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Abstract

Background: The 90-kDa heat shock protein HSP90AA1 is critical for the stability of several proteins that are
important for tumor progression and thus, is a promising target for cancer therapy. Selenosemicarbazone metal
complexes have been shown to possess anticancer activity through an unknown molecular mechanism.

Methods: The MTT assay, fluorescence-activated cell sorting, and fluorescent microscopy were used to analyze the
mechanism of the anti-cancer activity of the selenosemicarbazone metal complexes. Additionally, RNA-seq was
applied to identify transcriptional gene changes, and in turn, the signaling pathways involved in the process of
2-24a/Cu-induced cell death. Last, the expression of HSP90AA1, HSPA1A, PIM1, and AKT proteins in 2-24a/Cu-treated
cells were investigated by western blot analysis.

Results: A novel selenosemicarbazone copper complex (2-24a/Cu) efficiently induced G2/M arrest and was
cytotoxic in cancer cells. 2-24a/Cu significantly induced oxidative stress in cancer cells. Interestingly, although
RNA-seq revealed that the transcription of HSP90AA1 was increased in 2-24a/Cu-treated cells, western blotting
showed that the expression of HSP90AA1 protein was significantly decreased in these cells. Furthermore,
down-regulation of HSP90AA1 led to the degradation of its client proteins (PIM1 and AKT1), which are also cancer
therapy targets.

Conclusion: Our results showed that 2-24a/Cu efficiently generates oxidative stress and down-regulates HSP90AA1
and its client proteins (PIM1, AKT1) in U2os and HeLa cells. These results demonstrate the potential application of
this novel copper complex in cancer therapy.
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Background
The 90-kDa heat shock protein HSP90AA1 is a cha-
perone protein associated with numerous client proteins
that are highly expressed in many cancer cells [1,2]. It
stabilizes several cancer-related client proteins including
PIM1, AKT, and HIF1A, which are crucial for tumor
progression [1]. Thus, HSP90AA1 is an attractive target
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for cancer therapy [3-5]. Consistently, small molecular
inhibitors of HSP90AA1 such as 17-AAG and SNX-2112
show promising results as cancer therapies [6-8]. These
compounds bind HSP90AA1 and suppress its chaperone
function, leading to degradation of its client proteins.
Copper ion (Cu) is a transition metal that participates

in a wide range of cellular processes. As the disruption
of copper homeostasis is a pathological feature of cancer
cells [9], copper complexes have been investigated for
their potential applications as anti-cancer drugs [10].
The anti-tumor mechanisms of copper complexes in-
clude cleavage of DNA, generation of oxidative stress,
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and proteasome inhibition [10]. For instance, the copper
complex NSC 689534/Cu exerted its anti-cancer effects
by inducing oxidative stress, and counteracting ROS
damage by addition of N-acetyl-l-cysteine (NAC) signifi-
cantly decreased NSC 689534/Cu cytotoxicity. It is not
known whether oxidative stress generated by copper
complexes can regulate the expression of HSP90AA1 in
cancer cells [11]. However, it has been reported that
ROS generated by vitamin C and K3 can induce degra-
dation of HSP90AA1, and therefore contributes to indu-
cing cancer cell death [12].
Selenium (Se) is an essential trace element that has

been widely studied because of its chemopreventive
properties [13]. Selenium compounds can efficiently in-
duce cell death in various cancer cells [14]. For example,
metal complexes of selenosemicarbazones (selenium in
the place of sulfur) induced apoptosis through the mito-
chondria pathway in cancer cells [15]. Additionally,
nickel (II) complexes of selenosemicarbazones efficiently
inhibited metastasis and angiogenesis in breast cancer
cells [16].
Herein, we report a novel selenosemicarbazone com-

pound 2-24a that induces cell-cycle arrest in cancer cells.
Furthermore, the 2-24a complex with copper (2-24a/Cu)
shows significantly increased cytotoxicity compared with
2-24a alone. Detailed analysis showed that 2-24a/Cu in-
duced oxidative stress, accompanied by down-regulation
of HSP90AA1 but not HSPA1A. Down-regulation of
HSP90AA1 led to degradation of its client proteins, PIM1
and AKT1. These results suggest that 2-24a/Cu could
serve as a potential candidate for anticancer therapy.
Material and methods
Synthesis of di-2-pyridyl ketone4,4-dimethyl-3-
selenosemicarbazide (2-24a)

