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Valproic acid sensitizes pancreatic cancer cells to
natural killer cell-mediated lysis by upregulating
MICA and MICB via the PI3K/Akt signaling pathway
Pengfei Shi†, Tao Yin†, Feng Zhou, Pengfei Cui, Shanmiao Gou* and Chunyou Wang*
Abstract

Background: Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is reported to exert anti-tumor effects by
upregulating the expression of the natural killer group 2D (NKG2D) ligands on tumor cells; however, the mechanisms
vary in different tumor types, and the effect and mechanism of action of VPA in pancreatic cancer cells are unknown.

Methods: The present study evaluated the effect of VPA to susceptibility of pancreatic cancer cells to the NK
cell-mediated lysis in vitro and in vivo. Then we investigated the mechanism which the effect of VPA depend on.

Results: The lactate dehydrogenase assay (LDH) and xenograft experiment demonstrated that VPA significantly
sensitized pancreatic cancer cells to NK cell-mediated lysis in vitro and in vivo. Quantitative real time- polymerase chain
reaction (qRT-PCR) and flow cytometry demonstrated that VPA upregulated the mRNA and cell surface expression of
the NKG2D ligands major histocompatibility complex class I-related chain A and B (MICA and MICB) in pancreatic cancer
cells. Effects of VPA both in vitro and in vivo were significantly attenuated by the PI3K/Akt pathway inhibitor LY294002
or a siRNA targeting PI3K catalytic subunit alpha isoform (PI3KCA).

Conclusion: VPA enhances the susceptibility of pancreatic cancer cells to NK cell-mediated cytotoxicity both in vitro
and in vivo by upregulating the expression of MICA and MICB via a PI3K/Akt signaling pathway-dependent mechanism.
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Background
Pancreatic cancer remains a deadly and as yet incurable
disease, with a five-year survival rate below 5% [1]. The
poor prognosis of patients with pancreatic cancer is due
to the high frequency of diagnosis at a late stage of dis-
ease and the lack of effective therapeutic methods [2].
Therefore, novel therapeutic strategies are urgently re-
quired for the treatment of pancreatic cancer.
Natural killer (NK) cells are a component of the innate

immune response and contribute substantially to the
anti-tumor immune response [3]. The anti-tumor im-
mune response has gained significant attention in adoptive
immunotherapy techniques for cancer [4]. The immune ef-
fects of NK cells are dependent on the natural killer group
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2D (NKG2D)-mediated cell kill, and the efficiency of
NKG2D-mediated cytotoxicity has been shown to correlate
with the expression levels of NKG2D ligands (NKG2DLs)
on the target cells [5]. However, tumor cells are able to es-
cape from NKG2D-mediated immune surveillance by
shedding MHC class I chain related (MIC) molecules from
the tumor cell membrane [6,7]. Therefore, identification of
a method to upregulate the expression of NKG2DLs on
tumor cells would have a major impact on the efficacy of
NK cell-mediated immunotherapy.
Valproic acid (VPA), a histone deacetylase inhibitor, is

commonly used as an anti-epileptic drug. Recently, VPA
was reported to induce apoptosis [8,9] in a variety of
solid tumor types including glioma [10], neuroblastoma
[11], breast cancer [12], colon cancer [13], and hepato-
carcinoma [14], but not in non-malignant cells, which
suggests that VPA may have potential as an anti-cancer
treatment. Although VPA has been reported to induce a
wide range of biological effects via various mechanisms,
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its ability to mediate the expression of NKG2DLs is con-
sidered to be an important component of its anti-tumor
effect [15-17]. The interactions between NKG2D, ex-
pressed on the surface of immunocytes, and its ligands
expressed on the surface of tumor cells are required for
effective NK cell-mediated cytotoxicity. Increasing the
expression of NKG2DLs on the surface of tumor cells
has been documented to promote the anti-tumor effects
of immunocytes. The MHC class I chain-related se-
quence A (MICA) and the MHC class I chain-related se-
quence B (MICB) are well-characterized NKG2DLs, and
play an important role in NK cell-mediated anti-tumor
immune responses [18]. It was previously reported that
VPA enhances NK cell-mediated cytotoxicity in mye-
loma, ovarian, and liver cancer cells by increasing the
expression of MICA and MICB; however, the mecha-
nisms responsible for this effect vary depending on the
tumor type [17,19,20].
So far, the effect and mechanisms action of VPA in

pancreatic cancer remain unclear. In order to explore
whether VPA has potential as a treatment for pancreatic
cancer, we examined the effects and mechanism of VPA
action on the expression of MICA and MICB in human
pancreatic cancer cells. Our data demonstrates that VPA
enhances the susceptibility of pancreatic cancer cells to
NK cell-mediated cytotoxicity both in vitro and in vivo
by upregulating the expression of MICA and MICB via
activation of the PI3K/Akt pathway.

