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Abstract

Background: Clear cell sarcoma (CCS) is a therapeutically unresolved, aggressive, soft tissue sarcoma (STS) that
predominantly affects young adults. This sarcoma is defined by t(12,22)(q13;q12) translocation, which leads to the
fusion of Ewing sarcoma gene (EWS) to activating transcription factor 1 (ATFT) gene, producing a chimeric EWS-ATF1
fusion gene. We established a novel CCS cell line called Hewga-CCS and developed an orthotopic tumor xenograft
model to enable comprehensive bench-side investigation for intensive basic and preclinical research in CCS with a

paucity of experimental cell lines.

were assessed in vitro and in vivo.

Methods: Hewga-CCS was derived from skin metastatic lesions of a CCS developed in a 34-year-old female. The
karyotype and chimeric transcript were analyzed. Xenografts were established and characterized by morphology
and immunohistochemical reactivity. Subsequently, the antitumor effects of pazopanib, a recently approved, novel,
multitargeted, tyrosine kinase inhibitor (TKI) used for the treatment of advanced soft tissue sarcoma, on Hewga-CCS

Results: Hewga-CCS harbored the type 2 EWS-ATFI transcript. Xenografts morphologically mimicked the primary
tumor and expressed S-100 protein and antigens associated with melanin synthesis (Melan-A, HMB45). Pazopanib
suppressed the growth of Hewga-CCS both in vivo and in vitro. A phospho-receptor tyrosine kinase array revealed
phosphorylation of c-MET, but not of VEGFR, in Hewga-CCS. Subsequent experiments showed that pazopanib
exerted antitumor effects through the inhibition of HGF/c-MET signaling.

Conclusions: CCS is a rare, devastating disease, and our established CCS cell line and xenograft model may be a
useful tool for further in-depth investigation and understanding of the drug-sensitivity mechanism.
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Background

Clear cell sarcoma (CCS) of tendons and aponeuroses
is a rare, malignant, soft tissue tumor [1] characterized by
melanocytic differentiation, including immunohistochemi-
cal positivity for melanocyte specific-microphthalmia-
associated transcription factor (M-MITF), S100 calcium
binding protein (S-100), Melan-A, and melanoma-
associated antigen human melanoma black 45 (HMB45)
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[2]. Typically, CCS arises in the extremities of young
adults and accounts for approximately 1% of all soft
tissue sarcomas (STSs) [2]. It usually appears as a deep-
seated, slowly growing mass, and approximately 50% pa-
tients develop lung or nodal metastases [2]. Because
CCS is very resistant to conventional chemotherapy and
radiation therapy, the 5-year overall survival is reported
to be only 30%—67% [3-11]. Cytogenetic analysis of CCS
has detected the presence of clonal chromosomal trans-
location, t(12;22)(q13;q12), and identified the fusion of
the ATFI and EWS, resulting in the EWS-ATF1 fusion
gene [12,13]. Several types of fusion transcripts have
been described, of which the most common result from
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the fusion of exon 8 of EWS with exon 4 of ATFI (type 1),
followed by the fusion of exon 7 of EWS with exon 5 of
ATFI (type 2) and the fusion of exon 10 of EWS with exon
5 of ATFI (type 3) [14]. The rarity of the disease makes it
difficult to conduct a clinical study to test the efficacy of a
novel therapy. Therefore, we thought it was important to
develop a CCS experimental model for understanding
the molecular determinants of CCS and developing
therapeutic strategies.

Pazopanib is a novel, orally available, multitargeted,
TKI targeting several tumor and tumor environment fac-
tors with high affinity against vascular endothelial growth
factor receptor (VEGFR)1, VEGFR2, and VEGFR3 and low
affinity against platelet-derived growth factor receptor
(PDGFR)a, PDGERp, fibroblast growth factor receptor
(FGFR)1, FGFR2, and stem cell factor receptor (c-Kit) [15].
A phase III trial conducted to assess the efficacy and safety
of pazopanib for metastatic STS using placebo as a control
demonstrated a statistically significant improvement in
progression-free survival [16], leading to approval of this
drug for the treatment of advanced STSs as the first mo-
lecular targeted agent in Japan. However, in the phase III
study, no detailed information about CCS was available,
and there have been no reports demonstrating the treat-
ment effects of pazopanib against CCS. To date, a small
number of CCS cell lines have been successfully established
[17-27], but those harboring disease specific EWS-ATFI
fusion gene and available in both in vitro and in vivo study
are quite rare. Thus, we established a new CCS cell line,
Hewga-CCS, and investigated the antitumor effects of
pazopanib on Hewga-CCS in vitro and in vivo.