Di-2-pyridyl ketone 4, 4-dimethyl-3-thiosemicarbazone
(4.6 g, 16 mmol) was dissolved in about 30 ml ethanol,
and methyl iodide (CH3I) (2.84 g, 20 mmol) was added.
The mixture was heated on reflux for 1 h, then mixed
with the ethanolic solution of s-methyl-di-2-pyridyl ke-
tone 4,4-dimethyl-3-thiosemicarbazide. A 100-mL, dry
three-necked bottle was packed in an ice bath and 1.97 g
(25 mmol) Se and 1.13 g (30 mmol) NaBH4 were added
under a nitrogen atmosphere. These mixtures were
heated up before adding 10 mL ethanol, and 1.06 g
(10 mmol) NaCO3 after 1 h. The ice bath was then re-
moved, and the ethanolic solution of s-methyl-di-2-pyridyl
ketone 4, 4-dimethyl-3-thiosemicarbazide was added. The
reaction continued for 20 h at room temperature and then
2 mL acetic acid was added. The exhaust was absorbed by
an acetic acid lead solution (10%, 400 mL). The reaction
solution was filtrated and the solvent was evaporated
under reduced pressure. The residue was purified by
column chromatography on silica gel using ethyl acetate -
petroleum ether (1:2, v/v). The yield was 1.80 g (34%).
1H-NMR (400 MHz, DMSO) δppm: 3.471–3.537 (s,6H)
7.306–7.334 (m,1H) 7.380–7.388 (m,1H) 7.728–7.748
(d,1H) 7.816–7.840 (m,2H) 8.153–8.173 (d, 1H) 8.569–
8.579 (d,1H) 8.693–8.705 (d,1H) 15.317 (s,1H) HLPC-MS
m/z: 334.3[M + 1] + .IR(cm): 3050w, 2916 m, 1466s,
1430 m, 1325 m, 1305s, 1235s, 1189 m, 1121s, 1052s,
995 m, 892w, 802 s, 739 s, 709 m, 653 m.

Chemicals and antibodies
Chemicals and antibodies were purchased as follows:
H2DCF (Beyotime, S0033), N-acetyl-L-cysteine (NAC,
Sigma, A7250), propidium iodide (PI, Sigma, P4170),
rabbit anti-HSP90AA1 (Bioworld, BS1181), rabbit anti-
HSPA1A (Bioworld, BS6446), rabbit anti-PIM1 (Abcam,
ab75776), rabbit anti-AKT1 (Bioworld, BS1978), rabbit
anti-GAPDH (Bioworld, AP0063), goat anti-mouse HRP-
linked antibody (ZSGB-BIO, ZB-2301), goat anti-rabbit
HRP-linked antibody (ZSGB-BIO, ZB-2305), copper (II)
chloride (CuCl2, Beijing Shiji, China). 2-24a/Cu was
freshly prepared by mixing equal molar ratios of 2-24a
and CuCl2, and diluted to the appropriate concentra-
tions before treatment.

Cell culture
HeLa, U2os, and other cell lines were obtained from the
Cell Bank of the Chinese Academy of Sciences (Shanghai),
and were cultured in Dulbecco’s modified Eagle’s medium
(DMEM, HyClone, SH30022.01B) supplemented with 10%
fetal bovine serum at 37°C in an atmosphere of 5% CO2.
Cell lines were authenticated based on viability, recovery,
growth, morphology, cytogenetic analysis, antigen expres-
sion, DNA profile, and isoenzymology by the provider.

