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Abstract

Background: Advances in the knowledge of renal neoplasms have demonstrated the implication of several
proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc
metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity
have been associated wtih tumour development.

Methods: In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were
analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal
oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved
kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified
following GAP data and analyzed for 5-year survival.

Results: GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical
expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP
activities correlated with tumour grade and size in CCRCCs.

Conclusions: This study suggests a role for GAP in the neoplastic development of renal tumours and provides
additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis
of renal neoplasms.

Keywords: Glutamyl-aminopeptidase, Aminopeptidase A, Angiotensinase, Angiotensin, Clear cell renal cell carcinoma,
Renal neoplasm
Background
Clinical data support the fact that renal cell carcinomas
(RCCs) are neoplasms with high prevalence and mortal-
ity rates [1]. The 2004 WHO classification of renal
tumours in adults includes newly reported entities [2]
and links the classical histological findings of these neo-
plasms to a wide spectrum of genetic abnormalities [3]
still not fully defined. Clear cell renal cell carcinoma
(CCRCC) is by far the most frequent histological sub-
type, accounting for approximately 70% of the cases.
The proximal convoluted tubule is the proposed site of
origin for CCRCC. Papillary renal cell carcinoma (PRCC)
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is the second most frequent subtype (10%–15%) and also
arises in the proximal convoluted tubule. Chromophobe
renal cell carcinoma (ChRCC) and renal oncocytoma (RO),
both of which originate from the intercalated cells of the
collecting ducts in the distal nephron and are thought to
share a common lineage, are much less frequent, account-
ing for approximately 5% of the cases each [2].
At present, there is no clinical marker to detect the

disease in the asymptomatic potentially curable phase or
to reliably predict the clinical course of every case. Only
classic pathological parameters such as histological sub-
type, tumour stage and grade may contribute to that
purpose. However, depending on the clinical setting and
other circumstances, many renal tumours escape the
expected behaviour and this means it is necessary to
discover more predictable parameters [4].
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Recent findings have revealed the implication of sev-
eral proteases in the genesis, growth and dissemination
of renal neoplasms. Significant effort has been made to-
wards understanding the role of matrix metalloprotein-
ases [4-7]. In parallel, an increasing number of studies
show significant changes in the expression and activity
of peptidases in these tumours and point to these pro-
teins not only as potential diagnostic and prognostic
markers but also as therapeutic targets [8-12].
Glutamyl-aminopeptidase (GAP), also known as ami-

nopeptidase A (EC. 3.4.11.7), is a membrane-bound zinc
metallopeptidase that removes N-terminal acidic resi-
dues from peptides such as angiotenin II, its best known
natural substrate [13]. GAP has a widespread tissue dis-
tribution and participates in many diverse biological pro-
cesses [14]. This enzyme is involved in the development
of kidney structures [14] and is expressed in the glom-
erulus and in the tubular system of the nephron [15],
where it has been described as the gp160 human kidney
differentiation antigen [16].
Immunoassay and semiquantitative enzymatic studies

in renal cell carcinoma cell lines and in primary renal
cancers have shown altered GAP expression and activity
in these neoplasms [8,9,17]. It has also been reported
that GAP expression is correlated with resistance to the
antiproliferative effect of interferon-α in RCCs [18].
These data suggest that the study of GAP activity and
expression may have diagnostic and prognostic applica-
tions for clinical practice. To clarify this question we
quantified GAP activity and analysed its immunohisto-
chemical expression in a wide range of renal neoplasms.
We selected renal tumours with different histogenetic
origins and aggressiveness (CCRCC, PRCC, ChRCC and
RO), which cover 95% of renal neoplasms. Additionally,
the GAP activity profile was compared in different
CCRCC grades and stages and was correlated with pa-
tient survival.

Methods
The authors declare that all experiments carried out in
this study comply with current Spanish and European
Union legal regulations. Samples and data from patients
included in this study were provided by the Basque Biobank
for Research-OEHUN (www.biobancovasco.org). All pa-
tients were informed about the potential use for research
of their surgically resected tissues, and accepted this even-
tuality by signing a specific document approved by the
Ethical and Scientific Committees of the Basque Country
Public Health System (Osakidetza) (CEIC 11/51).

