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Abstract

Background: The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway is activated
in cells exposed to various stimuli, including those originating on the cell surface or in the nucleus. Activated NF-xB
signaling is thought to enhance cell survival in response to these stimuli, which include chemotherapy and radiation.
In the present effort, we determined which anticancer drugs preferentially activate NF-kB in colon cancer cells.

Methods: NF-kB reporter cells were established and treated with 5-fluorouracil (5-FU, DNA/RNA damaging), oxaliplatin
(DNA damaging), camptothecin (CTP, topoisomerase inhibitor), phleomycin (radiomimetic), or erlotinib (EGFR inhibitor).
The activation of NF-kB was assessed by immunofluorescence for p65 translocation, luciferase assays, and downstream
targets of NF-kB activation (clAP2, and Bcl-X|) were evaluated by immunoblotting, by ELISA (CXCL8 and IL-6 in culture

supernatants), or by gene expression analysis.

inhibited by SM-7368, an NF-kB inhibitor.

Results: Colon cancer cells responded variably to different classes of therapeutic agents, and these agents initiated
variable responses among different cell types. CPT activated NF-kB in SW480 colon cancer cells in a dose-dependent
manner, but not in HCT116 cells that were either wild-type or deficient for p53. In SW480 colon cancer cells, NF-«B
activation by CPT was accompanied by secretion of the cytokine CXCL8, but not by up-regulation of the anti-apoptotic
genes, clAP2 or Bcl-X,. On the contrary, treatment of HCT116 cells with CPT resulted in up-regulation of CXCR2, a receptor
for CXCL8, without an increase in cytokine levels. In SW480 cells, NF-kB reporter activity, but not cytokine secretion, was

Conclusion: The results show that, in response to cancer therapeutic agents, NF-kB activation varies with the cellular
make up and that drug-induced NF-kB activation may be functionally uncoupled from anti-apoptotic outcomes found for
other stimuli. Some cancer cells in a heterogeneous tumor tissue may, under therapeutic pressure, release soluble factors
that have paracrine activity on neighboring cells that express the cognate receptors.
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Background

The outcomes of cancer therapy depend on various
determinants that include tumor-intrinsic factors and
inter-individual variation in drug response and metabolism.
It is still not possible to predict with certainty the response
of a given tumor to a particular chemotherapeutic agent.
The core tenet of personalized cancer medicine is to
identify subsets of patients who will favorably respond
to a given therapy and to avoid non-beneficial drug
exposure for those who may not respond [1-4]. The
efficacy of chemotherapy, especially that of non-targeted
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agents, is hindered by dose-limiting toxicity and by the
development of non-responsiveness. Although targeted
agents are designed to reduce the off-target effects of
chemotherapy, the development of resistance has
hindered progress in cancer therapy and management
[2,5-7]. In line with the potential of personalized medicine,
it is essential to identify the genetic, epigenetic, and
adaptive characteristics of cancer cells and other cells
in the microenvironment that contribute to response
to both targeted and broad-acting drugs.

The NF-kB pathway is now a target for therapeutic
development, primarily because of its role in chronic
inflammatory states, which promote oncogenesis [8-11].
Moreover, experimental and association studies indicate
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the benefits of suppressing chronic inflammation in
reducing the incidence of various types of cancers
[12-17]. Moreover, the risk of cancer is higher among
colitis patients, and chronic bacterial infection by H.
pylori is linked to gastric cancer [18-23].

Nevertheless, the NF-kB mechanism, which contributes
to the initiation and progression of cancer, is activated by
anticancer drugs and radiation [24-27]. Such activation is
clinically undesirable because cells may emerge as
resistant, once they are relieved of the drug pressure,
or may carry mutations that drive their aggressiveness.
Cancer stem-like cells, which utilize the NF-kB pathway,
may be responsible for resistance and for re-seeding of the
tumor mass after initially effective chemotherapy or
radiation [28-31].

The mechanisms through which drugs induce NF-«B
activation, and how NF-«kB-driven gene expression
contributes to drug resistance or other functions, are
not fully understood. Drug-induced damage to cancer
cell DNA is thought to activate NF-kB through the
protein IKK-gamma. DNA-damage activates ATM kinase,
which in turn activates NF-kB essential modifier (NEMO),
a component of the IKK complex that induces nuclear
translocation of the p65/p50 transcription factor complex
[24,32,33]. The determinants for drug-induced NF-«xB
activation and the function of activated NF-«B in this
context remain to be elucidated.