Methods

Establishment of Hewga-CCS

The clinical course of the patient with CCS was described
in the Supplementary Information (Additional file 1: Figure
S1). Tumor cells were isolated from surgically resected tis-
sues obtained from excised skin metastatic lesions after the
patients provided written informed consent. The study of
establishment was conducted in accordance with the guide-
lines of the Ethics Committee of Osaka Medical Center for
Cancer and Cardiovascular Diseases. The tumor tissues
were minced and incubated with 1 mg/mL of collagenase
(Sigma—Aldrich, St. Louis, MO, USA) for 1 h at 37°C. Cell
suspensions were passed through a 40-um nylon mesh (BD
Falcon, Franklin Lakes, NJ, USA), and the tumor cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM,;
Life Technologies, Carlsbad, CA, USA) with 10% fetal bo-
vine serum (FBS; MP Biomedicals, Aurora, OH, USA). The
adherent cells were maintained for >36 months in culture
and passed >200 times, which fulfilled the criteria of a cell
line. Throughout the establishment of this cell line, the at-
tached cells continuously expressed the EWS-ATFI tran-
script (data not shown).
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Chromosomal analysis

Metaphase chromosome spreads from Hewga-CCS cells
were prepared according to standard procedures. Hewga-
CCS cells were treated with 20 pg/ml of colcemide over-
night and harvested. After treatment of 0.075 M KCl for
20 min at 37°C, cells were fixed 3 times with methanol and
acetic acid (3:1) and fixed cells were spread on slides.
Multicolor fluorescence in situ hybridization (M-FISH)
was performed using commercially available M-FISH
kits (MetaSystems, Altlussheim, Baden-Wiirttemberg,
Germany) according to the manufacturer’s protocol.
Briefly metaphase spreads were hardened 70°C for 2 h.
After applying M-FISH probes on the metaphase
spreads, co-denaturation of target DNA with probe
DNA was performed at 70°C for 5 min, followed by
72 h incubation at 37°C to allow hybridization of the
probes. The slides were then washed twice with 50%
formamide/2 x standard saline citrate (SSC) solution
for 20 min at 37°C, 2xSSC for 10 min at room
temperature and 1 x SSC for 10 min. The slides were
then counterstained with 4',6-diamidino-2-phenylin-
dole (DAPI) and mounted. Separate fluorochrome im-
ages were captured using a Leica DC 350FX cooled
CCD camera (Leica Microsystems, Wetzlar, Hesse,
Germany) mounted on a Leica DM600 B microscope
using Leica DM600 B software. The images were ana-
lyzed using Leica CytoVision (Leica). The chromo-
somal analyses were examined at passage 110 and 111.

Enzyme-linked immunosorbent assay (ELISA)

A total of 1 x 10° cells/well were seeded in 6-well plates
in triplicate and cultured for 72 h. Quantikine ELISA
kits (R&D Systems, Minneapolis, MN, USA) were used
in accordance with the manufacturer’s instructions to
measure secreted hepatocyte growth factor (HGF) and
VEGF levels in supernatants derived from Hewga-CCS
or SYO-1, which is a human synovial sarcoma cell line
that was kindly provided by Dr. Ozaki (Okayama Uni-
versity, Okayama, Japan).

Genetic analysis

TRIzol reagent (Life Technologies) was used to purify
total RNA. Total RNA (1 pg) was used for the reverse
transcription reaction with the High Capacity cDNA Re-
verse Transcription kit (Life Technologies) according to
the manufacturer’s instructions. EWS-ATFI ¢cDNA was
identified by polymerase chain reaction (PCR) using
EWS forward primer 5'-TCC TAC AGC CAA GCT
CCA AGT C and ATFI reverse primer 5 -ACT CGG
TTT TCC AGG CAT TTC AC. For sequence analysis,
the reverse-transcriptase (RT) PCR-amplified EWS/ATFI
c¢DNA fragments were analyzed on 1.5% agarose gels,
purified using a Qiagen gel extraction kit (Qiagen, Hil-
den, Germany), and directly sequenced using the
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dideoxy procedure and an ABI Prism BigDye terminator
cycle sequencing ready reaction kit (Life Technologies)
with forward or reverse primers (forward ACTGCAA
CCTATGGGCAGAC; reverse, CTGATTGCTGGGCAC
AAGTA) on an Applied Biosystems Model 373A DNA
sequencing system. BLAST software (http://blast.ncbi.
nlm.nih.gov/Blast.cgi) was used for computer analysis of
sequence data.

