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Pharmacodynamic change in plasma angiogenic
proteins: a dose-escalation phase 1 study of the
multi-kinase inhibitor lenvatinib
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Abstract

Background: Lenvatinib (E7080), an oral multi-kinase inhibitor, has inhibitory action on tumor cell proliferation and
tumor angiogenesis in preclinical models. We evaluated correlations between pharmacodynamic (PD) biomarkers
with patient clinical outcomes in a lenvatinib phase 1 dose-escalation study.

Methods: Plasma angiogenic proteins were evaluated as potential PD biomarkers of response to lenvatinib in a
dose-escalation phase 1 study. Lenvatinib was administered to 27 patients by twice-daily dosing in 3-week cycles;
2 weeks of treatment followed by 1 week of rest until discontinuation. Blood samples for plasma proteins were collected
on days 1 (baseline), 8, and 15 of cycle 1, and days 1, 8, and 15 of cycle 2. Selected clinical outcomes, including tumor
shrinkage and adverse events (AEs), were used for correlative analyses of pharmacokinetic parameters and PD biomarkers.

Results: Tumor shrinkage and changes in PD biomarkers (increased vascular endothelial growth factor [VEGF] and stromal
cell-derived factor 1 alpha [SDF1α] levels and decreased soluble VEGF receptor 2 [sVEGFR2] levels) significantly correlated
with increasing lenvatinib exposure. Observed changes in levels of VEGF, SDF1α, and sVEGFR2 were maintained on
day 15 of cycle 1, but returned to baseline during the 1-week rest period, and similar changes were induced by
reinstitution of treatment in cycle 2. The worst grades of hypertension, proteinuria, and fatigue were associated
with changes in VEGF and HGF at day 8 of cycle 1. Maximum tumor shrinkage was correlated with increased
SDF1α levels. Decreased sVEGFR2 level was also correlated with tumor shrinkage and frequency of hypertension,
proteinuria, and fatigue. Tumor shrinkage significantly correlated with the worst grade of proteinuria, but not with
hypertension or fatigue.

Conclusion: PD biomarker changes observed in plasma angiogenic proteins are correlated with lenvatinib-induced
tumor shrinkage and AEs. Our findings warrant further assessment of plasma proteins associated with angiogenesis as
potential biomarkers of lenvatinib activity.

Trial registration: ClinicalTrial.gov: NCT00280397 (January 20, 2006).
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Background
Various agents that inhibit tumor angiogenesis have recently
been approved or are currently being developed in clinical
trials [1-4]. Although treatment benefits are often seen early
during the course of antiangiogenic therapy, therapy is often
discontinued when tumors develop resistance and resume
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growth. Additionally, accumulation of biologic changes in
host tissue may result in unacceptable toxicities that necessi-
tate dose interruptions or reductions, resulting in decreased
dose density and potentially lower efficacy.
Compensatory mechanisms for resistance may be acquired

by the tumor and host tissues as a response to vascular dam-
age and elevated tumor hypoxia, and include upregulation of
alternative proangiogenic factors. A recent study indicated
that stable microvasculature kept disseminated tumor
cells dormant, whereas sprouting neovasculature sparked
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micrometastatic outgrowth [5]. Proangiogenic factors de-
rived from tumor tissues include platelet-derived growth
factor (PDGF), placental growth factor (PlGF), basic fibro-
blast growth factor (bFGF), and stromal cell-derived fac-
tor1 alpha (SDF1α). Stromal cells surrounding a tumor,
such as tumor-associated fibroblasts, can upregulate
PDGF-C and activate pericytes, which also play a role
in maintaining vascular integrity and developing resist-
ance in response to inhibition of vascular endothelial
growth factor (VEGF) [6]. In addition, a variety of
bone-marrow-derived cells may mediate resistance to
VEGF inhibition by producing proangiogenic factors
[7,8]. Some tumors develop resistance to VEGF inhibi-
tors by secreting cytokines that recruit myeloid cells
and other cells that promote angiogenesis and immune
tolerance, thereby affecting the efficacy and safety of
anti-VEGF therapy [9].
The development of biomarkers of clinical efficacy and