In the present investigation, reporter cells that carry
NF-«B response elements linked to the luciferase gene
were used to examine the response of colon cancer cells
to drugs. Activation of NF-kB by chemotherapeutic
drugs and the downstream effects of the activation
varied among cell lines and drug types. Moreover, in the
colon cancer cells, the cytokine response was apparently
uncoupled from expression of anti-apoptotic genes.

Methods

Cell lines and culture

SW480 human colon cancer cells were from American
Type Cell Culture (ATCC, Manassas, VA; CCL-228, and
CRL-2577). Wild-type and p53-null (p53-/-) HCT116
colon cancer cells were generous gifts from Dr. Bert
Vogelstein (Johns Hopkins, Baltimore, MD). Both cell
lines were grown in McCoy’s 5A culture medium (ATCC*
30-2007) containing 10% fetal bovine serum, penicillin
(10,000 U/ml) and streptomycin (10 mg/ml).

Drugs and reagents

TNFa, 5-FU, CPT, and phleomycin were purchased from
Sigma Aldrich (St. Louis, MO); oxaliplatin and erlotinib
were purchased from LC laboratories (Woburn, MA). Stock
concentrations of the compounds were prepared in sterile
water (TNFa and phleomycin) or in dimethylsulfoxide
(DMSO) (5-FU, CPT, oxaliplatin, and erlotinib), and stored
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at -40°C, except TNFa, which was stored at -80°C.
Antibodies against p65, NF-kB, cIAP2, and Bcl-X; were
purchased from Cell Signaling Technology (Danvers,
MA), and anti-tubulin (M2) antibody from Sigma Aldrich.
SignalSilence® NF-kB p65 siRNA I (#6261) was purchased
from Cell Signaling Technology and NF-«B inhibitor III
(SM7368) from EMD Millipore (Billerica, MA). The
Chk1/Chk2 specific inhibitor AZD-7762 was purchased
from Sigma Aldrich (St. Louis, MO).

Generation and testing of NF-kB reporter SW480 and
HCT116 cells

NF-«B reporter stable cells were established by transducing
p53-mutant SW480 (ATCC), p53 wild-type HCT116, and
p53-null HCT116 (both from Dr. Vogelstein) colon cancer
cells with lentiviral constructs containing NF-«B transcrip-
tional response elements (TREs) linked to the luciferase
gene (Qiagen, Valencia, CA). In parallel, cells transduced
with a construct that lacks the TREs, and which therefore
do not respond to NF-«B activation, were used as negative
controls to validate the specificity of reporter activity. A
construct expressing GFP was used to assess transduction
efficiency, which was 100 percent. Transduced cells were
selected in a medium containing puromycin (2.5 pg/ml), a
concentration established to kill 100% of the control cells
within 3 days. To minimize any insertion site bias, pooled
populations of transduced cells were used for the assays.

Luciferase assays

For luciferase assays, cells were seeded and treated in
96-well plates. Before reading the plates, the culture
medium was removed by aspiration, and 50 pL of 1x
luciferin-PBS substrate solution was added to each well.
With a luminometer set at 37°C, plates were read immedi-
ately after addition of substrate solution and after 5 and
10 minutes. The time point at which peak readings for all
the wells were obtained was taken for calculation of
relative luciferase units (RLU). Luciferase expression was
quantified as RLU, normalized to readings of control wells,
and expressed as relative NF-kB reporter activity.

Cytokine assays

Colorimetric CXCL8 and IL-6 ELISA kits were purchased
from R&D Systems, and the assays were performed
according to the manufacturer’s instructions. Culture
supernatants from equivalent numbers of cells seeded
in multi-well plates were harvested 24 hours after the
last treatment. Total protein in the supernatants was
measured with DC Protein Assay (BioRad, Herculus, CA)
and volume-adjusted with sterile PBS to the sample with
the lowest protein content. Samples were diluted 1:3 in
the assay diluent buffer. Color development at the
end of ELISA assays was measured with a microplate
reader (BioTek, Winooski, VT).
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RT-PCR for cytokine and receptor gene expression
analysis