Cell proliferation assay

Hewga-CCS cells were cultured in DMEM with 10%
FBS. A total of 1x10° cells/well were seeded in 6-well
plates in triplicate. Cell proliferation was measured by
cell counts or by using the CellTiter-Glo Luminescent
Cell Viability Assay® (Promega, Madison, WI, USA) ac-
cording to the manufacturer’s protocols. Trypan blue
exclusion-based methods were used to determine cell
counts. These analyses were examined at passage 120 to
130.

Phosphoreceptor tyrosine kinase (RTK) array

To evaluate the expression of phosphorylated RTKs, a
Proteome Profiler Array Kit (R&D Systems) comprising
spotted antibodies for 49 kinase phosphorylation sites
was used to perform the phospho-RTK array according
to the manufacturer’s protocol.

Cell cycle analysis

Resuspended Hewga-CCS cells (5 x 10°) were plated in
DMEM with 10% FBS and grown overnight before treat-
ment with 10 pmol/L of pazopanib or vehicle. After 24 h
of treatment, the cells were collected, washed, and
stained with propidium iodide (PI) solution (25 pg/mL
of PI, 0.03% NP-40, 0.02 mg/mL RNase A, 0.1% sodium
citrate) for 30 min at room temperature. A BD FACS-
Canto II flow cytometer (BD Biosciences, San Jose, CA,
USA) was used to analyze the cell cycle.

Western blot analysis

Cells were scraped and lysed in ice-cold RIPA buffer
(Thermo Scientific, Waltham, MA, USA) supplemented
with protease/phosphatase inhibitor cocktail (Cell Sig-
naling Technology, Danvers, MA, USA). After centrifu-
gation, the supernatants were collected and a BCA
Assay Reagent (Thermo Scientific) was used to deter-
mine protein concentrations. Fifty-microgram aliquots
of protein were separated by 10% sodium dodecyl sulfate
polyacrylamide gel electrophoresis and transferred onto
a PVDF membrane. After blocking with 5% skim milk in
Tris-buffered saline with 0.1% Tween-20 for an hour,
bound proteins were exposed to the following antibodies
overnight at 4°C: MET (#8198 rabbit monoclonal; Cell
Signaling Technology), p-MET (#3077 rabbit monoclo-
nal; Cell Signaling Technology), B-actin (sc-47778 mouse
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monoclonal; Santa Cruz Biotechnology, Santa Cruz, CA,
USA), Akt (#4691 rabbit monoclonal; Cell Signaling
Technology), p-Akt (#4060 rabbit monoclonal; Cell
Signaling Technology), Erk (#4695 rabbit monoclonal;
Cell Signaling Technology), and p-Erk (#4370 rabbit
monoclonal; Cell Signaling Technology). The secondary
antibodies used were HRP-conjugated goat anti-rabbit
and anti-mouse IgG (GE Healthcare, Little Chalfont,
Buckinghamshire, UK). An ECL plus Western Blotting
Detection System kit (GE Healthcare) was used to detect
western signals.

RNA interference

Lipofectamine 2000 reagent (Life Technologies) was
used according to the manufacturer’s instructions to
transfect cells with 20-nM small interfering RNAs (siR-
NAs). Two kinds of siRNAs against MET were pur-
chased from Cell Signaling Technology (#6618S).