Methods
Patients and samples
Seventy-eight patients with pancreatic ductal adenocar-
cinoma (PDAC) underwent surgical treatment in Pancre-
atic Disease Institute, Union Hospital (Wuhan, China)
during June 2012 and December 2012 (aged between 33
and 79; median age, 56 years; 45 males and 33 females).
The surgical specimens were studied retrospectively. The
samples were fixed in 4% formalin solution for 18-24 hours
and embedded in paraffin for immunohistochemical
analysis. The diagnosis of all patients was confirmed by
histologic examination. The use of the clinical samples
for analysis was approved by the Ethics Committee of
Huazhong University of Science and Technology.

Reagents and antibodies
Sodium valproate (VPA) and interleukin-2 was obtained
from Sigma-Aldrich, St. Louis, MO, USA. Bovine serum
albumin (BSA) and trypsin were purchased from Amresco,
Solon, OH, USA. Fetal bovine serum (FBS), donor equine
serum (DES), Alpha modified eagle medium (alpha-MEM),
and Dulbecco’s modified eagle medium F12 (DMEM/F12)
were obtained from Hyclone, Logan, UT, USA. Lapatinib,
LY294002, rabbit polyclonal antibodies against PI3KCA,
Akt Rabbit mAb, Phospho-Akt (Ser473) Rabbit mAb,
HER3 Rabbit mAb, Phospho-HER3 Rabbit mAb, GAPDH
Rabbit mAb, and goat anti-rabbit IgG antibodies conju-
gated to HRP were purchased from Cell Signaling Tech-
nology, Danvers, MA, USA. Anti-NKG2D mAb was
obtained from R&D, Minneapolis, MN, USA. Phyco-
erythrin (PE)-labeled antibodies against human MICA and
MICB and mouse IgG1 isotype control antibody were ob-
tained from Biolegend, San Diego, CA, USA. Rabbit poly-
clonal antibodies against MICA and MICB were obtained
from Santa Cruz, Santa Cruz, CA, USA.

Cell culture
The human pancreatic adenocarcinoma cell lines PANC-1,
MIA PaCa-2, and BxPC-3, and the human natural killer
cell line NK-92 were obtained from the American Type
Culture Collection (ATCC; Manassas, VA, USA). PANC-1,
MIA PaCa-2 and BxPC-3 cells were cultured in DMEM/
F12 containing 10% FBS. NK-92 cells were maintained
in alpha-MEM containing 12.5% DES, 12.5% FBS, and
10 ng/mL interleukin-2. All cells were cultured in incu-
bator at 37°C in a 5% CO2 atmosphere.

Flow cytometry
PANC-1, MIA PaCa-2, and BxPC-3 cells were cultured
to 80-90% confluence, trypsinized, washed twice with
phosphate buffer solution (PBS), re-suspended in PBS at
1 × 106 cells/100 μl, incubated with PE-anti-human MICA
and MICB antibody or an isotype control antibody for
30 min, and then analyzed on a Becton Dickson LSR II
flow cytometer (BD, Franklin Lakes, NJ, USA).

Quantitative real-time RT-PCR
Total RNA was extracted from PANC-1, MIA PaCa-2,
and BxPC-3 cells using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) and reverse transcribed using Super-
Script VILO cDNA Synthesis Kit (Invitrogen). The expres-
sion of human epidermal growth factor receptor 2 (HER2),
human epidermal growth factor receptor 3 (HER3), ataxia
telangiectasia mutated kinase (ATM), ATM- and Rad3-
related kinase (ATR), MICA, MICB, PI3KCA, and β-actin
were quantified using the quantitative SYBR Green PCR
kit (TaKaRa Bio) according to the manufacturer’s protocol.
The primers used for qRT-PCR are shown in Additional
file 1: Table S1.