Total RNA was extracted from cells by use of RNeasy
extraction kits (Qiagen, Valencia, CA). QuantiTect cDNA
synthesis kits (Qiagen) were used to reverse transcribe
100 ng of RNA in a final volume of 20 pL. RNA and cDNA
were stored at -80°C until used. Primers suitable for
RT-PCR were designed using the PrimerQuest designer
tool (IDT DNA, Coralville, IA), ensuring exon spanning.
Primer sequences in 5 to 3’ orientation were: CXCL8
forward, CTTGGCAGCCTTCCTGATTT, reverse, GGG
TGGAAAGGTTTGGAGTATG; CXCRI1 forward, CAAG
TGCCCTCTAGCTGTTAAG, reverse, CAGCAATGGTT
TGATCTAACTGAAG; CXCR2 forward, CATCGTCAA
GGTTGTTTCATCTT, reverse, AGCTGTGACCTGCTG
TTATT; and IL6 forward, AAAGAGGCACTGGCAGA
AA, reverse, CAGGCAAGTCTCCTCATTGAA. SYBR
Green PCR was performed by use of Quantitect SYBR
Green master mix (Qiagen) and run on a MX3005P
or MX3000P thermocycler from Agilent Technolo-
gies/Stratagene (Santa Clara, CA). For each experiment, ex-
pression values were normalized against the control values.

CellMiner data mining and analysis

CellMiner tool (http://discover.nci.nih.gov/cellminer/home.
do; version 1.5) was used to compare and plot the relative
baseline expression of CXCR1 and CXCR2 mRNA among
colon cancer cells included in the NCI-60 panel. The tool
enables retrieval and integrated analysis of baseline and
experimental data compiled from the 60 cell lines included
in the panel [34,35]. CellMiner gene transcript data was
generated from five microarray platforms. To generate the
transcript graph for colon cancer cells, we selected gene
transcript level z-score for analysis type and CXCR1 and
CXCR2 as gene identifier inputs.

Immunofluorescence staining

Cells for immunofluorescent staining were grown
and treated in chamber slides, and then fixed in 4%
formaldehyde in PBS for 10 minutes, permeabilized
for 10 minutes with 0.2% Triton X-100 in PBS, and
blocked with 2% BSA for 1 hour. Rabbit primary
antibody to p65 (Cell Signaling®) was diluted at 1:400
in PBS containing 1% BSA and incubated for 1 hour at
room temperature. AF-488 anti-rabbit secondary antibody
was from Life Technologies® (Grand Island, NY), and was
diluted 1:250 in 1% BSA in PBS, and incubated for 1 hour.
Images were captured using Olympus® BX53 optical
microscope.

Results

Signal-specific response of reporter cells

To assess the activation of NF-kB in response to drugs
that are clinically used to treat colon cancer, NF-kB
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reporter cells were established by lentivirus-mediated
transduction of a construct made of NF-kB response ele-
ments fused to the luciferase gene. First, the reporter
cells were tested to see if they responded to NF-kB path-
way activation by treating them with the NF-kB inducer,
TNFa. Cells transduced with NF-kB TRE, but not those
transduced with a construct without the TRE, were respon-
sive to treatment with TNFa (Figure 1). Further, parental
HCT116 cells, which are wild-type for p53, responded
similarly to the isogenic p53-null HCT116 cells, suggesting
that the absence of p53 in these cells did not affect the acti-
vation of NF-kB by TNFa. To validate these results,
concentration-dependent NF-«B activation by TNFa was
examined. Ranges of 10-150 ng/ml TNFa induced NF-kB
activation in a concentration-dependent manner (Fig-
ure 2A-C upper panels). Again, wild-type and p53-null
HCT116 cells responded similarly, strengthening the ob-
servation that, in this context, the absence of p53 does
not influence the activation of NF-«B.

Drug- and cell type-dependent NF-kB responses in SW480
and HCT116 colon cancer cells

Having established the responsiveness of these cells to
NF-kB pathway activation, the effects of four drugs
currently in clinical use, 5-FU (10 pM), CPT (1 pm),
oxaliplatin (10 uM), and erlotinib (20 uM), as well as
phleomycin (100 pg/ml), a radiomimetic compound,
were determined. Among these, only erlotinib (an EGFR
inhibitor) is a receptor-targeted drug; the others are
non-selective. The results (Figure 2A-C, lower panels)
show that SW480 and HCT116 cells respond to these
drugs differently. The radiomimetic drug phleomycin
induced the highest activation of NF-kB reporter
activity in the p53 mutant SW480 cells, but only erlotinib
induced NF-kB in both wild-type and p53-null HCT116
cells. As in the previous results, there was no difference in
the pattern of NF-«B activation between the p53-null and
wild-type HCT116 cells. However, unlike in SW480 cells,
CPT decreased the level of basal reporter activity in both
types of HCT116 cells. In contrast, CPT treatment
consistently increased the activation of NF-«xB reporter
activity in SW480 cells, albeit to a lower extent relative to
phleomycin. 5-FU and oxaliplatin did not induce
remarkable activity in these cell lines and therefore were
not utilized further (Additional file 1: Figure S1).