Tissue specimens
We analysed renal tissue in a series from patients with
CCRCC, PRCC, ChRCC and RO. Hospital Ethics
Committee approval was obtained a priori. Fresh tissue
samples were obtained from surgical specimens from
renal tumour patients. Tumour and normal (surround-
ing uninvolved tissue) areas were obtained in all cases.
For activity studies, tissue samples were stored at −80°C
until the enzyme assays were performed. In addition, se-
lected tissue samples were formalin-fixed and paraffin-
embedded for histopathological studies. The 2004 WHO
histological classification of adult renal cell tumours [2]
and the 2002 TNM Edition for tumour staging [19] were
used for pathological diagnosis. In addition, Furhman’s
method [20] was applied for grading CCRCC subtype.
Clinical follow up of CCRCC patients was closed by
December 31, 2012, and a total of 14 patients died of
disease at that time. Mean follow up was 65.2 months
(range, 8–130 months).

Sample preparation
Although GAP has been classically reported as a cell-
surface peptidase [16], several studies have also demon-
strated GAP activity in soluble fractions of different
tissues and cells [21-23]. We therefore analysed GAP ac-
tivity in both membrane-bound and soluble fractions of
kidney tissues.
Explanted tissue samples were homogenised in 10 mM

Tris–HCl buffer at pH 7.4, for 30 seconds at 800 rpm
using a Heidolph PZR 50 Selecta homogeniser, and
ultracentrifuged in a Centrikon T-2070 Kontron Instru-
ments apparatus at 100,000 g for 35 min. The resulting
supernatants were used to measure cytosolic (soluble)
enzyme activities and protein concentrations. To avoid
contamination with soluble enzymes, the resulting pel-
lets were washed three times by suspension in 10 mM
Tris–HCl buffer at pH 7.4. Pellets were then homoge-
nised in 10 mM Tris–HCl buffer at pH 7.4, and centri-
fuged at low speed (1500 g) for 3 min to purify the
samples. The supernatants thus obtained were used to
determine membrane-bound enzyme activities and pro-
tein concentrations. All the aforementioned steps were
carried out at 4°C.

Measurement of glutamyl-aminopeptidase activity
The enzyme activity of tumour and non-tumour tissue
samples from 50 patients with CCRCC (40 men, 10
women; mean age: 63 years), 10 patients with ChRCC
(5 men, 5 women; mean age: 64 years) and 8 patients
with RO (6 men, 2 women; mean age: 67 years) was ana-
lysed by spectrofluorometric methods. GAP activity was
measured by a modified version of Tobe et al.’s method
[24], using Glu-β-naphthylamide (0.125 mM) as a sub-
strate. The assay is based on the fluorescence of
β-naphthylamine generated from the substrate by GAP.
The components of the assay mixture (total volume
2 mL) included the following: 50 mM of Tris–HCl buffer
(pH 7.4) and 0.15 mg/mL of bovine serum albumin. The
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reaction was initiated by adding 30 μL of sample to
1 mL of the assay mixture. This was incubated at 37°C
for 30 min and the reaction was discontinued by
the addition of 1 mL of 0.1 M sodium acetate buffer
(pH 4.2). The excitation and emission wavelengths were
345 and 412 nm, respectively. Blanks were used to deter-
mine background fluorescence. Relative fluorescence
was converted into picomoles of product using a stand-
ard curve constructed with increasing concentrations of
β-naphthylamine.
Protein concentration was measured in triplicate by

the Bradford method [25], using BSA (1 mg/mL) as the
calibrator. Results were recorded as units of peptidase
(UP) per milligram of protein. One unit is equivalent to
the release of one mole of beta-naphthylamine per mi-
nute. Fluorogenic assays were linear with respect to hy-
drolysis time and protein content.
Immunohistochemistry
Formalin-fixed and paraffin-embedded tumour tissue from
12 CCRCC (9 men and 3 women; mean age: 62 years); 6
PRCC (5 men and 1 woman; mean age: 64 years), 4 ChRCC
(2 men, 2 women; mean age: 67 years) and 4 RO (all men,
mean age: 63 years) were immunostained with a rabbit
polyclonal antibody specific for glutamyl-aminopeptidase
(Anti BP-1, Abcam plc, Cambridge, UK, working diluton
1:250). The immunostaining process was performed fol-
lowing routine methods in an automatic immunostainer
(Dako Autostainer Plus). In short, endogenous peroxidase
activity was blocked by incubating the slides in 3% hydro-
gen peroxide in absolute methanol for 10 minutes. Antigen
retrieval was carried out in citrate buffer (10 mM, pH = 6)
for 15 minutes at 100°C in a microwave oven. The primary
antibody was applied for 1 hour at room temperature. A
subsequent reaction was performed with secondary anti-
bodies and biotin-free HRP enzyme labelled polymer of the
EnVision-Flex detection system (Dako, Carpinteria, CA).
Nonspecific IgG was used as a negative control. A positive
reaction was visualized with diaminobenzydine solution
followed by counterstaining with haematoxylin. Two
Table 1 Sequences for forward and reverse primers of the ind
PCR-amplified product