Western blotting
Whole cell extracts were prepared using RIPA lysis buffer
containing 1 mM PMSF, and the protein concentrations
of the supernatants were determined using the BCA pro-
tein assay kit (Thermo Scientific, Rockford, IL, USA) ac-
cording to the manufacturer’s protocol. Western blots
were performed following standard procedures. Densi-
tometry was performed using Image J V.1.46r (National
Institute of Health).
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Small interfering RNA-mediated knockdown of PI3KCA
A siRNA targeting human PI3KCA (si-PI3KCA) was
purchased from Ribobio, Guangzhou, China; a scram-
bled siRNA was used as a negative control (NC). PANC-1
and BxPC-3 cells were plated in 24-well plates and trans-
fected using Lipofectamine 2000 (Invitrogen) according to
the manufacturer’s instructions. The siRNA sequences are
shown in Additional file 1: Table S2.

Cellular cytotoxicity assay
Cytolytic activity was assayed using the standard lactate
dehydrogenase (LDH) release assay. The target PANC-1,
MIA PaCa-2, and BxPC-3 cells were incubated with or
without 1 mM VPA for 24 h, washed, NK-92 cells were
added to the target cells as effector cells, and the cells
were co-cultured for 4 h at 37°C. To block NKG2D on
NK-92 cells, 10 μg/ml anti-NKG2D mAb or mouse IgG1
isotype control antibody were added to the NK cells
30 min before co-culture. Spontaneous release of LDH
by the target cells alone was < 15% of the maximal re-
lease of LDH by target cells lysed in 1% NP-40. The experi-
mental LDH release values were corrected by subtraction
of the spontaneous LDH release values of effector cells
at the same dilution. Percentage lysis was calculated
as: (corrected experimental LDH release - spontaneous
LDH release) / (maximum LDH release – spontaneous
LDH release) × 100.

Xenograft experiment
Four-week-old female NOD/SCID mice were randomly
divided into four groups (n = 5 per group) for each pan-
creatic cancer cell lines. The mice in the control group
were subcutaneously injected into the flank with 2 × 106

untreated PANC-1 cells or BxPC-3 cells, and the mice in
the three experimental groups (NK, NK + VPA, and
NK + VPA + LY294002) were co-injected with 2 × 106

PANC-1 cells or BxPC-3 cells and 1 × 107 NK-92
cells, and then repeatedly injected with 1 × 107 NK-
92 cells at the same site every 2 days during the experi-
ment. The NK + VPA and NK + VPA + LY294002 groups
were injected with PANC-1 cells or BxPC-3 cells which
had been pre-incubated with 1 mM VPA for 24 hours
and were intraperitoneally injected with 500 mg/kg VPA
every 2 days during the experiment; the NK + VPA +
LY294002 group were also intraperitoneally injected with
25 mg/kg LY294002 every 2 days during the experiment.
Tumor volume was calculated every week using the
formula: length × width2 × 0.5. The mice were sacri-
ficed 4 weeks after the initial injection and the xenografts
were excised and subjected to immunohistochemical
analysis. All experimental protocols were approved by
the Committee on the Ethics of Animal Experiments of
the Union Hospital, Huazhong University of Science and
Technology.
Immunohistochemistry
Sections (4 μm) were prepared from the paraffin-
embedded human primary tumors and mouse xenograft
tumors. Immunohistochemistries were performed follow-
ing standard procedures. For mouse xenograft tumors, the
positive cells were counted, and the percentage was calcu-
lated. For clinical specimens, MICA and MICB expression
were scored semi-quantitatively on the basis of the staining
intensity and percentage of positive cells. Samples with less
than 20% positive cells was considered to be weak expres-
sion, while that with more than 20% positive cells was con-
sidered to be strong expression.

Statistical analysis
Data were presented as the mean ± standard deviation
for flow cytometry, quantitative real-time RT-PCR, west-
ern blotting, cellular cytotoxicity assay, and xenograft
assay, analyzed by t-test. Data of clinical characteristics
were analyzed by Chi-square test. A significance thresh-
old of P < 0.05 was used. Data were analyzed using SPSS
v.11 statistical software (SPSS, Inc.).