Concentration-dependent NF-kB response in SW480 and
HCT116 colon cancer cells

Visual examination of HCT116 cells treated with CPT at
concentrations of 0.5 uM or above showed increased
death, which suggested that these cells are relatively
sensitive to the drug. This raised the possibility that the
decrease in reporter activity may be due to the loss in
cell viability. To rule out this effect, equivalent numbers
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Figure 1 Generation and testing of NF-kB reporter cells. A: schematic representation of NF-kB reporter constructs; NC-L = negative control
luciferase, NF-L = NF-kB luciferase. B, C, and D: relative NF-kB activity indices for reporter SW480, wild type HCT116, and p53-null HCT116 colon
cancer cells, respectively. Grey bars = unstimulated; black bars = TNF-stimulated (at 100 ng/ml concentration).
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Figure 2 Dependence of NF-kB response on type and dose of treatment. A-C (upper panels): Reporter SW480, wild-type HCT116, and
p53-null HCT116 colon cancer cells were treated with decreasing concentrations of the cytokine, TNFa. The activation of NF-kB is presented as
fold change in RLU compared to the control (none). A-C (lower panels): The reporter cells were treated with vehicle (DMSO), 5-FU (10 uM), CPT
(1 uM), oxaliplatin (10 uM), phleomycin (200 ug/ml), or erlotinib (20 uM). The NF-kB activation index at 24 hours after treatment is shown. The cell
lines responded differently to these clinically relevant drugs.
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of SW480 and HCT116 cells were exposed to varying
concentrations of CPT, phleomycin, and erlotinib, and
NE-kB reporter activity was measured. Whereas SW480
cells showed a modal response peaking at 0.5 pM CPT
and decreasing at either higher or lower concentrations,
HCT116 cells did not report any NF-«B activity even
at 0.05 uM CPT, the lowest concentration tested
(Figure 3A-C). For concentrations at and below
0.1 pM, there was no evident loss of cell viability for
any of the cells within the first 24 hours, ruling out
the possibility that loss in viability reduced reporter
activity. For SW480 cells, concentrations of 5 pM
and above reduced cell viability, explaining the drop in
reporter activity at those concentrations (Figure 3A). At a
concentration of 20 pM, erlotinib induced the highest
reporter activity in both wild-type and p53-null
HCT116 cells, but there was no loss of viable cells at
the concentrations tested. Phleomycin induced the
highest reporter activity in SW480 cells at 100 pg/ml,
an effect that remained unchanged at 200 pg/ml. The
results show that NF-kB activation by these drugs varies
based on the cell types, drug types, and concentrations
used. Although the drugs used in these experiments
are clinically relevant, we decided to further examine
the activation of NF-kB by CPT only, because this
drug is widely clinically used and it gave consistently
higher NF-kB response at sub-micromolar concentrations.

Page 5 of 11

Moreover, phleomycin is only radiomimetic, and un-
like EGFR inhibition by monoclonal antibodies, EGFR
inhibition by tyrosine kinase inhibitors (TKI) such as
erlotinib in colon cancer has not achieved wide clinical
utility [36].

NF-kB activation by CPT is accompanied by p65 nuclear
re-localization

The canonical pathway for NF-kB activation involves the
re-localization of NF-kB p65-p50 dimers to the nucleus
[37]. To determine if the activation of NF-«B by CPT
involves such a re-distribution, parental SW480 cells were
treated with CPT (1 pM), and the intracellular localization
of the p65 subunit was detected by immunofluorescent
staining using a p65 antibody. Treatment of the cells with
CPT for 24 hours resulted in re-distribution of the p65
protein to the nuclear compartment (Figure 4), indicating
the involvement of p65 and its dimers in the NF-kB
response to the drug.

