condition or in the presence of anticancer
drug, adriamycin (ADR) (Figure 2C a-b, P < 0.001; Figure 2
F a-b, P<0.001).

IFIT2 is a target of miR-645

Previous data suggest that miR-645 might be an onco-
gene of advanced serous ovarian cancer. Thus we further
searched for the potential targets of miR-645 by algo-
rithm of Target Scan Human. Among them, IFIT2, a
tumor suppressor, was found to have putative miR-645
binding sites within its 3'UTR (Figure 3A). Then we
performed luciferase reporter assay using SGC7901 and
BGC-823 cells to verify whether IFIT2 was a direct tar-
get of miR-645. Wild-type and mutant IFIT2-3'UTR
containing the putative binding site of miR-645 were
cloned into psiCHECK-2 vector downstream from lucif-
erase gene (Additional file 3: Figure S2). Introduction of
miR-645 reduced the lucirferase activity from the IFIT2
3'UTR reporter vector significantly (Figure 3B, P<
0.001; Figure 3C, P<0.001), but did not affect the lucir-
ferase activity from the mutant IFIT2 3'UTR reporter
vector, supporting the direct interaction of miR-645 with
IFIT2. These results further suggest that miR-645 may
suppress the IFIT2 expression by targeting the 3'-UTR
of IFIT2 mRNA.

Expression of miR-645 and IFIT2 are negatively related in
AGE]J clinical samples

To further assess the relation between miR-645 and
IFIT2, we examined the IFIT2 expression in 43 AGE]
clinical samples using qRT-PCR. It was found AGE] tis-
sues had a remarkable lower expression level of IFIT2
than the paired non-cancerous tissues (Figure 4A), and
IFIT2 expression was inversely correlated with the
tumor size (Figure 4B, P =0.0304). Namely, tumor size
greater than or equal to 5 cm group showed significant
down-regulated IFIT2 expression compared with tumor
size less than 5 cm group. To validate the data, we sub-
sequently measured protein expression of IFIT2 using
western blotting (Figure 4C a-b), and the results showed
a similar pattern to the observations found by qRT-
PCR. Immunohistochemistry assay exhibited a signifi-
cant decreased expression of IFIT2 in AGE] tissues
paired non-cancerous tissues (Figure 4D a-b, P < 0.001).
Then we analyzed the relationship between miR-645
and IFIT2 expression and found that IFIT2 expression
level was negatively correlated with that of miR-645
(Figure 4E, P < 0.01). Moreover, SGC7901 (Figure 4F a)
and BGC-823 (Figure 4F b) cells transfected with miR-
645 inhibitor have significantly increased IFIT2 expres-
sion at the protein and mRNA levels compared to mock
and NC groups (Figure 4F a-b, P< 0.01). Our findings
indicate that miR-645 may directly regulate the expres-
sion of IFIT2.
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Figure 2 Depletion of miR-645 promotes apoptosis of gastric cancer (GC) cells. A & D. The level of miR-645 was measured by quantitative
PCR at designated time (One-way ANOVA analysis, the values indicate the mean + SD, Figure 2A, F =426.588, P < 0.001; Figure 2D, F = 685.026,
P <0.001). B & E. GC cells transfected with miR-645 mimics and inhibitor subjected to MTT assay daily for 6 days (Two-way ANOVA analysis,
Figure 2B, F = 52602, p < 0.001; Figure 2E, F =42.847, p <0.001). C & F. GC cells cells transfected with miR-645 mimics and inhibitor were collected for
FACS analysis after 72 h (The values indicate the mean + SD, n = 3, One-way ANOVA analysis, Figure 2C-a, F = 121.600, p <0.001; Figure 2C-b,
F=250400, p <0.001; Figure F-a, F =194.815, p <0.001; Figure 2F-b, F =412.741, p <0.001).

IFIT2 mediates the function of miR-645 by promoting
SGC7901 and BGC-823 cells apoptosis

To confirm that the induction of cell apoptosis in
SGC7901 and BGC-823 cells by miR-645 was mediated by
targeting IFIT2, we performed [FIT2 plasmid transfection
in SGC7901 (Figure 5A) and BGC-823 (Figure 5B) cells to
up-regulate the expression of IFIT2. Western blotting and
quantitative PCR showed that up-regulation of IFIT2 by
IFIT2 plasmid transfection could be decreased significantly
by miR-645 mimics. MTT assay showed that cells trans-
fected with plasmid-IFIT2 proliferation was suppressed,
however, cells transfected with miR-645 mimics proli-
feration increased significantly compared with plasmid-
control and plasmid-IFIT2 + miR-645 groups (Figure 5C
a-b, P< 0.001). Furthermore, introduction of IFIT2 pro-
moted apoptosis of SGC7901 and BGC-823 cells and miR-
645 mimics reduced apoptosis of cells induced by IFIT2
up-regulation compared with NC group in the presence of
ADR (Figure 5E-F, P < 0.001). Our findings suggested that

[FIT2 mediated the function of miR-645 in inhibiting
SGC7901 and BGC-823 cells proliferation and inducing
cell apoptosis.