Results
MICA and MICB expression was related to the clinical
characteristics of pancreatic cancer
Immunohistochemistry analysis revealed the MICA and
MICB expression in pancreatic cancer (Additional file 2:
Figure S1). The expression of MICA and MICB in pancre-
atic cancer was significantly correlated with late TNM
stage, tumor differentiation and lymphatic invasion. There
were no obvious relationship between MICA and MICB
and other clinical features such as sex, age, and distant me-
tastasis (Additional file 1: Table S3).

VPA enhances NK cell-induced lysis of pancreatic
cancer cells
We first investigated the effect of VPA on NK cell-
mediated kill of pancreatic cancer cells. PANC-1, MIA
PaCa-2, and BxPC-3 cells were incubated with or with-
out 1 mM VPA for 24 h. The LDH release assay dem-
onstrated that NK-92 cells could lyse the pancreatic
cancer cells; however, after incubated with 1 mM VPA
for 24 hours, the lysis of PANC-1, MIA PaCa-2, and
BxPC-3 cells mediated by NK-92 cells increased from
48.11% ± 8.29% to 66.22% ± 3.22%, 34.88% ± 4.09% to
53.11% ± 8.29% and 38.68% ± 4.09% to 58.81% ± 4.96%
respectively at an effector/target (E/T) ratio of 20:1.
The differences were statistically significant (Figure 1A).
Pre-incubation of NK cells with an anti-NKG2D antibody
for 30 minutes almost completely abolished the increased
NK cell-mediated lysis of pancreatic cancer cells observed
in VPA-treated co-cultures, indicating that the ability of
VPA to promote the NK cell-mediated lysis of pan-
creatic cancer cells was dependent on a NKG2D/NKG2DL



Figure 1 VPA enhances the sensitivity of pancreatic cancer cells to NK cell-mediated lysis via a NKG2D-dependent mechanism. (A) VPA
sensitized pancreatic cancer cells to NK cell-mediated lysis; * P < 0.05; ** P < 0.01. (B) Blockade of NKG2D attenuated the ability of VPA to sensitize
pancreatic cancer cells to NK cell-mediated lysis; * P < 0.05 for VPA + IgG vs. VPA + NKG2D; ** P < 0.01 for VPA + IgG vs. VPA + NKG2D. Data are
mean ± SD of a single experiment performed in triplicate, all results were reproducible in three independent experiments. E:T, effector/ target ratio.
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interaction between NK cells and pancreatic cancer cells
(Figure 1B).

VPA upregulates the expression of MICA and MICB in
pancreatic cancer cells
The NKG2DLs MICA and MICB play an important role in
the NK cell-mediated lysis of cancer cells [21]; therefore, we
determined the effect of VPA on the expression of MICA
and MICBmRNA in the human pancreatic cancer cell lines
PANC-1, MIA PaCa-2, and BxPC-3. Real-time quantitative
PCR analysis revealed that treatment with 1 mM VPA for
24 hours upregulated MICA and MICB mRNA expression
significantly in PANC-1, MIA PaCa-2, and BxPC-3 cells
(Figure 2A). We also examined the surface expression of
MICA and MICB in pancreatic cancer cells treated with or
without 1 mM VPA for 24 h. Flow cytometric analysis dem-
onstrated that VPA significantly increased the expression of
MICA and MICB on the cell-surface of PANC-1, MIA
PaCa-2, and BxPC-3 cells (Figure 2B).

VPA activates the PI3K/Akt pathway in pancreatic
cancer cells
Expression of MICA and MICB are associated with a
variety of signaling pathways, including the HER2/HER3,
ATM/ATR, PI3K/Akt, and Erk pathways, in different
cells [17,22-24]. To explore the mechanism by which
VPA upregulates MICA and MICB in pancreatic cancer
cells, we examined the expression and activation of com-
ponents of the HER2/HER3, ATM/ATR, and PI3K/Akt
pathways. Real-time quantitative PCR analysis revealed
that VPA upregulated HER3 and PI3KCA, and down-
regulated HER2 in PANC-1, MIA Paca-2, and BxPC-3
cells. Additionally, VPA downregulated ATM and ATR in
PANC-1 cells, but had no significant effect on ATM
and ATR in MIA PaCa-2 and BxPC-3 cells (Figure 3A).
Western blotting analysis revealed that incubation with
1 mM VPA for 24 h led to a significant increase in
the expression and phosphorylation of HER3 protein
(Figure 3B), as well as the phosporylated Akt in all three
pancreatic cancer cell lines (Figure 3C), but not the phos-
phorylated Erk (Additional file 3: Figure S2).