Cell viability
Cell viability was measured by using the MTT assay
(Sigma,M5655). About 3000 cells were plated in each
well of a 96-well plate at 37°C in a humidified 5% CO2

incubator for 12 h before they were treated with the
compounds. After treatment, 20 μL MTT (5 mg/mL) so-
lution was added to each well, and the cells were incu-
bated for 4 h at 37°C in a humidified 5% CO2 incubator.
The medium was removed to stop the reaction and then
150 μL dimethylsulfoxide (DMSO) was added. The plate
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was measured using aVarioskan Flash reader (Thermofisher,
USA) at 490 nm.

Cell-cycle analysis
About 1.4 × 105 cells were plated in each well of a 6-well
plate for 18 h before treatment with Cu, 2-24a, or
2-24a/Cu. After treatment, the cells were collected by
trypsinization, fixed in 70% ethanol overnight, washed
in PBS three times, re-suspended in 500 mL of PBS con-
taining 0.1 mg/mL Rnase, 50 mg/mL propidium iodide
(PI), and 0.2% Triton X-100, and incubated in the dark
for 30 min at room temperature. Then, the samples were
placed in 12 × 75 Falcon tubes and read on a Becton
Dickinson FACStarPLUS. The data were analyzed using
Modfit software.

Analysis of oxidative stress
The intracellular accumulation of oxidative stress was
detected using the probe H2DCF. Ten micrometers of
H2DCF was added into the 2-24a-alone, 2-24a/Cu-, or
mock-treated cells for 30 min. Cells were then harvested
and analyzed by flow cytometry (Becton Dickinson).

RNA-Seq
Briefly, the cells were treated with 5 μM 2-24a/Cu or
0.1% DMSO for 8 h. Then the total RNA was extracted
from both the 2-24a/Cu-treated cells and the control
cells by using the RNeasy mini Kit (Qiagen, 74104) ac-
cording to the manufacturer’s instructions. Total RNA
was treated with DNase I (Qiagen, 79254) for 15 min at
room temperature to remove residual genomic DNA.
The purity and concentration of RNA was assayed by
Nanodrop. The quality of RNA was further checked by
running a sample of fragmented RNA on a RNA Pico
6000 chip in an Agilent 2100 Bioanalyzer. Total RNA
(1 μg) was used to isolate mRNAs with poly(A) tails and
then these mRNAs were converted to cDNA using the
TruSeq DNA Sample Preparation Kit according to the
manufacturer’s protocol. After generation of the target
cDNA from U2os cells, sequencing adapters were ligated
to short fragments after purifying with a QiaQuick PCR
extraction kit, which were then used to distinguish
different sequencing samples. Fragments with lengths
from 200 to 700 bp were then separated by agarose gel
electrophoresis and the fragments were subjected to
15 cycles of PCR amplification. Finally, the prepared
libraries were sequenced using Illumina HiSeq™ 2000 be-
fore they were checked by q-PCR and analysis in the
Agilent 2100 Bioanalyzer. The results obtained from
each cell line were matched to the human genome
(NCBI Build 36). Results were used for further analysis.
Unambiguously mapped results were first used to gene-
rate gene counts. Feature counts were normalized using
the RPKM (read per kilobases per million aligned reads)
method. The RPKM method is able to eliminate the in-
fluence of different gene lengths and sequencing discrep-
ancies on the calculation of gene expression. Therefore,
the calculated gene expression can be directly used for
comparing the difference of gene expression among sam-
ples. To detect different expression levels among differ-
ence stages, the P-value (one-tailed) corresponds to the
differential gene expression test (two-sample t test with
equal variances). Because differentially expressed gene
analysis generates large multiplicity problems in which
thousands of hypotheses (i.e., whether a particular gene is
differentially expressed between the two groups) are tested
simultaneously, corrections for false-positive (type I
errors) and false-negative (type II) errors are performed
using a false discovery rate method.
Western blot analysis
To analyze protein expression, western blotting was per-
formed as described previously [17].
Murine sarcoma S180 implanted mice study
Chinese Kun Ming (KM) mice (male and female in equal
numbers) of 16–18 g were purchased from the Vital River
Laboratories (China) and housed at the laboratory ani-
mal center of Peking University (AAALACi-accredited
facility). Experiments were undertaken in accordance
with the National Institute of Health Guide for Care
and Use of Laboratory Animals, with the approval of the
Peking University Laboratory Animals Center, Beijing.
Murine sarcoma S180 cells were injected subcutane-
ously into the right oxter region of KM mice (1 × 107 in
200 μL) until the mice adapted to the new environment.
After injection, tumors were allowed to develop for
2 days. We then randomly divided the 40 mice into four
groups, treated with DMSO in 0.9% saline (control),
1 mg/kg 2-24a, 1 mg/kg CuCl2 or with 1 mg/kg of
2-24a/Cu. The mice in the four groups were intraperito-
neally injected daily according to their weight. Tumor
size was measured using calipers; tumor volume was
estimated according to the following formula: tumor
volume (mm3) = L ×W2/2, where L is the length and
W is the width. Tumor-bearing mice were sacrificed
after 10 days. Xenograft tumors were harvested,
weighed and then fixed in 4% formalin for histologic
study.
Statistical analysis
Each experiment was repeated at least three times for
calculation of standard deviations. The statistical signifi-
cance of differences was assessed using the Student’s t
test in GraphPad prism 5. A P < 0.05 was considered sta-
tistically significant.
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Results
Cytotoxicity of the selenosemicarbazone 2-24a is
significantly increased by copper
Compounds belonging to the thiosemicarbazone family
have shown anti-tumor potential in different cancer types
[18,19], and complexes with copper had been reported to
increase the cytotoxicity of thiosemicarbazones [11,20].
Their analogs, the selenosemicarbazones, were also re-
ported to have similar effects on cancer cells [15,16]. A
series of novel selenosemicarbazones were synthesized in
our laboratory and among these compounds, 2-24a
(Figure 1A) complexed with Cu (2-24a/Cu) showed anti-
cancer activity in cancer cells. The viability of U2os cells
was not significantly decreased by 2-24a (Figure 1B).
However, the viability of U2os cells was significantly
decreased by 2-24a/Cu in a dose-dependent manner
(Figure 1B–C). Similar results were observed in other can-
cer cell lines (A549 cells, U87 cells, and H1299 cells,
Figure 1C). Thus, 2-24a/Cu efficiently reduced cellular
viability in various cancer cells.
We next investigated the effect of 2-24a/Cu on the cell