Enzyme Gene symbol Forward primer

APA ENPEP 5′-GCTCTCCTTGAACCACAA

Housekeeping Gene name

β-actin ACTB 5′-TCCCTGGAGAAGAGCTA

Succinate dehydrogenase
complex, subunit A

SDHA 5′-TCTGCCCACACCAGCA

TATA box binding protein TBP 5′-GGATAAGAGAGCCACGAA

Peptidylpropyl isomerase A PPIA 5′-GGTCCCAAAGACAGCAGA

Primers for the assayed housekeeping genes are also shown.
independent observers analysed the immunohistochemical
slides separately assigning staining intensity according to a
semiquantitative scale [(negative (−), mild (+), moderate
(++), and intense (+++)]. Minor disagreements were recon-
ciled under a multihead microscope.
Quantitation of GAP (ENPEP) mRNA expression
Quantitative RT-PCR for detecting ENPEP mRNA was
performed to assess the transcription levels of this en-
zyme. The total RNA of tumour tissue samples from 30
CCRCC patients (18 male, 12 female; mean age: 62 years)
was isolated following the standard protocol previously
described [26].
First-strand cDNA was synthesized from 25 μg of total

RNA from each human sample using Moloney murine
leukemia virus reverse transcriptase and random hexam-
ers according to the manufacturer’s instructions (first-
strand cDNA Synthesis Kit, Amersham Biosciences,
Essex, UK). The resulting cDNA samples were amplified
by PCR with specific oligonucleotide primer pairs de-
signed with the analysis software Primer 3 [27]. Based
on previous experiments on human renal cell carcinoma
[28] and other human tissues [29,30], TATA box binding
protein (TBP), peptidylprolyl isomerase A (PPIA), β-actin
(ACTB) and succinate dehydrogenase complex subunit A
(SDHA) were chosen as endogenous reference genes. The
sequences of the primers used to amplify ENPEP and
the four housekeeping genes are shown in Table 1. All
primers were synthesized and purified by Sigma-Genosys
(Cambridge, UK).
Expression of the target and housekeeping genes was

quantified in all cDNAs by real-time PCR using the iCycler
iQ real-time detection apparatus (BioRad Laboratories,
Hercules, CA, USA). Dilutions of the cDNA template
were prepared with each tissue and amplified in triplicate
using SensiMix Plus SYBR + FLUORESCEIN (Quantace
Ltd., London, UK). Three negative controls (with no tem-
plate, no reverse transcriptase and no RNA in the reverse
transcriptase reaction) were also included in each plate
to detect any possible contamination. After a hot start
icated target genes and the size expected for each

Reverse primer Amplicon size (bp)

GACA-3′ 5′-TTCTCTTCCCTTTTGAGATACTTGG-3′ 133

CGA-3′ 5′-ATCTGCTGGAAGGTGGACAG-3′ 362

CT-3′ 5′-CCTCTCCACGACATCCTTCC-3′ 142

CCAC-3′ 5′-TTAGCTGGAAAACCCAACTTCTG-3′ 139

AAA-3′ 5′-TCACCACCCTGACACATAAACC-3′ 114



Figure 1 Glutamyl-aminopeptidase activity profile in the membrane-bound (A) and soluble fraction (B) of CCRCC, ChRCC and RO.
The columns compare tumour with non-tumour surrounding tissue (normal). Values represent mean ± SE of enzyme activities recorded as units
of enzyme per milligram of protein (U/mg prot). Mann–Whitney test: (***) P < 0.001; (**) P < 0.01.