NF-kB activation by CPT in SW480 cells is accompanied

by up-regulation of CXCL8, but not of clAP2 or Bcl-X,
Signaling through the NF-«kB pathway regulates genes
involved in various cellular processes, including inflam-
mation, apoptosis, cell survival, motility, invasion, and
resistance to drugs. Therefore, pathways potentially
activated by treatment of SW480 cells with CPT were
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Figure 3 Drug concentration-dependent NF-kB response in colon cancer cells. SW480 (panel A), wild-type HCT116 (panel B), or p53-null
HCT116 (panel C) cells were treated with the indicated concentrations of CPT, phleomycin (SW480 only), or erlotinib (HCT116 only) for 24 hours,
and reporter assays were performed. The relative NF-kB activity indices (Y-axis) relative to vehicle (DMSO control), plotted against the drug
concentrations (X-axis), are shown.
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Figure 4 Nuclear redistribution of p65 NF-kB in response to CPT in SW480 colon cancer cells. Parental SW480 cells were treated with
1 UM CPT, a concentration that induces reporter activity. Translocation of the p65 protein, a marker for the activation of the canonical NF-kB
pathway, was examined by immunofluorescent staining of control (DMSO, upper row) and CPT-treated (lower row) cells. CPT induces partial

assessed. The expressions of two cytokines (CXCLS8
and IL-6) and two anti-apoptotic genes (c[AP2 and
Bcl-X;), all of which are downstream targets of the
NEF-kB pathway, were examined. TNFa, an inducer of
the NF-kB pathway, was used as a control. TNFa
induced reporter activity, cytokine secretion, and c/AP2
gene expression in both SW480 and HCT116 parental
cells, suggesting similar NF-kB response mechanisms
in both types of cells (Figure 5A-B). In contrast, CPT
treatment of SW480 cells up-regulated the reporter
activity and cytokine secretion, but not cIAP2 gene
expression (Figure 5A-B left panels). Consistent with
these results, CPT did not increase the reporter activity
nor up-regulate CXCL8 or cIAP2 in HCT116 cells

(Figure 5A-B right panels). Erlotinib also increased
the secretion of CXCL8 in HCT116 cells, consistent
with its activation of NF-kB reporter activity in these
cells. Since IL-6 in the culture supernatants of treated
or untreated SW480 and HCT116 cells could not be
detected by ELISA, there was no further examination
of CPT mediated IL-6 response. These results provide
evidence for uncoupling of drug-induced NF-«xB
activity from the suppression of apoptosis through
increased anti-apoptotic gene expression by NF-«kB.
In these experiments, reporter cells were used to
generate data for reporter activities, but gene expres-
sion and protein assays were accomplished with
parental cells.
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Figure 5 Differential NF-kB pathway activation in response to CPT treatment of SW480 cells. A: Reporter SW480 or HCT116 cells were
treated with vehicle (DMSO) or with TNFa (100 ng/ml), CPT (1 uM for SW480 and 0.05 uM for HCT116 cells), phleomycin (SW480 only, 100 pg/ml),
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Bcl-X|, are up-regulated by TNFa and other drugs, but not by CPT. Parental SW480 or HCT116 cells were treated with the indicated drugs as in panel A,
and the expression of Bcl-X; and clAP2 was analyzed by immunoblotting. Tubulin bands are shown as a loading control.
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Chemical and molecular inhibition of the NF-kB pathway
suggests cytokine induction by CPT proceeds through
alternative mechanisms

The observation that cytokine secretion was not concomi-
tant with cIAP2 up-regulation prompted us to determine
if chemical inhibition of NF-kB or inhibition by siRNA
against the p65 subunit eliminated the reporter activity
and the secretion of CXCL8 in CPT-treated SW480 cells.
To this end, 1 pM CPT, alone or in combination with
10 pM SM-7368 (an inhibitor of NF-«B activation,
Millipore), was used to measure NF-kB activity in
reporter SW480 cells and CXCL8 mRNA and protein
expressions in parental SW480 cells. The combination of
SM-7368 with either CPT or phleomycin suppressed
NF-kB reporter activity (Figure 6A). However, the
inhibitory effect of SM-7368 on the reporter activity did not
result in the reduction of CXCL8 at the mRNA and protein
levels (Figure 6B-C), suggesting that the mechanisms of
CXCLS8 secretion in SW480 cells treated with CPT involves
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regulatory factors beyond NF-kB response elements in the
promoter of CXCLS8.