cycle in cancer cells. 2-24a induced the arrest of the G1
cycle in U2os and HeLa cells, whereas the copper com-
plex 2-24a/Cu induced the increase of the G2/M cycle
(Figure 2A–B). These results indicated that 2-24a/Cu
had a different effect on the cell cycles compared with
2-24a in cancer cells.

2-24a/Cu induces oxidative stress in cancer cells
As copper has been reported to enhance the cytotoxicity
of some anti-cancer compounds through induction of
oxidative stress [11], we investigated whether 2-24a/Cu
acted through a similar mechanism. Conversion of non-
fluorescent H2DCF to fluorescent DCF was used to
assess the intracellular induction of oxidative stress.
There was a significant increase of fluorescent DCF in
the 2-24a/Cu-treated U2os and HeLa cells, while fluo-
rescent signal changes in cells treated with 2-24a or
copper alone were not obvious (Figure 3A–D). We next
Figure 1 2-24a/Cu inhibits the viability of cancer cells. (A) Molecular st
2-24a, and 2-24a/Cu on the viability of U2os cells. (C) Effects of 2-24a and 2
investigated whether N-acetylcysteine (NAC), a widely
used antioxidant, could inhibit 2-24a/Cu-induced oxida-
tive stress. U2os cells or HeLa cells were incubated with
2 μM 2-24a/Cu in the presence of 4 mM NAC. As
shown in Figure 3, NAC significantly reduced 2-24a/Cu-
induced oxidative stress.