Figure 2 Representation of the correlation between membrane-bound gultamyl-aminopeptidase and tumour size in CCRCC. Values
represent mean ± SE of enzyme activities recorded as units of enzyme per milligram of protein (U/mg prot). Spearman’s rank test: coefficient
(r) = 0.366; P < 0.05.
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(10 min at 94°C), the parameters used for PCR amplifi-
cation were: 10 s at 94°C, 20 s at 60°C and 30 s at 72°C,
for 50 cycles.
Real-time PCR data were expressed as the fold change

of the target gene expression relative to the geometric
mean (g.m.) mRNA expression of the housekeeping
genes in each sample, as described by Vandesompele
et al. [31]. The fold change in gene expression was calcu-
lated by the formula: 2–ΔΔCT , where CT is the threshold
cycle, as calculated by the iCycler software, ΔCT =
(CTtarget gene–CTg.m.reference genes) and ΔΔCT =
(ΔCT test sample–ΔCT control sample).
CCRCCs with different Fuhrman’s gade and stage (low

and high) were always measured in the same analytical
run to exclude inter-run variations..

Statistical analysis
SPSS® 19.0 software (IBM, Madrid, Spain) was used to per-
form statistical data analysis. A Kolmogorov-Smirnov test
was applied to data obtained from tissue to determine
whether the numbers followed or not a normal distribu-
tion. Based on this information (p < 0.05), data from GAP
activity and mRNA levels were analysed with non para-
metric tests. Mann–Whitney test was used to detect dif-
ferences between non-tumour and tumour tissues, and
between CCRCCs with different Fuhrman’s grade [G1/2
(low) vs. G3/4 (high)] and stage [pT1/2 (organ confined)
vs. pT3/4 (non-organ confined)]. Spearman’s correlation
(ρ) test was performed to evaluate the correlation between
GAP activity, patient age and gender, and tumour size of
CCRCC. A value of P < 0.05 was considered statistically
significant. Finally, overall survival (five years) was assessed
by the Kaplan-Meier method and compared by log-rank
test according to GAP activity levels.

Results
Glutamyl-aminopeptidase activity profile in renal tumours
Data obtained in the GAP activity assays across the
different tumour types and in stratified CCRCC are
reported in Figures 1 and 2.
Table 2 Membrane-bound and soluble GAP activity in
CCRCC stratified by grade and stage

a

Low Grade (G1-G2) High Grade (G3-G4) P

mGAP 6099 ± 1689 6313 ± 1105 ns

sGAP 1193 ± 231 1895 ± 213 <0.05

b

Low Stage (T1-T2) High Stage (T3-T4) P

mGAP 6322 ± 1169 5699 ± 893 ns

sGAP 1563 ± 210 1693 ± 310 ns

Values are means ± SE of Units per mg of protein (U/mg Prot). Abbreviations:
ns not significant. Statistically significant results are in bold.
Figure 1 shows GAP activity measured in tumour and
non-tumour tissue (normal) of CCRCC, ChRCC and RO
patients. Activity was recorded as pmol of product/min/
mg protein (UP/mg protein) and is presented as mean ±
SE. As shown in Figure 1A, when compared with non-
tumour tissues, membrane-bound GAP activity decreased
significantly in CCRCC (two-fold) (Mann–Whitney test,
P < 0.001), and drastically in ChRCC (16-fold, P < 0.01)
and RO (34-fold, P < 0.001). The soluble GAP activity in
Figure 3 Patient survival curves according to the membrane-bound
(A) and soluble (B) glutamyl-aminopeptidase activity levels
(Kaplan-Meier method). GAP activity did not significantly impact
in survival of patients with CCRCC (log-rank p > 0.05).
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renal tumours (Figure 1B) also decreased significantly in
all tumour types analysed when compared with normal
tissue samples (P < 0.001).
Figure 4 Immunohistochemistry of GAP in renal tumours. Haematoxyl
cell carcinoma, (C) chromophobe renal cell carcinoma, (D) renal oncocytom
immunostainings in the right column. (F) Immunostaining appears intense
ducts, (G) mild delineating cytoplasmic membranes in clear cell renal cell c
renal cell carcinoma and (I) renal oncocytoma, and (J) mild in papillary ren
original tissue magnification x200).
Table 2 represents GAP activity in the different grades
and stages of CCRCC group (Low grade: G1-G2, n = 24
vs. High grade: G3-G4, n = 26; Low stage: T1-T2, n = 34
in and Eosin (HE) staining of (A) normal renal tissue, (B) clear cell renal
a and (E) papillary renal cell carcinoma, and their respective GAP
in proximal convoluted tubules and is mild to moderate in collecting
arcinoma, mild membranous and cytoplasmic in (H) chromophobe
al cell carcinoma (GAP immunostaining, haematoxylin counterstaining,
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vs. High stage: T3-T4, n = 16). Activity was recorded as
pmol of product/min/mg protein (UP/mg protein) and
is presented as mean ± SE.
After stratification by grade, soluble GAP showed