safety may provide important clinical insight for the ap-
propriate selection of patients and management of anti-
angiogenesis therapy. Early prediction of efficacy and
toxicity with plasma biomarkers related to angiogenesis
may contribute to optimal patient care. In addition, po-
tential insight into the mechanisms of resistance may
lead to the development of rational combinations of
antiangiogenic treatment with agents that inhibit other
signaling pathways that promote resistance to antiangio-
genic therapy [1,10].
Over the past decade, a multiplex protein assay has

been validated that enables identification of multiple
changes in the levels of plasma proteins in preclinical
and clinical samples. In preclinical studies, treatment
with the VEGF receptor (VEGFR) inhibitor sunitinib in-
duced dose-dependent increases in VEGF and PlGF levels
and decreases in soluble VEGFR 2 (sVEGFR2) levels, while
treatment with cetuximab, an epidermal growth factor
receptor antibody, increased transforming growth fac-
tor alpha levels in a tumor-independent manner [11,12].
These data suggest that changes in the levels of plasma
proteins may reflect the biologic response of host tissues
to therapy and may be useful markers for the clinical
activity of antitumor agents.
Lenvatinib (E7080) is an oral multiple tyrosine kinase

inhibitor (TKI) of VEGFR1–3, fibroblast growth factor
receptor 1–4, PDGF receptor alpha (−α), RET protein,
and c-Kit protein. Inhibition of xenograft tumor growth
by lenvatinib was observed at doses as low as 1.0 and
10.0 mg/kg [13-15]. In phase 1 and 2 clinical trials, len-
vatinib demonstrated antitumor activity and a manage-
able toxicity profile as a single agent [16-18]. In a phase
1 dose-escalation study, lenvatinib showed preliminary
activity for durable disease control in a variety of tumor
types, including a partial response in a patient with
colon cancer and stable disease in 84% of evaluable
patients [17]. Lenvatinib has a manageable toxicity pro-
file with adverse events (AEs) consistent with other anti-
VEGF treatments, including hypertension, proteinuria,
and fatigue [16,17,19]. In this phase 1 dose-escalation
study, we analyzed the pharmacodynamic (PD) changes
in angiogenic plasma proteins during cycles 1 and 2 of
lenvatinib treatment.

Methods
Study design
This single-center, open-label, sequential dose-escalation
study of lenvatinib was conducted at the National Can-
cer Center Hospital, Tokyo, Japan. Lenvatinib was orally
administered twice daily in 3-week cycles (2 weeks on/1
week off ) in patients with advanced solid tumors. Phar-
macokinetic (PK) parameters, safety, tolerability, efficacy,
and exploratory PD markers were examined. Eligible pa-
tients were sequentially enrolled on escalating doses of
oral lenvatinib with a standard 3 + 3 design. AEs were
monitored throughout the treatment cycles. Best tumor
response and disease progression were measured using the
Response Evaluation Criteria in Solid Tumors (RECIST),
version 1.0 [20]. Tumors were assessed at screening, in
cycle 2 or 3, and in every 2 cycles thereafter. This study
was performed in accordance with the ethical principles
stipulated by the Declaration of Helsinki and Good Clinical
Practice guidelines, and approved by the Institutional
Review Board at the National Cancer Center Hospital,
Tokyo, Japan. All patients provided written, informed
consent before screening.