RNA-Seq analysis of 2-24a/Cu-treated U2os cells
To identify transcriptional changes of genes involved in
the process of 2-24a/Cu-induced cell death, 2-24a/Cu-
and DMSO-treated cells were subjected to RNA-Seq
analysis. Compared with the control cells, 410 genes were
up-regulated (fold >1.5-fold, P < 0.01), while 603 genes
were down-regulated (<−1.5-fold, P < 0.01) in the 2-24a/
Cu-treated cells. We then analyzed potential signaling
pathways in which these genes might be involved. IPA
(Ingenuity Systems Inc.) can provide a global functional
analysis of RNA-Seq data, which can be used to rank vari-
ous pathways in the order of statistical significance. Based
on our RNA-seq results, the NRF2-mediated oxidative
stress response ranks the highest (Table 1). In the NRF2-
mediated oxidative stress response pathway, several genes
(e.g., DNAJA4, DNAJB1, DNAJB4, DNAJB9, FOS, FOSL1,
GCLM, HMOX1, HSPB8, MAFF, PIK3R5, and SQSTM1)
showed significant transcriptional up-regulation in the
2-24a/Cu-treated cells (fold >2). Additionally, gene tran-
scription in the HIF1α signaling pathway was also signifi-
cantly up-regulated, including MAPK15, MMP1, MMP10,
MMP25, PGF, PIK3R5, SLC2A1, and SLC2A3.
We analyzed the genes whose expressions have

changed by ±1.5-fold using DAVID software (http://
david.abcc.ncifcrf.gov/). The major categories included
metal-thiolate cluster genes (including chelation and
cadmium genes) and stress-response genes. Metallo-
thionein genes (MT1B, MT1F, MT1G, MT1H, MT1E,
MT1X, and MT2A) were also significantly up-regulated
in the 24a/Cu-treated cells, as were genes encoding
HSPA1A and HSP90AA1 proteins (such as HSP1A,
HSP1B, HSP90AA1) (Table 2).
ructure of selenosemicarbazone compound 2-24a. (B) Effect of Cu,
-24a/Cu on the viability of different cancer cells.

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/


Figure 2 The effects of copper, 2-24a and 2-24a/Cu on the cell cycles of U2os (A) and HeLa cells (B).
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2-24a-Cu down-regulates HSP90AA1 protein and client
proteins (Pim1, Akt1) in U2os and HeLa cells
RNA-seq results revealed a transcriptional increase of heat
shock proteins such as HSP90AA1 and HSPA1A. As heat
shock family proteins play an important role in the sur-
vival of cancer cells, we investigated whether the protein
abundance of HSP90AA1 was also increased in the 2-24a/
Cu-treated cells. Interestingly, although the transcription
of HSP90AA1 was up-regulated, HSP90AA1 protein was
significantly decreased in the 2-24a/Cu-treated U2os and
HeLa cells in a dose-and time-dependent manner, while
treatment with 2-24a or Cu alone did not show such an
effect (Figure 4). The expression of HSP90AA1 in the cells
treated with 5 μM 2-24a/Cu decreased to 25% of that in
the control cells. Additionally, although the transcription
of HSPA1A was significantly increased in the 2-24a/Cu-
treated cells, the expression of HSPA1A protein was not
significantly changed (Figure 4A). These results suggested
that the regulation of HSP90AA1 was different to that of
HSPA1A in the 2-24a/Cu-treated cells.
As HSP90AA1 protein was significantly decreased in

the 2-24a/Cu-treated cancer cells, we next investigated
whether the client proteins of HSP90AA1 were also
degraded in cancer cells. PIM1 is a client protein of
HSP90AA1 in oncogenesis [1], and plays important roles
in sarcoma growth and bone invasion [21]. PIM1 protein
was significantly decreased in the 2-24a/Cu-treated U2os
and HeLa cells (Figure 4A and B). RNA-seq results
showed that the transcription of PIM1 increased by 1.29
fold in the 2-24a/Cu-treated U2os cells, which suggested
that the increase of transcriptional PIM1 would compen-
sate for the decrease of PIM1 protein.
AKT1, another client protein of HSP90AA1 [1], is cru-
cial for survival and proliferation of cancer cells [22].
Cells incubated with 2-24a/Cu also showed the dose-
dependent decrease in AKT1 expression (Figure 4A, 4B).
Expression of AKT1 obviously decreased in the cells
treated with 5 μM 2-24a/Cu compared with the control
cells (Figure 4A–B), whereas neither 2-24a nor CuCl2
alone treatments decreased AKT1 in HeLa or U2os cells
(Figure 4A–B). Additionally, RNA-seq results showed
AKT1 transcription was not changed significantly in
the 2-24a/Cu-treated cells. These results indicated that
2-24a/Cu down-regulated HSP90AA1 client proteins
(PIM1, AKT1) in U2os and HeLa cells.