higher activity in CCRCCs with a high Furhman’s grade
in comparison to those clear cell carcinomas in a lower
grade (Mann–Whitney test, P < 0.05). Analyses of grad-
ing for membrane-bound GAP and staging for both
soluble and membrane-bound GAP activities were not
statistically significant.
The correlation study demonstrated that membrane-

bound GAP activity is positively correlated with tumour
size in CCRCC samples (Spearman’s rank test, P < 0.05)
(Figure 2).
Finally, Kaplan-Meier curves revealed that GAP activ-

ity was not correlated with patients’ five-year survival
(log-rank test P > 0.05) (Figure 3A and B).
Glutamyl-aminopeptidase immunohistochemical
expression
Figure 4 shows the immunohistochemical results in non-
tumour and tumour tissue. The pattern of staining of each
tumour subtype coincided fully in every case. GAP immu-
nostaining was strongly positive in proximal convoluted
tubules in non-tumour renal tissue and slightly positive
in distal tubules. CCRCC showed diffuse and mild mem-
brane immunostaining. PRCC also showed positive immu-
noreaction located in cytoplasmic membranes, but the
pattern of staining was focal. Both ChRCC and RO shared
the same immunohistochemical expression with mild and
diffuse cytoplasmic staining.
GAP (ENPEP) mRNA levels and CCRCC aggressiveness
Table 3 shows the ENPEP mRNA levels in CCRCCs with
different Fuhrman’s grade [G1/2 (low) vs. G3/4 (high)]
and stage [pT1/2 (organ confined) vs. pT3/4 (non-organ
confined)]. ENPEP mRNA levels were higher in low grade
CCRCCs than in high grade tumours (Table 3a), however,
this result was not statistically significant (Mann–Whitney
test p = 0.322). Organ confined CCRCCs showed similar
ENPEP mRNA levels to non-organ confined tumours
(Table 3b) (p = 0.856).
Table 3 GAP (ENPEP) mRNA levels in CCRCC

a

Low Grade (G1-G2) High Grade (G3-G4) P

ENPEP 1065 ± 347 479 ± 138 ns

b

Low Stage (T1-T2) High Stage (T3-T4) P

ENPEP 707 ± 185 818 ± 383 ns

qRT-PCR data for each analysed sample are recorded as relative units. Values
are means ± SE. ns: Not significant (Mann–Whitney test).
Discussion
Many studies have revealed that peptidases are involved
in several physiological functions and play a key role in
growth control, differentiation, and signal transduction
of several cell systems [31]. Altered expression and cata-
lytic function patterns of these enzymes may contribute
to neoplastic transformation and tumour progression
[31,32]. Regarding kidney tumours, the altered expres-
sion and activity of several peptidases have been evalu-
ated in previous studies [8-10,33-36]. Therefore, the
study of peptidase expression and activity appears to be
a promising field in the quest for new renal tumour
markers and targets. For instance, some studies have led
to the design of clinical diagnostic tools, such us nepryli-
sin (NEP/CD10), which is a useful immunohistochemical
marker in the diagnosis of proximal nephron-derived
carcinomas [33].
In this study we analysed the activity and the expres-

sion of a renal cell marker, GAP (or gp160), in a subset
of renal tumours and in their non-tumour adjacent tis-
sues. GAP activity of both membrane-bound and soluble
fractions was markedly decreased in all tumour subtypes
when compared with normal tissues. Interestingly, the
decrease in membrane-bound GAP activity revealed a
gradient along the different phenotypes of renal neoplasms.
Thus, while the activity was twice lower in CCRCC than in
normal tissue, the decrease in ChRCC and RO was 16-fold
and 34-fold respectively. In addition, we recently demon-
strated that this enzyme’s activity decreased 8-fold in PRCC
[35]. This finding is similar to some others measuring alter-
native relevant peptidases, and supports the hypothesis
that the loss of several physiologically significant peptidases
may be a critical step in the malignant transformation of
renal tissues [8,10-12,17,35].
In terms of immunohistochemistry, GAP was strongly