VPA-induced upregulation of MICA and MICB in pancreatic
cancer cells is dependent on the PI3K/Akt pathway
To determine whether the VPA-induced upregulation of
MICA and MICB was related to activation of the HER2/
HER3, PI3K/Akt, or ATM/ATR signaling pathways,
PANC-1, BxPC-3, and MIA-Paca-2 cells were exposed to
1 mM VPA for 24 h in the presence or absence of 1 μM
of the HER2/HER3 inhibitor lapatinib, 10 μM of the
PI3K inhibitor LY294002, or 1 mM of the ATM/ATR in-
hibitor caffeine. Real-time quantitative RT-PCR and flow
cytometric analysis demonstrated that the ability of VPA
to upregulate the expression of MICA and MICB was sig-
nificantly suppressed by lapatinib and LY294002, but not
caffeine (Figure 4A-C). Next, we silenced PI3KCA using
a siRNA in PANC-1 and BxPC-3 cells. Western blot ana-
lysis confirmed that the expression of PI3KCA was sig-
nificantly reduced in PANC-1 and BxPC-3 cells 48 h
after transfection of the siRNA (Figure 4D). Real-time
quantitative RT-PCR and flow cytometric analysis dem-
onstrated that the ability of VPA to upregulate the expres-
sion of MICA and MICB was significantly suppressed by
transfection with PI3KCA siRNA (Figure 4E, F). Addition-
ally, the ability of 1 mM VPA to increase the NK cell-
mediated lysis of pancreatic cancer cells was significantly



Figure 2 VPA upregulates the expression of MICA and MICB in pancreatic cancer cells. Pancreatic cancer cells were incubated with or without
1 mM VPA for 24 h. (A) Quantitative real-time RT-PCR analysis of MICA and MICB mRNA expression. (B) Flow cytometry analysis and quantification of
MICA and MICB protein expression on the surface of pancreatic cancer cells. MFI, mean fluorescence intensity. Data are mean ± SD of a single
experiment performed in triplicate, all results were reproducible in three independent experiments. ** P < 0.01.
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attenuated by knockdown of PI3KCA (Figure 4G). Al-
though the role of PI3KCA siRNA on the expression of
MICA and MICB protein was not totally compatible with
its role on the NK cell-mediated lysis, the trend sug-
gested that PI3K/Akt pathway played an important role
in VPA-induced upregulation of MICA and MICB in
pancreatic cancer cells.

VPA improves the anti-tumor effects of NK-92 cells
against pancreatic cancer xenografts in NOD/SCID mice
Results showed that treatment with VPA significantly
enhanced the ability of NK-92 cells on inhibiting the
growth of pancreatic cancer xenograft tumors; however,
Figure 3 VPA activates the PI3K/Akt signaling pathway in pancreatic
1 mM VPA for 24 h. (A) Quantitative real-time RT-PCR analysis of HER2, HER
BxPC-3 cells. Data are mean ± SD of a single experiment performed in tripl
ns P > =0.05; * P < 0.05; ** P < 0.01. (B, C) Western blotting analysis of the e
the anti-tumor effect of VPA was partly attenuated by
treating the mice with the PI3K inhibitor LY294002
(Figure 5A, B). Furthermore, immunohistochemical ana-
lysis revealed that VPA significantly upregulated the ex-
pression of MICA and MICB in the tumor xenografts
compared to the control group and NK-92 group, while
administration of LY294002 significantly attenuated the
ability of VPA on upregulation of MICA and MICB ex-
pression in the tumor xenografts (Figure 5C).

Discussion
VPA, a histone deacetylase inhibitor which is used as
an anti-epilepsy drug, was recently reported to exert
cancer cells. Pancreatic cancer cells were incubated with or without
3, ATM, ATR, and PI3KCA mRNA expression in PANC-1, MIA PaCa-2 and
icate, all results were reproducible in three independent experiments.
xpression and phosphorylation of HER3 and Akt (ser 473).