Pharmacokinetic and pharmacodynamic analyses
Blood samples for PK and PD analyses were collected
from each patient. Plasma lenvatinib concentrations were
determined with liquid chromatography/tandem mass
spectrometry by Sumitomo Chemical Co. Ltd (Osaka,
Japan). Area under the curve (AUC) was calculated from
the data obtained at steady state in cycle 1. Plasma
proteins were measured with a BioPlex assay (Bio-Rad
Laboratories, Inc) by Mitsubishi Chemical Medience
Corp (Ibaraki, Japan). Plasma PD biomarkers measured
in this study included: interleukin (IL)-6, IL-8, and IL-10;
VEGF; PDGF; hepatocyte growth factor (HGF); stem cell
factor (SCF); and SDF1α. sVEGFR1 and sVEGFR2 were
measured by enzyme-linked immunosorbent assay.

Statistical analysis
PK parameters of plasma lenvatinib concentration-vs-time
data were examined by noncompartmental analysis using
WinNonlin version 5.2 software (Pharsight Corporation,
Mountain View, CA, USA). Correlation analyses between
PK, PD, and clinical outcomes were performed using Spear-
man’s rank correlation coefficient, and Wilcoxon signed
rank test was used to determine change from pretreatment.
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Multiplicity adjustments were not conducted. Maximum
tumor shrinkage (%) was defined as the percentage of
change from baseline in the sum of tumor diameters of tar-
get lesions at the maximum shrinkage observed.
Table 1 Correlation between lenvatinib treatment-
dependent changes in plasma biomarkers and AUC

Plasma
Biomarker

n Correlation With AUC0-tau

r P Value
Results
Twenty-seven patients were enrolled in the study. Be-
cause change in plasma proteins is hypothesized to re-
flect biologic response to treatment and may be a
marker of clinical activity, we examined whether lenvati-
nib treatment altered the levels of putative PD bio-
markers (Figure 1). We measured a total of 20 plasma
angiogenic proteins and cytokines at baseline and after
treatment [17], and found that levels of IL-6, IL-10,
VEGF, HGF, and SDF1α were increased, whereas levels
of PDGF-BB, sVEGFR1, and sVEGFR2 were decreased at
day 8 of lenvatinib treatment. IL-8 and SCF levels were
increased in some patients but decreased in others.
We next investigated AUC-dependent changes in PD

biomarker levels in plasma proteins and correlations with
area under the curve for the dosing interval (AUC0-tau;
Table 1). Only the increased levels of VEGF and SDF1α
and the decreased level of sVEGFR2 were significantly
correlated with AUC0-tau. Correlation coefficients and
P values, respectively, were 0.496 and .030 for VEGF,
0.806 and < .0001 for SDF1α, and −0.916 and < .0001
for sVEGFR2. Similar correlations were seen in the
analysis with maximum and minimum concentrations
(data not shown). Relative to the dosing schedule, PD
changes in these proteins were induced on day 8 of
cycle 1 and maintained on day 15 of cycle 1, but returned
to baseline during the 1-week rest period. Similar changes
were induced by reinstitution of treatment in cycle 2, sug-
gesting that these PD biomarker changes were associated
with lenvatinib treatment (Figure 2).
Correlation analyses of AEs and tumor shrinkage with

AUC0-tau were also performed. In a previous study, the
most frequent AEs associated with lenvatinib treatment
Figure 1 Changes in plasma proteins after lenvatinib treatment.
The concentrations of plasma proteins were measured at baseline and at
day 8 of lenvatinib treatment in individual patients, and the percentage
change from baseline was plotted for each patient.
were hypertension, proteinuria, and fatigue [17]. Using
the worst grade of each of these AEs over the duration
of treatment in correlation with AUC0-tau, Spearman’s
rank correlation analysis indicated significant correlation
of hypertension (P = .005), proteinuria (P = .003), and fa-
tigue (P = .017) with AUC0-tau (Figure 3A-C). Correlation
analyses of other AEs were not performed, because other
AEs occurred in a limited number of patients [17]. The
analysis of maximum tumor shrinkage and AUC0-tau