In vivo models

Hewga-CCS cells (1 x 107) were subcutaneously injected
into the flanks of 5-week-old athymic nude mice (BALB/
¢ nu/nu; SLC, Shizuoka, Japan). Calipers were used to
measure tumor size, and tumor volume was calculated
according to the formula (a x b%)/2, where “a” was the
longest diameter and “b” was the shortest diameter of
the tumor. When the tumors reached a volume of palp-
able size, the mice were randomized and divided into
drug-treated and vehicle-treated groups. Pazopanib was
kindly provided by GlaxoSmithKline (London, UK), and
pazopanib solution was prepared as described previously
[15]. Bevacizumab was purchased from Chugai Pharma-
ceutical Co. Ltd. (Tokyo, Japan). Bevacizumab dissolved
in PBS was intraperitoneally injected at 10 mg/kg con-
centration (200 pg/mouse) twice a week for the indi-
cated times. All experiments were approved by our
institutional animal committee (the Institutional Animal
Care and Use Committee of Osaka University Graduate
School of Medicine) and institutional biosafety commit-
tee (Osaka University Living Modified Organism Experi-
ments Safety Committee).

Histological analysis

Tumor tissue samples were fixed in 10% buffered forma-
lin for 24 h and embedded in paraffin. Hematoxylin and
eosin were used to stain 4-pum sections, and serial sec-
tions were used for immunohistochemical analysis. The
primary antibodies used were anti-Ki67 (M7240; Dako,
Glostrup, Denmark), anti-S100 (IR50461; Dako), anti-
HMB45 (N1545; Dako), and anti-Melan-A (IR633; Dako).
The Liquid DAB + Substrate Chromogen System (Dako)
was used according to the manufacturer’s protocol to per-
form peroxidase staining. An in situ apoptosis detection
kit (Takara Bio, Otsu, Japan) was used according to the
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Figure 1 Morphology and genetic analysis of Hewga-CCS cells. (A) Phase-contrast image of Hewga-CCS cells cultured in serum-containing
medium (DMEM with 10% FBS). Bar: 100 um. (B) Phase-contrast image of Hewga-CCS cells cultured in the low-attachment plates (DMEM with
20% FBS). Bar: 100 um. (C) Representative karyotype of Hewga-CCS. M-FISH analysis showed 5 recurrent structural chromosomal rearrangements:
der(1)t(1;16), der(6)t(6,20), der(11)t(11;17), der(12)t(12;22), and der(19)t(9;19;22). (D) RT-PCR with EWS forward primer located in exon 7 and ATF1
reverse primer in exon 7 that amplifies a 779 base pair (bp) PCR product in the type 1 EWS-ATF1 transcript and a 464 bp PCR product in the type
2 EWS-ATFT transcript. Hewga-CCS cells and the type 2 EWS-ATF1 transcript control exhibit a single band of approximately 460 bp in lane 1 and
lane 4. No band is present for the negative control (NTC) of distilled water in lane 2. The type 1 EWS/ATF1 transcript control exhibits a single band
of approximately 780 bp in lane 3. (E) A partial sequence chromatogram shows that ATF1 exon 5 was fused with EWS exon 7. The arrow indicates




Qutani et al. BMC Cancer 2014, 14:455
http://www.biomedcentral.com/1471-2407/14/455

Page 5 of 12

primary tumor. Bar: 100 pum.
.

Figure 2 Histological appearance of Hewga-CCS xenografts and primary tumor. (A, E) Hematoxylin/eosin (HE) staining and
immunohistochemical staining showing expression of (B, F) S-100 protein, (C, G) Melan-A, and (D, H) HMB45 in the Hewga-CCS xenografts and

manufacturer’s protocol to perform terminal deoxyribonu-
cleotidyl transferase (TDT)-mediated dUTP-digoxigenin
nick end labeling (TUNEL) staining.

Statistical analysis

The data are shown as averages and standard deviations.
Two-tailed Student’s t-tests were used to compare the
data. The immunohistochemical results were statistically
analyzed using Fisher’s exact test. P-values of <0.05 were
considered statistically significant.