2-24a/Cu inhibits tumor growth in murine sarcoma S180
implanted mice
To investigate whether 2-24a/Cu could inhibit tumor
growth in vivo, murine sarcoma S180 cells [23] were
injected (subcutaneously) into the right oxter region
of KunMing mice (1 × 107 in 200 μL). Tumors were
allowed to develop for 2 days. We then randomly di-
vided the mice into four groups and treated them daily
with either vehicle control, 1 mg/kg CuCl2, 1 mg/kg
2-24a, or 1 mg/kg of 2-24a/Cu. The tumor sizes
(Figure 5A) and the weight of mice (Figure 5C) were
measured. At the end of the experiment, the mice were
sacrificed and the tumors were removed from the mice
and weighed (Figure 5B). 2-24a/Cu significantly inhibited
tumor growth in vivo by 67% (P < 0.01) compared with
the controls. Additionally, 2-24a/Cu had little effect on
myocardial tissue, liver, lung, and kidney in KunMing
mice (Figure 5D).



Figure 3 2-24a/Cu induces oxidative stress in U2os cells and HeLa cells. (A–C) U2os cells were treated with DMSO, 10 μM copper, 10 μM
2-24a, 2 μM 2-24a/Cu, or an additional 4 mM NAC for 12 h. After incubation with 10 μM H2DCFDA, cells were washed and examined by
fluorescence microscope (A) or FACS (B). The average fluorescent intensity from DCF is indicated (C). (D–F) HeLa cells were treated as indicated.
Means ± SD, n = 3. *P < 0.01.
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Discussion
Compounds from the thiosemicarbazones family have
shown promising anti-tumor activity in vitro and in vivo
[24]. Selenosemicarbazones, in which the sulfur atom is
substituted by the selenium atom, also showed potential
anti-tumor activity [15,16,25-28]. Herein, we report that a
novel selenosemicarbazone copper complex (2-24a/Cu)
can efficiently inhibit cancer cell proliferation and induce
cancer cell death, and can serve as the basis for designing
other novel anti-cancer selenosemicarbazone compounds.
As expected, a selenosemicarbazone complexed with

copper (2-24a/Cu) is significantly more cytotoxic than
2-24a alone in cancer cells because, as reported by
other groups, copper can enhance anti-tumor effect of



Table 1 Top two classes of genes in signal pathways influenced by 2-24a/Cu in U2os cells

Pathway Symbol Gene name Fold change

NRF2-mediated oxidative
stress response

ABCC2 ATP-binding cassette, sub-family C (CFTR/MRP), member 2 1.688

DNAJA1 DnaJ (Hsp40) homolog, subfamily A, member 1 1.813

DNAJA4 DnaJ (Hsp40) homolog, subfamily A, member 4 4.526

DNAJB1 DnaJ (Hsp40) homolog, subfamily B, member 1 4.619

DNAJB4 DnaJ (Hsp40) homolog, subfamily B, member 4 2.089

DNAJB6 DnaJ (Hsp40) homolog, subfamily B, member 6 1.865

DNAJB9 DnaJ (Hsp40) homolog, subfamily B, member 9 2.260

FOS FBJ osteosarcoma oncogene 4.602

FOSL1 FOS-like antigen 1 2.550

GCLM Glutamate-cysteine ligase, modifier subunit 2.936

HERPUD1 Homocysteine-inducible, endoplasmic reticulum stress-inducible,
ubiquitin-like domain member 1