Depletion and up-regulation of miR-645 altered the
caspase-3/7 activity

[FIT2 has been reported to be a tumor suppressor via me-
diating cell apoptosis through activating caspase-3/7 activ-
ity. Caspase-Glo 3/7 assay showed that miR-645 depletion
significantly up-regulated, while miR-645 overexpression
down- regulated the caspase-3/7 activity compared with
mock and NC groups in the presence of ADR (0.2 pg/mL)
(Figure 6A and B, P<0.001) or the serum starvation
condition (Figure 6C and D, P<0.001). These results
combined with observations stated above suggested that
miR-645, up-regulated in human AGE] tissues, inhibited
cell apoptosis and promotes tumorigenicity via suppressing
caspase-3/7 activity by targeting IFIT2.
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Figure 3 Validating the predicted binding sites between miR-645 and IFIT2. A. The schematic diagram shows the construct of Luc-IFIT2
3'UTR and Luc-IFIT2 3’Mut UTR. Both Luc-IFIT2 3'UTR and Luc-IFIT2 3’Mut UTR were cloned into a pmirGLO plasmid downstream of the firefly
luciferase coding region between the Pmel and Xbal sites. B&C. SGC7901 cells (B) or BGC-823 cells (C) were co-transfected with the psiCHECK-2
constructs containing either IFIT2 3’UTR or IFIT2 3’Mut UTR and either the miR-645 inhibitor or the miR-645 mimics for 48 h. Values indicate the
relative luciferase activity after normalization to Renilla luciferase activity (The values indicate the mean + SD, n = 3, One-way ANOVA analysis,

Discussion and conclusions
Although accumulating evidence have shown that miRNAs
deregulation is involved with tumor carcinogenesis, pro-
gression, migration and invasion [41], metastasis [42,43]
and multidrug resistance [44-46]. Little is known about the
roles of miRNAs in the development of adencarcinoma
of gastric esophageal junction (AGEJ). Here, we showed
that that miR-645 expression was significantly increased
in AGE] clinical specimens compared with paired non-
cancerous tissues and was significantly up-regulated in
two gastric cancer (GC) cell lines, SGC7901 and BGC-
823, which were used alternative cell models because no
available AGE]J cell lines were established to date. Inhib-
ition of miR-645 in SGC7901 and BGC-823 cells signifi-
cantly induced apoptosis of SGC7901 and BGC-823 cells
in the condition of serum starvation or chemotherapeutic
drug by up-regulating [FIT2, a mediator of apoptosis, with
a potential binding site for miR-645 in its mRNA’s 3'UTR.
The expression pattern of miR-645 and IFIT2 in SGC7901
and BGC-823 cells and clinical samples were negatively
correlated, further suggesting that [FIT?2 is a target gene of
miR-645. Moreover, inhibition of miR-645 results in in-
creased caspase-3/7 activity, which is activated by IFIT2.
All these findings suggest a fundamental role of miR-645
in carcinogenesis, especially in the development of AGE].
Too little apoptosis is one crucial cause of carcinogen-
esis because malignant cells death are reduced remarkably
[47,48], resulting in malignant transformation of the af-
fected cells, tumour metastasis and multidrug resistance

of cancer cells. Hence, apoptosis is of great importance in
the treatment of cancer and is a popular target of many
treatment strategies. In this study, we showed that miR-
645 impaired cancer cells to serum deprivation—induced
apoptosis, whereas the depletion of miR-645 antagonized
this effect of miR-645, suggesting that miR-645 may play a
crucial role in the adaptation of cancer cells to low nutri-
tion. Increasing numbers of miRNAs have been implicated
in the cancer cell apoptosis. On the one hand, microRNAs
might function as tumor suppressor via inducing apop-
tosis, i.e. miR-421, which induces cell proliferation and
apoptosis resistance in human nasopharyngeal carcinoma
via down-regulation of FOXO4 [49]; miR-149, which in-
duces apoptosis by inhibiting Aktl and E2F1 in human
cancer cells [50] and miRNA-31, which induces apoptosis
in human neuroblastoma cells [51]. On the other hand,
microRNAs might function as oncogenes by suppressing
apoptosis, i.e. miR-24, which inhibits apoptosis and re-
presses Bim in mouse cardiomyocytes [52]; miR-886-5p,
which inhibits apoptosis by down-regulating Bax expres-
sion in human cervical carcinoma cells [53], and miR-183,
which inhibits TGF-p1-induced apoptosis by downregula-
tion of PDCD4 expression in human hepatocellular car-
cinoma cells [54].