Results

Characterization of the Hewga-CCS cell line

Tumor cells obtained from skin metastatic lesions grew
in the form of an adherent monolayer in DMEM with
10% FBS. Two types of cells were obtained: small round
cells and polygonal spindle cells (Figure 1A). The doub-
ling time of the cultured cells was approximately 44 h
(Additional file 2: Figure S2). To examine the capacity
of spheroid formation, we cultured the cells on low-
attachment dishes with 20% FBS according to the
protocol of our previous study [28]. Under the low-
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Figure 3 Antitumor effects of pazopanib on Hewga-CCS cells in vitro. (A) Hewga-CCS cells were cultured in serum-containing medium in
the absence or presence of 1, 5, 10, and 20 uM of pazopanib. The cell numbers were counted. Bars: SD. *P < 0.05, **P < 0.01, ***P < 0.001. (B)
Hewga-CCS cells were treated with pazopanib (0, 1, 2.5, 5, 10, 15 uM) for 72 h, and the survival rates were assessed by CellTiter-Glo®. Bars: SD (C)
10 uM of pazopanib- or vehicle-treated Hewga-CCS cells were stained with propidium iodide and analyzed by flow cytometry.
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attachment condition, the Hewga-CCS cells began to
aggregate and form loose clumps and continued to increase
in size; however, they did not form well-rounded structures
(Figure 1B).

In chromosomal analysis, a total of 50 metaphase cells
from Hewga-CCS were examined by G-banding methods.
The following karyotypes were found: 44—47, XX, add(1)(p?
36.1), +3, -5, -6, +7, -9, add(11)(q13), -12, -16, +19, add
(19)(q?13.1), -20, -22, +marl, +mar2,+mar3 (Additional
file 3: Figure S3 and Additional file 4: Table S1). M-FISH
analysis revealed 5 recurrent structural chromosomal rear-
rangements, including t(12;22) (Figure 1C and Additional
file 5: Table S2).

To verify the presence and investigate the type of
EWS-ATF1 chimeric transcripts in Hewga-CCS cells,
we performed RT-PCR and direct sequence analyses.
RT-PCR with EWS forward primer and ATFI reverse
primers amplified cDNA fragments of the EWS-ATFI
transcript (Figure 1D). Sequencing of the amplified
fragments showed that EWS exon 7 was fused with
ATF1 exon 5, which was proven to be the type 2 tran-
script of EWS-ATF1 (Figure 1E) [14].

To determine tumorigenicity, 1 x 10’ Hewga-CCS cells
were subcutaneously injected into the dorsal flank of
nude mice. All animals developed solid tumors at the

sites of injection (Additional file 6: Figure S4). Histo-
logical analyses showed that xenografts comprised nests
or short fascicles of only slightly polymorphous clear
cells, and the nuclei were large and round with low
mitotic activity. The morphological features were very
similar to those observed in the primary tumor. The
positive immunoreactivities of S-100 protein, Melan-A,
and HMB45 in the Hewga-CCS xenografts were also
similar to those of the primary tumor (Figure 2). These
results demonstrated that Hewga-CCS harboring the
type 2 EWS-ATFI transcript continuously grew in vitro
and developed tumors in nude mice, while retaining a
phenotype similar to that of the primary tumor in terms
of cell morphology and melanocytic features.

Pazopanib inhibited Hewga-CCS cell growth in vitro

Recent clinical evidence showing that pazopanib was effect-
ive for metastatic STS has been published [16]. However,
the sensitivity of CCS to pazopanib remains unknown. To
test the effects of pazopanib on the growth of Hewga-CCS
cells, these cells were incubated for 24 to 72 h with pazopa-
nib at concentrations of 0-20 umol/L, following which the
number of living cells was counted. A dose-dependent de-
crease in the number of living Hewga-CCS cells was
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pazopanib (0, 1, 5, 10, 15, 20 uM) for 30 min. (C) Western blot analyses

observed (Figure 3A). The ICs, value of pazopanib was ap-
proximately 8 umol/L after 72 h of culture (Figure 3B).

Vehicle or 10 umol/L of pazopanib was used to perform
cell cycle analysis. At 24 h of culture, an enhanced GO/G1
peak was observed in the pazopanib-treated cells
(Figure 3C). No cleaved caspase-3 protein or cleaved poly-
ADP-ribose was detected after culture with pazopanib (data
not shown). These data indicated that pazopanib has a dir-
ect antiproliferative effect on Hewga-CCS cells in vitro.