yielded a significant but weak correlation (P = .038;
Figure 3D). The results of correlation analysis of toxic-
ities and tumor shrinkage with the PD change in
plasma proteins at cycle 1 are listed in Table 2. The
analysis showed a significant correlation between change
in VEGF and HGF levels in cycle 1 with the worst grades
of hypertension, proteinuria, and fatigue. Additionally,
maximum tumor shrinkage showed a significant correl-
ation with PD change in SDF1α levels, where patients with
a greater increase in SDF1α levels had greater tumor
shrinkage. However, no correlations with tumor shrinkage
were seen for VEGF or HGF. Decreased sVEGFR2 level
was also correlated with tumor shrinkage and frequency
of hypertension, proteinuria, and fatigue.
Finally, a correlation analysis of AEs with maximum

tumor shrinkage is shown in Figure 4. Although tumor
shrinkage and worst grade in hypertension, proteinuria,
and fatigue were significantly correlated with AUC0-tau

(Figure 3), a significant correlation between tumor
shrinkage and worst grade of AE was only observed for
proteinuria (P = .014; Figure 4B).
Discussion
In this study, we have observed significant correlations
of toxicity and tumor shrinkage with PK parameters and
IL-6 19 −0.100 .683

IL-8 19 −0.202 .407

IL-10 19 0.061 .802

VEGF 19 0.496 .030

PDGF-BB 19 −0.161 .509

HGF 25 0.263 .203

SCF 25 −0.210 .313

SDF1α 25 0.806 < .0001

sVEGFR1 25 −0.378 .062

sVEGFR2 25 −0.916 < .0001

The concentrations of plasma proteins were measured at baseline and at day
8 of lenvatinib treatment, and the percentage change from baseline was
analyzed in correlation with AUC0-tau. Spearman’s correlation coefficient (r) and
P value (p) for each analysis is listed.



Figure 2 Lenvatinib treatment-dependent changes in VEGF, SDF1α, and sVEGFR2. The concentrations of plasma VEGF (A), SDF1α (C), and
sVEGFR2 (E) were measured at baseline and at day 8 of lenvatinib treatment, and the percentage change from baseline was plotted in
correlation with AUC0-tau. The correlation coefficient (r) and P value in each analysis are indicated. The percentage PD changes in VEGF (B), SDF1α
(D), and sVEGFR2 (F) relative to dosing schedule were indicated for 14 days on treatment (at days [D] 8 and 15 of cycle [C] 1), after 7 days off
treatment, and on retreatment in cycle 2. A dotted line indicates the mean percentage of change, and gray boxes indicate each
on-treatment period.
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PD changes in VEGF, SDF1α, and sVEGFR2 levels. While
evaluating PK parameters requires multiple samplings and
analyses, PD changes in plasma markers are more easily
monitored. More importantly, PD biomarkers may reflect
biologic changes in tumor and host tissues in response
to treatment and are potentially useful for patient
monitoring.
An adaptive treatment approach based on the incidence

of toxicity may be effective in maintaining treatment and
increasing treatment benefits of VEGF inhibitors [19]. The
development of both treatment-related hypertension and
proteinuria has been reported in patients receiving
lenvatinib therapy [17,19], as well as in clinical studies
of other inhibitors of the VEGF signaling pathway
[21,22]. We have observed that changes in the levels of
VEGF and HGF in cycle 1 correlated with the worst
grade of hypertension, proteinuria, and fatigue. Moni-
toring plasma levels of VEGF and HGF may help pre-
dict toxicity, and by identifying those patients who
require increased surveillance, it may lessen the risk of
AE incidence or worsening severity.
The effects of VEGF and HGF on blood pressure may

be explained by their induction of endothelial prolifera-
tion and contribution to the protection and repair of



Figure 3 Spearman’s correlation analysis of AUC with toxicity and tumor shrinkage induced by lenvatinib. The worst grade of
hypertension (A), proteinuria (B), and fatigue (C) and the maximum tumor shrinkage (D) for the treatment duration were analyzed in correlation
with AUC0-tau. The correlation coefficient (r) and P value for each analysis is indicated.
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vascular endothelial cells [23]. HGF may be upregulated
in response to elevated blood pressure to counter endo-
thelial dysfunction. This concept is supported by recent
reports that HGF treatment produced therapeutic bene-
fit against peripheral arterial disease [24,25].
Table 2 Correlation of toxicities and tumor shrinkage with pe