expressed in the membrane of proximal tubule cells,
whereas tumours from this origin showed only a mild
membrane positivity (CCRCC) or even very weak
staining (PRCC). This result is in accordance with previ-
ous works [8,9] and suggests that the decreases of
membrane-bound GAP activity in these neoplasms
could be due to loss of protein expression. In addittion,
we observed a mild diffuse GAP immunostaining in
ChRCC and RO. This pattern is expected for both
tumours as they originate from the distal nephron
[2]–a specific topography with mild to negative GAP
expression, as also shown in other reports [9,15].
Our previous studies demonstrated that several ami-

nopeptidase activities are significantly increased in high
stage and high grade CCRCCs [11,12,29,31] and corre-
lated with patient 5-year survival [37], suggesting that
these proteases may be a predictor of poor outcome in
this disease. In the present work, GAP activity was not
found to be correlated with CCRCC patient survival.
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However, soluble GAP activity significantly increased
in high grade (G3-G4) CCRCCs and membrane-bound
GAP activity was positively correlated with tumour size,
indicating that this peptidase is probably involved in
CCRCC growth and aggressiveness.
GAP mRNA levels in renal tumours are similar or

even higher than in normal renal tissue [10,11]. In the
present work, we observed differences among CCRCCs
with low and high Furhman grades, although this result
did not reach statistical significance. Similar discrepan-
cies between mRNA expression and enzyme activity or
expression have been recently reported in renal carcin-
omas and in other non-neoplastic kidney diseases when
other peptidases were measured [34,38,39]. This finding
indicates that these protein modifications could occur at
a postranscriptional level and illustrates the importance
of assesing protein changes through various means, and
not relying solely on mRNA levels [38].
The exact role that GAP plays in renal neoplasms still

remains to be clarified. This enzyme has been reported
to play a functional role as a regulator of angiotensin II-
mediated tumour growth and invasiveness via conver-
sion of locally produced angiotensin II (ang II) in several
solid tumours [40]. The downregulation of GAP and
other angiotensin-converting peptidases observed in this
study and in others [8-11,34] suggests an imbalance in
the metabolism of intrarenal angiotensins. However, it is
difficult to ascertain which one of these bioactive pep-
tides is more affected in renal neoplasms. We recently
showed an important neoexpression of endothelial angiotensin-
converting enzyme (ACE) in renal cancer [34], what sug-
gests a higher synthesis of tumour vessel ang II, a vasoactive
hormone whose local long-term actions are related to angio-
genesis in proliferative disorders [41,42]. Although GAP has
been proposed as a functional vascular target in pathologic
angiogenic processes [43], this study could not find any
GAP neoexpression in renal neoplasm blood vessels. Since
this enzyme converts angiotensin II to III, this result could
strengthen the hypothesis of an accumulation of ang II in
renal tumour vessels, which could stimulate angiogenesis.
GAP has been commonly described as a membrane-

bound peptidase, but the activity of soluble isoforms has
also been reported in normal and tumour tissues [21-23].
Our data in renal neoplasms have shown distinct patterns
of activity in the two subcellular fractions analysed.
However, the soluble GAP activity profile was similar
to that previously reported with the cytosolic aspartyl-
aminopeptidase (EC. 3.4.11.21) in these tumours [10,11].
Therefore, further studies are required to clarify the pres-
ence of a soluble isoform of GAP in renal tissues.
In this context, the role of soluble peptidases in the

regulation of proliferative diseases is less clear than that of
membrane-bound peptidases. Nevertheless, recent find-
ings suggest that a number of peptides and hormones,
commonly called “intracrine”, act in the intracellular space
after either internalisation or retention in their cells of
synthesis [44,45]. Furthermore, intracellular angiotensin II
has been reported to also induce cell proliferation in sev-
eral tissues [44-47]. Therefore, the idea of an intracrine
angiotensin dysregulation in kidney tumours should not
be ruled out.

Conclusions
This study demonstrates marked decreases in activity and
mild to weak expression of GAP in the four most common
histological subtypes of renal neoplasms (CCRCC, PRCC,
ChRCC and RO), and a positive correlation between the
soluble GAP and CCRCC aggressiveness. These results
favour the possibility of a metabolic imbalance among
intrarenal angiotensins and a role of GAP in renal neo-
plastic diseases. A better understanding of the patho-
physiological role of GAP in these proliferative disorders
will be helpful for designing effective diagnostic, prognos-
tic and therapeutic tools for renal neoplasms.
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