The c-MET pathway is a potential target for pazopanib in
Hewga-CCS cells

To decipher the signaling pathway relevant to the antitu-
mor effect of pazopanib on Hewga-CCS cells, we used

phospho-RTK array analysis and observed strong acti-
vation of the HGF receptor, but not of VEGFR or
PDGER (Figure 4A). Immunoblotting analyses consist-
ently showed c-MET phosphorylation. Interestingly,
pazopanib inhibited autophosphorylation of c-MET in a
dose-dependent manner, whereas total c-MET remained
constant (Figure 4B). We then examined whether
pazopanib-mediated ¢-MET inhibition affected intra-
cellular signaling in Hewga-CCS cells. Decreases in
Akt and Erk1/2 phosphorylation occurred concurrently
with the decrease in ¢-MET phosphorylation (Figure 4C).
In addition, silencing of c-MET expression by siRNA
significantly suppressed the growth of Hewga-CCS
cells (Figure 4D, E). To examine whether pazopanib
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14 21

has the similar effects on other sarcoma cell line, we
used Asra-Eps [29], which was our established epitheli-
oid sarcoma cell line driven by HGF/c-MET signaling.
We found that pazopanib inhibited Asra-Eps cell growth
in vitro and autophosphorylation of ¢-MET in a dose-
dependent manner (data not shown). These data suggested
that pazopanib exerted antitumor effects on Hewga-CCS
by abrogating c-MET signaling.

Bevacizumab had no effect on Hewga-CCS cell growth
Next, to investigate the potential role of VEGF signaling
in Hewga-CCS, we examined the growth of Hewga-CCS
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cells treated with bevacizumab, humanized murine mono-
clonal VEGF antibody [30]. Bevacizumab did not affect
the proliferation and survival of Hewga-CCS in vitro
(Figure 5A). We also tested the antitumor effects of
bevacizumab on the progression of Hewga-CCS xeno-
grafts. Treatment with bevacizumab showed no signifi-
cant impact on tumor growth (Figure 5B). In addition
to the phosphor-RTK array findings indicating no
VEGER activation, these results suggested that VEGF
signaling was not crucial for Hewga-CCS cell growth
and supported our hypothesis that ¢-MET signaling
was a potential target for pazopanib in Hewga-CCS
cells.

Pazopanib decreased the tumor growth of Hewga-CCS
in a xenograft mouse model by suppressing cell cycle
progression

Lastly, we assessed the in vivo efficacy of pazopanib
using a Hewga-CCS xenograft mouse model. Tumor
growth in treated mice was significantly delayed compared
with that in the vehicle group (Figure 6A). Consistent with
the in vitro data, TUNEL assays on tumor sections from
treated and control mice showed no significant differences,
but Ki-67 staining was significantly decreased in the
pazopanib-treated group (Figures 6B—D). We also investi-
gated c-MET activation in Hewga-CCS tumor tissues and
found that pazopanib inhibited c-MET phosphorylation in
Hewga-CCS xenografts (Figure 6E, Additional file 7: Figure
S5). These results demonstrated that pazopanib delayed
Hewga-CCS tumor growth by suppressing cell cycle pro-
gression, not by inducing tumor cell apoptosis, at least in
part through the inhibition of c-MET signaling.

Discussion
Because of the histological similarities with malignant
melanoma, CCS is also known as malignant melanoma
of soft parts [31]. However, the genetic findings of the
EWS-ATFI fusion gene support the supposition that
CCS and malignant melanoma are 2 distinct entities
[13]. To the best of our knowledge, 12 CCS cell lines
have been reported in the English literature [17-27], and
there are only 4 cell lines that have been shown to pos-
sess both tumorigenicity in immunodeficient mice and
EWS-ATFI fusion transcripts (Table 1). Furthermore,
there is only 1 cell line (UM-CCS-1) that has the type 2
EWS-ATFI transcript (Table 1). However, UM-CCS-1
could be passaged only in nude mice. Therefore, Hewga-
CCS is the first cell line that harbors the type 2 chimeric
EWS-ATFI transcript and can be stably cultured in vitro
and xenografted in nude mice.