Since SM-7368 may interfere with NF-«kB activation at
different levels in the signaling network, leading to
broader inhibition, we determined if inhibition of NF-xB
by siRNA-mediated reduction of p65 expression would
prevent activation of the NF-kB pathway induced by
CPT. Reporter SW480 cells were first transfected with
p65 siRNA and, 24 hours later, treated with 1 pM CPT. At
24 hours after the treatment, cells were assayed for
reporter activity. Reduction of p65 levels was accompanied
by a decrease (up to 50%) in the reporter activity
(Figure 6D), showing that, after treatment of cells with
CPT, p65-dependent and -independent mechanisms may
be involved in the activation of NF-«B. Since CPT induces
DNA damage as a mechanism of action, we then
examined if chemical inhibition of DNA damage signaling
through Chk1/Chk2 kinases would interfere with
CPT-induced NF-kB activation. To test this possibility, we
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treated SW480 NF-kB reporter cells with the Chk1/Chk2
specific inhibitor AZD-7762 or CPT as single agents,
or in combination. As shown in Figure 6E-F, while
the Chk1l/Chk2 inhibitor alone showed no effect on
the basal NF-xB reporter activity, it significantly
inhibited the NF-kB activation induced by CPT.

CPT treatment up-regulates the expression of CXCL8
receptors CXCR1 and CXCR2 in HCT116 colon cancer cells
The cytokine/chemokine CXCL8 mediates signal trans-
duction through two G-protein coupled receptors,
CXCRI1 and CXCR2. It has been proposed that CXCL8
functions as a praracrine or autocrine regulator of
various cell functions, including enhanced cell motility
and cell survival [38]. Therefore, expression of these two
CXCLS8 receptors was examined by RT-PCR in SW480
and HCT116 cells before and after treatment with CPT
(I uM for SW480 and 0.05 pM for HCT116 cells) for
24 hours. From the cells, mRNA was harvested, and
100 ng was reverse transcribed to cDNA. The relative
expression of these genes was analyzed by SYBRgreen
real-time PCR. Examination of the basal levels of
CXCRI1 and CXCR2 expression in the NCI-60 panel of
colon cancer cell lines using the genomic and pharmaco-
logic tool Cell Miner [35] showed that HCT116 cells
and SW620 cells (derived from metastasis of SW480)
express negligible or no CXCR1 or CXCR2 (Figure 7A),
and CPT treatment did not induce changes in the
mRNA expression of CXCR1 in SW480 cells (Figure 7B).
The expression of mRNA for CXCR2 in both untreated
and CPT-treated SW480 cells remained below the
threshold for detection by RT-PCR and therefore is not
shown. HCT116 cells, which failed to activate NF-«B
and secrete CXCLS8 in response to CPT, showed a robust
increase in the expression of both CXCL8 receptors
CXCR1 and CXCR2 (Figure 7C-D), particularly that of
CXCR2. This response was confirmed by two additional
experiments where, in each case, CXCR2 expression in
HCT116 cells treated with 0.05 uM CPT was consist-
ently high. The increase in the expression of CXCR1
remained moderate (Figure 7C). The up-regulation of
CXCR1 and CXCR2 by CPT in HCT116 cells was
inhibited by SM-7368, a chemical inhibitor of NF-xB
activation.

Discussion

The evidence presented here indicates that treatment
of colon cancer cells with broad-acting and targeted
chemotherapeutic drugs leads to heterogeneous responses
that vary depending on the cellular make-up and the type
of drug used. Adding to the complexity of such responses,
no comparable NF-kB response was evident, even
when drugs with similar known mechanisms of action
(for example, DNA damage) were used on colon cancer
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cells, and neither did the same drug elicit similar
responses in different types of cells. While the response of
cells to a given drug could be dynamic, identification of
the factors that determine which cells will respond to a
given drug by activating the NF-kB pathway emerges
as a new challenge. Moreover, given the heterogeneity
of cells in tumor tissues and their microenvironments, the
question of which of these cells exposed to chemothera-
peutic drugs or radiation respond in a particular way
needs to be addressed. Such responses include secretion
of proteins that regulate motility, vasculature, drug
resistance, cytokines, and growth factors as well as the
receptors for those factors. Moreover, the functions of
such predictable or dynamic responses to the outcomes of
cancer treatment remain challenges to be addressed.