Plasma
Biomarker

n Hypertension Proteinu

r P Value r

IL-6 19 0.19 .421 0.247

IL-8 19 −0.077 .748 0.053

IL-10 19 0.158 .505 0.038

VEGF 19 0.569 .008b 0.703

PDGF-BB 19 −0.215 .363 −0.151

HGF 25 0.624 <.001a 0.615

SCF 25 0.145 .478 0.176

SDF1α 25 0.257 .204 0.314

sVEGFR1 25 −0.38 .055 −0.365

sVEGFR2 25 −0.613 <.001a −0.601

The concentrations of plasma proteins were measured at baseline and at day 8 of l
(Spearman’s correlation analysis) in correlation with toxicities and tumor shrinkage.
treatment were used for the analysis.
aP < 0.001.
bP < 0.01.
cP < 0.05.
The relationship between increased levels of VEGF
and HGF with fatigue, however, is not clear. Elevated
VEGF was significantly associated with increased fatigue
in anthracycline-based chemotherapy in breast cancer
[26]. Additionally, correlations were reported between
rcentage change in plasma biomarkers

ria Fatigue Tumor Shrinkage

P Value r P Value r P Value

.294 −0.173 .465 −0.437 .061

.823 0.002 .993 −0.191 .434

.872 0.141 .552 −0.392 .097

<.001a 0.529 .016c −0.277 .250

.524 0.043 .857 −0.277 .250

<.001a 0.431 .027c −0.235 .257

.390 −0.057 .780 0.261 .207

.117 0.344 .085 0.424 .034c

.066 0.065 .753 0.038 .855

.001b −0.466 .016c −0.431 .031c

envatinib treatment, and the percentage change from baseline was analyzed
Worst grade of toxicities and maximum tumor shrinkage over the duration of



Figure 4 Correlation of tumor shrinkage with the worst grade of toxicity. Correlation analyses were performed for maximum tumor
shrinkage percentage change from baseline and the worst grade of hypertension (A), proteinuria (B), and fatigue (C) over the treatment duration.
The correlation coefficient (r) and P value for each analysis is indicated.
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lower serum HGF levels and fatigue in healthy control
participants, as well as between increased serum HGF
levels and antidepressant efficacy in patients with panic dis-
order [27]. Hypothyroidism has been reported in sorafenib-
treated patients with renal cancer and sunitinib-treated
patients with gastrointestinal stromal cancer [28,29],
and anti-VEGF or anti-VEGFR2 treatment induced vas-
cular regression in the thyroid and decreased plasma
thyroid hormone levels in mice [30]. Additionally, thy-
roid hormone replacement therapy improved fatigue in
axitinib-treated patients with cancer [31]. These reports
support the need for further biomarker analyses to eluci-
date the role of VEGF and HGF in thyroid function.
Increased SDF1α levels were also correlated with greater

tumor shrinkage. Activation of the immune pathway is
important for tumor shrinkage; SDF1α and its receptor
CXCR4 play important roles in immune function and have
the potential to enhance anticancer immunity [32,33].
SDF1α and CXCR4 also enhance progenitor cell accumu-
lation at angiogenic sites and are important biomarkers of
antiangiogenic therapy resistance [34]. We have previously
reported that higher baseline SDF1α levels correlated with
shorter treatment duration [17]. The role of SDF1α as a
potential PD biomarker of resistance to lenvatinib treat-
ment needs further study, especially because baseline and
subsequent changes from baseline levels of SDF1α may be
interpreted differently.
VEGFR2 is one of the most important mediators of