It has been reported that EWS-ATFI directly activates
the melanocyte transcription factor (MITF) [26], which
in turn activates the c¢-MET gene [32]. Furthermore,
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Figure 6 Pazopanib suppressed tumor growth in a Hewga-CCS tumor xenograft model. (A) Nude mice were inoculated subcutaneously in
the flank with 1 x 10" Hewga-CCS cells. When the tumors reached a palpable size, the mice were treated daily by oral gavage pazopanib
(100 mg/kg) or vehicle control, following which tumor size was measured. Bars: SE. * P < 0.05. (B) Representative microscopic images of tumor
sections are shown to be stained with hematoxylin/eosin (HE), TUNEL, and Ki-67. Bars in the top rows: 200 um. Bars in the second rows: 20 um.
Bars in the bottom rows: 50 pm. (C) The TUNEL assay showed no significant difference between pazopanib- and vehicle control-treated xenografts. n.
s; not significant. (D) Ki-67 staining showed significantly suppressed cell cycles in pazopanib-treated xenografts. * P < 0.05. (E) Western blot analyses of
Hewga-CCS xenografts. Xenografted mice were treated with 100 mg/kg of pazopanib or vehicle control orally once a day for 1 week, sacrificed 3 h
after final administration, and subjected to Western blot analyses.

c¢-MET is widely activated in CCS in an autocrine fash-
ion by its ligand HGF, and CCS strongly depends on
HGF/c-MET signaling [33,34]. In agreement with previ-
ous reports, we identified a robust activation of c-MET
in Hewga-CCS cells (Figure 4A). In addition, we found
that Hewga-CCS cells secreted higher amounts of HGF
and moderate amounts of VEGF into the culture media
compared with the amount of SYO-1 (Additional file 8:
Figure S6). These results indicated that Hewga-CCS

produced autocrine ligand HGF to activate CCS driver
kinase c-MET. Therefore, from the context of analyzing
drug sensitivity, Hewga-CCS driven by c-MET signaling
commonly observed in CCS can be useful for the accel-
erated development of targeted therapies for CCS.
Pazopanib is approved for the treatment of advanced
renal cell carcinoma and advanced STS by the U.S. Food
and Drug Administration [16,35]. However, there have
only been a few reports that have demonstrated the
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Cell lines Age/Sex Site Type of EWS-ATF1 Tumorigenicity
SU-CCST (1984) 16/F heel 1 yes

HS-MM (1993) 39/M knee - yes

NCS-1 (1994) 38/M foot - yes

DTC1 (1995) - chest wall 1 -

MST1 (1996) 14/F knee - yes

Kao (1997) 9/F thigh 1 yes

MP-CCS-SY (2002) 17/F ankle 1 -

GG62 (2002) 25/F lower leg 1 -

MST2 (2004) 60/M knee 1 -

MST3 (2004) 34/M groin 1 -

CCS292 (2006) - - 1 yes

UM-CCS-1 (2002) 60/F thigh 2 yes (in vivo only)
Hewga-CCS 34/F toe 2 yes

-: Data not described.

molecular mechanism by which pazopanib inhibits the
growth of a variety of tumors [15,36-40]. Kumar used a
cell-free assay system to show kinase activity of pazopanib
and found that pazopanib had an ICsy value of 6 umol/L
for inhibiting ¢-MET activity [15]. This value was much
higher than the ICs, values of <0.1 pmol/L for pazopanib
target kinases, including the VEGFRs, PDGEFRs, FGFRs,
and c¢-Kit [15]. Podar demonstrated that pazopanib inhib-
ited multiple myeloma cell growth in vitro by inhibiting
VEGF signaling at ICs, values of 10-30 umol/L [37].
Paesler demonstrated that pazopanib abrogated the
survival of chronic lymphocytic leukemia cells at an ICsq
of 32.7 umol/L through VEGF pathway suppression [38].
These studies revealed significant differences in ICsq
values for pazopanib between cell growth assays and
cell-free assays. A potential explanation for this dis-
crepancy is the possibility that kinase activity may be
different between living cell and cell-free conditions.
In this study, the ICsy value of pazopanib in terms of
Hewga-CCS cell growth was approximately 8 pmol/L, and
comparable concentrations were reportedly achieved after
once-daily administration of >200 mg pazopanib [41].
It was reported that the combination of pazopanib
and lapatinib led to complete inhibition of ¢c-MET by
an unknown mechanism, although each of the inhibitors
alone had marginal or partial effects [36]. Further, Gotink
suggested that low binding affinity of a tyrosine kinase
inhibitor to a certain kinase may have a crucial impact on
cell signaling, while the same inhibitor with a high binding
affinity to another kinase may have no significant
effect [42]. We demonstrated the inhibition of ¢-MET in
xenografts treated with pazopanib (Figure 6E). In addition,
we showed no significant antitumor effects of bevacizumab
in vitro and in vivo (Figure 5). These results indicated that

pazopanib delayed xenograft development by direct antitu-
mor activity through the inhibition of c-MET signaling, at
least in part.