The activation of NF-«B in response to chemotherapy
is established [25,39,40], although the mechanisms and
the functions of such activation remain largely unknown.
Inhibition of NF-«kB activation may sensitize cells to CPT
[41,42]. NF-xB pathways could be activated through two
mechanisms: signals that originate at cell receptors and
signals that originate in the nucleus [10,37]. The
pathways that originate at the cell membrane involve
the TNF receptor-family proteins as well as their
downstream adaptor and signal transducer proteins
[37,43]. Nevertheless, the nuclear signaling of NF-kB
activation is still largely unknown. Nuclear-mediated
activation of NF-kB involves DNA-damage proteins,
primarily the ATM/ATR kinase proteins, which trans-
duce the signal to the cytoplasm through the adapter
protein, NEMO [24,25,32]. It is perplexing that not
all DNA-damaging drugs activate NF-kB in colon cancer
cells, even under similar conditions. Since cell lines vary
from one another, identification of key regulators for
nuclear NF-kB activation and systematic examination of
their functions could elucidate the mechanisms behind
the activation. Moreover, the activation of NF-«B by
receptor-acting erlotinib only in HCT116 cells raises
another level of complexity, because both SW480 and
HCT116 cells are wild-type for the erlotinib target,
EGER. It is possible that erlotinib has targets that are
differentially expressed between SW480 and HCT116
cells, or that signaling intermediates downstream of
EGFR may be divergent in cross-talk with the NF-xB
pathway.

Perhaps activation of specific genes by NF-«kB requires
interactions with additional regulatory factors. For example,
the CXCL8 promoter contains AP1 transcription factor
binding sites that may co-regulate expression of the
cytokine [44]. Accordingly, cross-talk between the AP-1
and NF-«B pathways may explain the differential regulation
of CXCL8 and anti-apoptotic proteins downstream of
NF-«B activation. Further studies are needed to discern
how this distinction is achieved in cells.
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Figure 7 Changes in CXCR1 and CXCR2 expression induced by CPT treatment. A: Negligible basal expression of CXCR1 and CXCR2 in
HCT116 and SW620 cells (Cell Miner [36]). B: Relative fold change in CXCRT mRNA in SW480 cells treated with CPT, SM7368, or a combination of
the two. C-D: Relative fold changes in mRNAs for CXCR1 and CXCR2 in HCT116 cells treated with vehicle (ctrl), CPT (0.05 pM), SM7368 (10 uM), or
a combination of the two. CPT induced a marked increase in CXCR2 expression in HCT116 cells, and the expression was inhibited by treatment of
the cells with SM7368, an NF-kB inhibitor.

The up-regulation of CXCR2 and CXCRI receptors by
HCT116 cells, which do not activate NF-«B in response
to CPT, raises the possibility that subgroups of cells in a
heterogeneous tumor mass may, under chemotherapy,
secrete or respond to soluble factors in the microenviron-
ment. Although HCT116 and SW480 cells are more
evolutionarily divergent from each other than cancer
cells in a patient, the heterogeneity in solid tumors
and their metastases does not preclude the existence of
subsets of cells with different secretory and responsive
characteristics. Therefore, it is rational to suggest that the
combination of CPT therapy with antagonists of CXCR2
and CXCR1, especially in individuals who respond to CPT
by activation of NF-«xB, may improve the therapeutic
efficacy. To enhance the efficacy of chemotherapy,

further studies are needed to identify additional targets in
the NF-kB — CXCR2/CXCR1 axis.

Conclusion

In response to cancer therapeutic agents, NF-kB acti-
vation varies with the cellular make up and that
drug-induced NF-kB activation may be functionally
uncoupled from anti-apoptotic outcomes found for
other stimuli. Some cancer cells in a heterogeneous
tumor tissue may, under therapeutic pressure, release
soluble factors that have paracrine activity on neighboring
cells that express the cognate receptors. The potential
benefits of targeting these soluble factors and their
receptors alongside mainstream chemotherapy need to
be further studied.



Samuel et al. BMC Cancer 2014, 14:599
http://www.biomedcentral.com/1471-2407/14/599

Additional file

Additional file 1: Figure S1. Effects of anti-colon cancer chemotherapeutic
drugs on NF-kB reporter activity. NF-kB reporter HCT116 or SW480
cells were treated with CPT, 5-FU, or oxaliplatin at the concentrations shown
for 24 hours after which NF-kB activation was measured by luciferase assay.
Results show that NF-kB was strongly activated only in SW480 cells by CPT
in low micromolar ranges, whereas 5-FU in concentrations above 10 uM
induced moderate NF-kB response, but only in HCT116 cells. Y-axis
represents raw luciferase assay luminescence units readings.
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