angiogenesis in normal and tumor tissues [35]. We have
observed decreases in levels of sVEGFR1 and sVEGFR2
after lenvatinib treatment, while decreased sVEGFR2 levels
were correlated with PK parameters, AE frequency, and
tumor shrinkage. Soluble forms of VEGFR1 and VEGFR2
are induced through alternative splicing of VEGFR1 and
VEGFR2 transcripts and act as inhibitors of VEGF signal-
ing [36,37]. TKI treatment-associated decreases in cir-
culating sVEGFR2 levels have been consistently observed
[38-40], but their clinical relevance remains controversial.
A possible interpretation is that a decreased level of
sVEGFR2 is a surrogate index for PK parameters such as
AUC, which was correlated with both AEs and tumor
shrinkage in our phase 1 study. A study of axitinib in renal
cell carcinoma indicated that patients with greater de-
creases in sVEGFR2 levels showed higher objective re-
sponse rates and longer progression-free survival (PFS)
than those with smaller decreases [41]. Recent results
of a trial evaluating cediranib in hepatocellular carcin-
oma found that PFS was inversely correlated with
baseline levels of sVEGFR2 [38]. Alternatively, higher
levels of sVEGFR1 and lower levels of sVEGFR2 were
related to organ dysfunction in patients with dissemi-
nated intravascular coagulation [42]. The role of sVEGFR2
as a biomarker remains is not yet understood, and further
analysis will be necessary to examine its potential as a pre-
dictive biomarker of lenvatinib activity.
Predictive plasma biomarkers of survival, including PFS

and overall survival (OS), may greatly inform patient care
and management. Higher baseline VEGF levels in plasma
were correlated with shorter OS in sorafenib-treated pa-
tients with renal cancer and hepatocellular carcinoma
[43,44]. Higher baseline levels of VEGF and IL-8 were asso-
ciated with shorter PFS and OS in sunitinib-treated patients
with renal cancer [45]. PFS and OS were not analyzed in
this dose-escalation phase I study enrolling patients with
various tumor types and treatment history; therefore correl-
ation analyses with survival was not performed. However,
our previous report indicated the inverse correlation of len-
vatinib treatment duration with baseline levels of SDF1α,
but not VEGF or IL-8 [17]. Potential predictive biomarkers
of PFS and OS for lenvatinib are under investigation in on-
going phase 2 and 3 studies of lenvatinib.
Hypertension and proteinuria are major toxicities of anti-

angiogenic VEGF inhibitors, and their onset may suggest in-
hibition of the VEGF/VEGFR pathway. However, the
hypothesis that hypertension and proteinuria are biomarkers
of response to antiangiogenic drugs remains inconclusive
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[46]. Differences in the definition of toxicity used for correl-
ation analysis and in the study criteria of baseline disease, as
well as use of concomitant agents, may affect the analysis. In
this study, tumor shrinkage by lenvatinib was significantly
correlated with proteinuria, but not with hypertension or fa-
tigue. Because tumor shrinkage by antitumor agents is
tumor type–specific, further analysis will be necessary in fu-
ture phase 2 and 3 studies to examine the predictive value
of toxicities for clinical efficacy of lenvatinib.
The PD change in plasma proteins may reflect a bio-

logic response to lenvatinib treatment. In this study, PD
biomarker changes were associated with lenvatinib treat-
ment and were diminished during the 1-week rest period.
These data suggest that the continuous administration of
lenvatinib may maintain clinical activity. This continuous
dosing regimen was adopted in subsequent lenvatinib
studies [18,47].

Conclusion
The analysis of lenvatinib-induced changes in the levels of
plasma biomarkers related to angiogenesis suggested that
angiogenesis inhibition may be correlated with clinical
outcomes in patients with a wide range of solid tumors.
Further study of the levels of angiogenic PD biomarkers
and their potential relation to clinical outcomes with len-
vatinib treatment in solid tumor types appears warranted
and may inform treatment decisions.
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