Conclusions

We established a novel CCS cell line called Hewga-CCS
and developed a xenograft mouse model. We then dem-
onstrated the direct antitumor effects of pazopanib on
Hewga-CCS through the inhibition of HGF/c-MET sig-
naling. Because of the rarity of this disease, Hewga-CCS
could be a useful tool for interrogating the tumor biol-
ogy of CCS and developing new therapeutic strategies.

Additional files

Additional file 1: Figure S1. Clinical course of the patient. A 34-year-
old woman with a 3-year history of a slowly growing mass at the 39 toe
of the right foot was referred to our hospital (A). Axial MRI revealed a
poorly circumscribed soft tissue mass in the toe, with slightly increased
intensity on T1- and T2-weighted images compared with the intensity of
muscles (B). While laboratory findings showed no inflammatory reactions,
including normal levels of leukocytes (4,310/mm?) and CRP (0.1 mg/dl),
the initial diagnosis was local paronychia because of unclear border of
the mass and the presence of erythema around the nail. Because of
persistence of the mass despite oral antibiotic medication, an excisional
biopsy was performed. Histopathology showed that the tumors
comprised clear cells with large nuclei and distinct nucleoli delineated
by fibrous septa into well-defined nests and the patient was diagnosed with
clear cell sarcoma. A staging FDG-PET scan of the whole body showed a
primary mass in the toe as well as several nodules in the right thigh with
increased accumulation of FDG, suggesting metastatic spread to regional
lymph nodes (C: at presentation, D: 5 months later, E: 8 months later, F:

14 months later). Despite receiving local radiotherapy and three cycles of
systemic chemotherapy composed of doxorubicin and ifosfamide,
widespread metastatic dissemination to the lymph nodes, bones, skin, spleen,
and liver gradually appeared. Twenty-one months after the first presentation,
she died because of multiple organ failure. Through the clinical course,

the patient has not been exposed to pazopanib.
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Additional file 2: Figure S2. Growth curve of Hewga-CCS cells.
Hewga-CCS cells were cultured in DMEM with 10% FBS. A total of

1 % 10° cells/well were seeded in 6-well plates in triplicate. Cell counts
were determined using trypan blue exclusion-based methods. Hewga-CCS
cells exhibited logarithmic growth for 8 days, with a doubling time of
approximately 44 h in the DMEM with 10% FBS.

Additional file 3: Figure S3. A representative G-banded karyotype of
the Hewga-CCS cells. The karyotype of the Hewga-CCS cells was 44~47,
XX, add(1)(p?36.1)43-5,6,+7-9, add(11)(q13)-12-16419, add(19)(q?13.1)-20-
224marl+mar2+mar3. The arrows indicate chromosomal abnormalities.

Additional file 4: Table S1. Chromosome number and cell number of
G-band karyotyping.

Additional file 5: Table S2. Chromosome number and cell number of
M-FISH analysis.

Additional file 6: Figure S4. Xenografted mouse model. Hewga-CCS
cells (1 x 107) were injected subcutaneously into the flanks of 5-week-old
athymic nude mice (BALB/c nu/nu; SLC, Shizuoka, Japan) (A). (B) Tumor
growth in vivo. Tumor size was measured with a caliper, and tumor
volume was calculated by the formula (a x b?)/2.

Additional file 7: Figure S5. Immunohistochemical analyses of
Hewga-CCS xenografts. Xenografted mice were treated with 100 mg/
kg of pazopanib or vehicle control orally once a day for 1 week,
sacrificed 3 h after final administration, and subjected to immunohistochemical
analyses.

Additional file 8: Figure S6. Secretion of HGF and VEGF from Hewga-CCS
cells in vitro. Secretion of HGF and VEGF was quantified by ELISA. Hewga-CCS
and the synovial sarcoma cell line SYO-1 was cultured in DMEM with 10% FBS
for 72 h. The supernatants were subjected to ELISA.
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