Figure 4 (See legend on next page.)
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Figure 4 PI3K/Akt signaling is required for VPA-induced upregulation of MICA and MICB in pancreatic cancer cells. (A, B) Quantitative
real-time RT-PCR analysis. The VPA-induced upregulation of MICA and MICB mRNA expression were inhibited by the HER2/HER3 inhibitor lapatinib
and the PI3K inhibitor LY294002, but not by the ATM/ATR inhibitor caffeine. Data are mean ± SD of a single experiment performed in triplicate, all
results were reproducible in three independent experiments. * P < 0.05; ** P < 0.01; ns P > 0.05. (C) Flow cytometry analysis. The VPA-induced
upregulation of MICA and MICB protein expression on the cell surface were inhibited by the PI3K inhibitor LY294002. MFI, mean fluorescence
intensity; * P < 0.05. (D) Western blotting analysis. Transfection of the PI3KCA siRNA inhibited PI3KCA protein expression at 48 h post-transfection.
NC, negative control; siR1-3, PI3KCA_siR sequence 1-3; ** P < 0.01. (E) Quantitative real-time RT-PCR analysis. VPA-induced upregulation of MICA and
MICB mRNA expression were attenuated in PI3KCA-knockdown cells; Data are mean ± SD of a single experiment performed in triplicate, all results
were reproducible in three independent experiments. ** P < 0.01. (F) Flow cytometric analysis. VPA-induced upregulation of MICA and MICB protein
expression on the cell surface were attenuated in PI3KCA-knockdown cells. MFI, mean fluorescence intensity; * P < 0.05; ** P < 0.01. (G) LDH release
assay. The VPA-induced susceptibility of cancer cells to NK cell-mediated cell lysis was reduced in PI3KCA-knockdown cells. Data are mean ± SD of a
single experiment performed in triplicate, all results were reproducible in three independent experiments. ** P < 0.01 and * P < 0.05 for NC vs. siR2;
▲▲ P < 0.01 and ▲ P < 0.05 for NC vs. siR3. siR2, PI3KCA siR sequence 2; siR3, PI3KCA siR sequence 3.

Figure 5 VPA sensitizes pancreatic cancer cells to NK cell-mediated lysis in vivo by upregulating the expression of MICA and MICB.
(A, B) Excised xenograft tumors and growth curves for the xenografts; VPA enhanced the growth inhibitory effect of NK cells in vivo; this effect
was attenuated by the PI3K inhibitor LY294002. Data are mean ± SD of five mice per group; * P < 0.05 for NK-92 vs. NK-92 + VPA; Δ P < 0.05 for
NK-92 + VPA + LY294002 vs. NK-92 + VPA. (C) Immunohistochemical staining and quantification of MICA and MICB expression in the xenograft
tumors; VPA significantly upregulated the expression of MICA and MICB in the pancreatic cancer xenograft tumors in vivo, this effect was attenuated
by the PI3K inhibitor LY294002.
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anti-tumor effects by upregulating the expression of
NKG2DLs, such as MICA/B and UL16-binding proteins
(ULBPs), in a number of tumor types including hepatocar-
cinoma, myeloma, and myeloid leukemia [16,20,25-27].
These effects were linked to the activation of different sig-
naling pathways in different tumor types, and were specific
to malignant cells. In pancreatic cancer, the low expression
of MICA was considered to be related to poor prognosis
[28]. Our results revealed that the weak expression of
MICA and MICB was correlated with worse tumor differ-
entiation, later TNM stage, and more lymphatic invasion.
The anti-tumor effects of VPA may have potential in the
treatment of pancreatic cancer, for which there is currently
no effective treatment. However, to our knowledge, there
have been no reports on the effect and mechanism of ac-
tion of VPA in pancreatic cancer.
In the present study, results suggested that 1 mM VPA

did not inhibit the proliferation of pancreatic cancer
cells (Additional file 4: Figure S3), but it enhanced NK
cell-mediated lysis of pancreatic cancer cells, which re-
lies on a NKG2D/NKG2DL-dependent interaction be-
tween NK cells and pancreatic cancer cells. MICA and
MICB are important NKG2DLs which can effectively ac-
tivate the NKG2D receptors and thereby induce NK
cell-mediated cell kill [21]. Therefore, we analyzed the
effect of VPA on the expression of MICA and MICB in
pancreatic cancer cell lines. Our data revealed that the
mRNA expression levels and cell surface expression of
MICA and MICB were significantly upregulated by VPA.
In response to DNA damage, the expression of MICA