1.767

HMOX1 Heme oxygenase (decycling) 1 6.314

HSPB8 Heat shock 22 kDa protein 8 2.068

JUN Jun proto-oncogene 1.780

JUNB Jun-B oncogene 1.982

MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian) 3.970

MAFG v-maf musculoaponeurotic fibrosarcoma oncogene homolog G (avian) 1.878

MAP2K6 Mitogen-activated protein kinase kinase 6 −8.079

PIK3R5 Phosphoinositide-3-kinase, regulatory subunit 5 2.527

SQSTM1 Sequestosome 1 2.395

TXNRD1 Thioredoxin reductase 1 1.527

HIF1α Signaling EGLN3 egl nine homolog 3 (C. elegans) 1.656

HSP90AA1 Heat shock protein 90 kDa alpha (cytosolic), class A member 1 1.882

JUN Jun proto-oncogene 1.780

MAPK15 Mitogen-activated protein kinase 15 7.962

MMP1 Matrix metallopeptidase 1 (interstitial collagenase) 3.562

MMP10 Matrix metallopeptidase 10 (stromelysin 2) 6.231

MMP25 Matrix metallopeptidase 25 3.564

PGF Placental growth factor 3.158

PIK3R5 Phosphoinositide-3-kinase, regulatory subunit 5 2.527

SLC2A1 Solute carrier family 2 (facilitated glucose transporter), member 1 2.141

SLC2A3 Solute carrier family 2 (facilitated glucose transporter), member 3 3.432

VEGFA Vascular endothelial growth factor A 1.826

VEGFC Vascular endothelial growth factor C −1.641
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thiosemicarbazones by inducing oxidative stress [20].
Consistently, 2-24a/Cu efficiently generated oxidative
stress in cancer cells, and the stress could be efficiently
inhibited by NAC. Dp44mT [20], the thiosemicarbazone
analog of 2-24a, forms a redox-active copper complex
that is responsible for its anti-cancer activity [20]. As
copper is elevated in various cancer cells, it is reasonable
that 2-24a could be more easily complexed with copper
in certain cancer cells than normal cells, leading to can-
cer cell death. Further research is needed to investigate
whether 2-24a could selectively induce cancer cell death
via copper-mediated oxidative stress or directly inhibit
tumor growth in vivo.
We investigated the change of the transcriptome in

the 2-24a/Cu-treated U2os cells. RNA-seq results
showed that genes that participate in oxidative stress



Table 2 Category of genes which are significantly up-regulated in 2-24a/Cu-treated cells