ISGs, IFN stimulated genes, refer to genes that are
tanscribed by IFNs induction. Among them, 4 can play
important roles that affect both the inhibition of viral
replication and the inhibition of cellular proliferation
[55,56]. These genes can inhibit viral replication by
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Figure 4 Expression of miR-645 and IFIT2 negatively correlate in AGEJ clinical samples and IFIT2 was down-regulated in AGEJ tissues
compared with paired non-cancerous tissues. A. Expression of /FIT2 and miR-645 in AGEJ clinical samples were analyzed by quantitative PCR.
B. comparison of relative expression of /FIT2 in human AGEJ clinical samples of different tumor size. (t-test, *p < 0.05). C. Expression of IFIT2
examined by western blotting (a, b: the values indicate the mean + SD, normalized to tubulin, n =3, t-test, **p <0.001) D. a. Representative
images shown are positive immunohistochemical staining of IFIT2 in human AGEJ specimens and matched adjacent normal tissues (magnification
200x). b. Staining scores of IFIT2 (t-test, ***p <0.001). E. Scatter plots showing the negative linear correlation between the mRNA expression of
IFIT2 and that of miR-645 in 43 AGEJ clinical samples. F. IFIT2 and /FIT2 expression measured by western blotting in SGC7901(a) and BGC-823 cells
(b). (The values indicate the mean £+ SD, n = 3, One-way ANOVA analysis, ***p < 0.001).
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***p < 0.001).
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sacrificing the cell through promoting apoptosis and
suppress the cancer progression via inhibiting the ma-
lignantly transformed cell survival for the benefit of the
host [57]. The ISG54 gene codes for a protein of 54 kDa
(472 aa) with tetratricopeptide repeats (TPR) and has
also been designated IFN-induced protein with tetra-
tricopeptide repeats 2(IFIT2) [58-60]. It is one of four
related human ISGs with characteristic TPR motifs.
ISG54 (IFIT2) functions as a mediator of apoptosis [60].
In our study, we observed a significant down-regulation
of IFIT2 in AGE] tissues compared with paired non-
cancerous tissues, moreover, bioinformatics analysis and
luciferase reporter assay indicated that IFIT2 is one target
of miR-645. Hence, we assume that over-expression of
miR-645 might lead to down-regulation of IFIT2 and in
turn the resistance of cells to apoptosis, resulting in AGE]
progression.

Reports have shown that the activation of caspase-3, a
key mediator of the execution phase of apoptosis, was
clearly apparent in cells expressing ISG54. Pathways lead-
ing to caspase activation and apoptosis are often desig-
nated as either extrinsic or intrinsic [61]. The extrinsic

pathway initiates outside the cell by transmembrane death
receptors and the subsequent activation of caspases [61].
The intrinsic pathway, also called the mitochondrial path-
way, is dependent on pro-apoptotic proteins such as Bax
or Bak that induce mitochondrial outer membrane perme-
ability, release of apoptotic molecules, and activation of
caspases [62]. In the present study, we examined the
capase-3/7 activity following miR-645 depletion and IFIT2
expression treatment to find that miR-645 expression
down-regulation led to up-regulation of IFIT2 and in-
creased capase-3/7 activity, suggesting the role of miR-645
promoting cancer progression via suppressing trans-
formed cell apoptosis through inhibiting IFIT2 expression
and capase-3/7 activity.

In summary, our data indicate that miR-645 may func-
tion as an oncogene in tumorigenicity of adencarcinoma
of gastric esophageal junction and has an important role
in inhibiting IFIT2, hence, the up-regulation of miR-645
inhibits the AGEJ cells apoptosis. Moreover, our results
showed that IFIT2 may act as a tumor suppressor in the
development of AGE]. However, owing to the fact that
each miRNA may regulate many target genes which can
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affect carcinogenesis in different ways, more studies are
needed to investigate other miR-645 targets which may
have critical roles in AGE] tumorigenesis. The present
study also provides novel insights into the role of miR-
645 in human AGE] and indicates that miR-645 may
serve as a therapeutic target of AGE].

Additional files

Additional file 1: Table S1. Antibodies used in western blotting assay

Additional file 2: Figure S1. miR-645 expression of SGC7901 and
BGC-823 was significantly up-regulated compared with immortalized
GC cell line, GES-1. miR-645 expression level in SGC7901 and BGC-823
were 6.9 and 4.4 - fold higher than in GES-1 (One-way ANOVA analysis,
F=129.393, ***P <0.001).

Additional file 3: Figure S2. Wild-type and mutant /FIT2-3’UTR
containing the putative binding site of miR-645 were cloned into
psiCHECK-2 vector. A. IFIT2-3'UTR was amplified from genomic DNA of
SGC7901. B. Lane 1 & 3: Recombinant plasmids of IFIT2-1, IFIT2-2 respectively;
lane 2 & 4: Results of enzyme digestion of recombinant plasmids of
IFIT2-1and IFIT2-2 respectively. Results showed that IF/T2-1/2 have been
successfully inserted into the vectors (M1: DL2000 DNA Marker; M2: DL1 kb
DNA Marker; ZTBT2-1/2 bands: 1902 bp; Vectors bands: 6.1 Kb). C. M1: 1 kb
DNA Ladder Marker. Lane 1: amplification of mut/FIT2 PCR1. One band of
mut/FIT2 (8.1 Kb) demonstrated the successful PCR of mutant amplification.
D. Sequencing data of WT-IFIT2 and MT —IFIT2.
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