Category Symbol Gene name Fold change

Chelation MT1B Metallothionein 1B 7.982

MT1E Metallothionein 1E 4.251

MT1F Metallothionein 1 F 11.582

MT1G Metallothionein 1G 9.692

MT1H Metallothionein 1H 14.337

MT1M Metallothionein 1 M 10.197

MT1X Metallothionein 1X 6.610

MT2A Metallothionein 2A 3.335

Stress response DNAJB1 DnaJ (Hsp40) homolog, subfamily B, member 1 4.619

DNAJB4 DnaJ (Hsp40) homolog, subfamily B, member 4 2.089

HSPA1A Heat shock 70 kDa protein 1A 6.203

HSPA1B Heat shock 70 kDa protein 1B 6.351

HSPA1L Heat shock 70 kDa protein 1-like 2.607

HSPA6 Heat shock 70 kDa protein 7 (HSP70B) 10.901

HSPB8 Heat shock 22 kDa protein 8 2.067

HSP90AA1 Heat shock protein 90 kDa alpha (cytosolic), class A member 1 1.882

HSPH1 Heat shock 105 kDa/110 kDa protein 1 3.305

MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian) 3.970

PPP1R15A Protein phosphatase 1, regulatory (inhibitor) subunit 15A 4.255

SGK1 Serum/glucocorticoid regulated kinase 1 2.394

TRIB3 Tribbles homolog 3 (Drosophila) 2.467

Figure 4 2-24a/Cu decreases HSP90AA1 protein in U2os cells and HeLa cells. (A, B) Western blot analysis of HSP90AA1, its client proteins
(PIM1, AKT1), and HSPA1A in U2os (A) and HeLa (B) cells, respectivity. U2os or HeLa were cultured with 0.1% DMSO, 10 μM 2-24a, 2 μM 2-24a/Cu
or 5 μM 2-24a/Cu for 8 h. Cells were harvested and lysed for western blotting. (C, D) Western blot analysis of HSP90AA1 in U2os (C) and HeLa
(D) cells treated with 5 μM 2-24a/Cu for different time. U2os and HeLa cells were cultured with 5 μM 2-24a/Cu for 0 h, 6 h, 12 h, and 18 h and
then harvested and lysed for western blotting.
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Figure 5 2-24a/Cu inhibits tumor growth in vivo. (A) Effects of the control, 2-24a, CuCl2 and 2-24a/Cu on tumor volumes in mouse tumor
xenografts. (B) Effects of the control, 2-24a ,CuCl2 and 2-24a/Cu on tumor weight. (C) Average weights of mice treated with compounds.
(D) Representative images of myocardial tissue, liver, lung, and kidney in the control and 2-24a/Cu-treated mice as indicated.
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were significantly up-regulated. Additionally, transcrip-
tion of the genes in the HIF1 signaling pathway were
also significantly up-regulated, suggesting the HIF1 sig-
naling pathway could play an important role in regu-
lating copper-mediated cancer cell death.
Metal-thiolate cluster genes and stress-response genes

were also up-regulated in the 2-24a/Cu-treated cells,
which may play an antagonistic role in the induced cell
death. Interestingly, although 2-24a/Cu induced a signifi-
cant increase in the transcription of Hsp90 family genes
(similar to the copper complex of thiosemicarbazone NSC
689534/Cu), HSP90AA1 protein was decreased in the
2-24a/Cu-treated cells. HSP90AA1 is critical for cancer
cell metabolism and signal transduction pathways, and in-
hibition of HSP90AA1 is a promising strategy for cancer
therapy [3,29]. As oxidative stress has been shown to in-
duce HSP90AA1 cleavage in cancer cells [12], it is possible
that oxidative stress induced by the copper complex
resulted in the degradation of HSP90AA1 in the cancer
cells, whereas the transcriptional increase of HSP90AA1
served to compensate for the decrease of HSP90AA1 pro-
tein. By decreasing the abundance of HSP90AA1 in cancer
cells, 2-24a/Cu could decrease the stability of HSP90AA1
client proteins, many of which are critical in tumor initi-
ation and metastasis. Consistent with this hypothesis,
PIM1 (a client protein of HSP90AA1 that affects sarcoma
growth and bone invasion [21,22,30,31]) is rapidly de-
creased in the 2-24a/Cu-treated cells. Similarly, AKT1,
which affects cell-cycle arrest and apoptosis [22], is con-
comitantly decreased in the 2-24a/Cu-treated cells. Be-
cause AKT is also important for supporting angiogenesis
signaling [32] and 2-24a/Cu has been shown to down-
regulate AKT, the latter could prove useful in inhibiting
angiogenesis, but the possibility remains to be tested. Ex-
pression of other key proteins stabilized by HSP90AA1
such as Bcr-Abl, HER2/Neu (ErbB2), and mutated p53
protein [1], could also be down-regulated by 2-24a/Cu-in-
duced decrease of HSP90AA1, and these collectively con-
tribute to the anti-cancer property of 2-24a/Cu.

Conclusions
Here, we report that a novel selenosemicarbazone com-
pound (2-24a) and its copper complex (2-24a/Cu) effi-
ciently induced cell-cycle arrest and cell death in cancer
cells. 2-24a/Cu was more efficient than 2-24a through
generation of copper-mediated oxidative stress. 2-24a/Cu
induced the decrease of HSP90AA1 in cancer cells, which
is a crucial protein for cancer cell survival. The copper
complex (2-24a/Cu) was also an efficient anti-tumor com-
pound in mice. These results suggest that 2-24a/Cu could
potentially serve as a basis for a novel cancer therapy.
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