and MICB can be induced by ATM and ATR, which
are components of DNA damage signaling pathways
[24,29,30]; these effects can be prevented by ATM/ATR
inhibitors. In addition, MICA and MICB can also be in-
duced by a variety of cell signaling pathways in different
cell types; for example, HER2/HER3 signaling regulates
the expression of MICA and MICB in human breast
cancer cells [23]. Activation of Erk signaling increases
the surface expression of MICA in myeloma cells,
whereas inhibition of Erk signaling reduces the surface
expression of MICA in ovarian tumor cells [17,22]. Add-
itionally, transforming growth factor-beta (TGF-beta) se-
lectively downregulates the expression of MICA, ULBP2,
and ULBP4, but not MICB, ULBP1, or ULBP3, in malig-
nant glioma cells [31].
To identify the signaling pathway involved in the VPA-

induced upregulation of MICA and MICB in pancreatic
cancer cells, the expression of a series of signaling mole-
cules was analyzed using quantitative real-time RT-PCR.
VPA downregulated ATM and ATR mRNA expression in
PANC-1 cells, but had no significant effect on ATM and
ATR in MIA PaCa-2 or BxPC-3 cells. Additionally, VPA
upregulated the expression of HER3 and PI3KCA, the
gene which encodes the p110alpha catalytic subunit of
PI3K [32], and downregulated HER2 in PANC-1, MIA
PaCa-2, and BxPC-3 cells. Western blotting analysis re-
vealed that the expression and phosphorylation of HER3
were markedly increased by VPA, so does the phosphor-
ylation of Akt, which suggested that VPA activates the
HER2/3 - PI3K/Akt signaling pathway in pancreatic can-
cer cells. Additionally, lapatinib, an inhibitor of HER2/
HER3 signaling [33], and the PI3K inhibitor LY294002
[23] inhibited the ability of VPA to upregulate MICA
and MICB; whereas, caffeine, an ATM and ATR inhibitor
[34] had no significant effect on the VPA-induced expres-
sion of MICA and MICB. These results demonstrated that
HER2/HER3 signaling and its major downstream pathway,
PI3K/Akt signaling, but not ATM/ATR signaling, are in-
volved in the VPA-induced upregulation of MICA and
MICB in pancreatic cancer cells.
We also validated the anti-tumor effect of VPA in vivo

using a xenograft model of pancreatic cancer in NOD/
SCID mice. In accordance with the in vitro experiments,
VPA significantly enhanced the anti-tumor effect of NK
cells against pancreatic cancer cells, as the tumors
formed by VPA-treated pancreatic cancer cells were signifi-
cantly smaller than those formed by untreated pancreatic
cancer cells. In addition, the anti-tumor effect of VPA was
significantly attenuated by administration of the PI3K in-
hibitor LY294002.
Activation of the PI3K/Akt pathway plays a vital role

in the growth and survival of cancer cells. Consequently,
several drugs targeting the PI3K/Akt signaling pathway
have been developed to treat human cancer [35]. The
PI3K inhibitor LY294002 has been proven exert an anti-
cancer effect in a variety of tumor types both in vitro and
in vivo [36-38]. It has been reported that LY294002 can in-
hibit the viability of MIA PaCa-2 pancreatic cancer cells to
some extent [39], and increase the radiosensitivity of pan-
creatic cancer cells regardless of their K-ras mutation sta-
tus [40]. However, the present study demonstrated that
inactivation of PI3K using LY294002 or a siRNA attenu-
ated the ability of VPA to upregulate the expression of
MICA and MICB in pancreatic cancer cells. Our results
suggest that inactivation of the PI3K signaling pathway
may inhibit the immune effects of NK cells against pancre-
atic cancer cells, or at least inhibit the ability of VPA to en-
hance the anti-tumor effects of NK cells against pancreatic
cancer cells. In addition, it must be pointed out that the
plasma concentration of VPA in clinical use is usually 0.3-
0.6 mM, which is a little lower than the concentration used
in the present study. Thus some method for reducing their
side effects should be developed before the clinical use of
VPA for treatment of pancreatic cancer.

Conclusions
Our results demonstrate that VPA enhances the suscep-
tibility of pancreatic cancer cells to NK cell-mediated
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lysis by upregulating the expression of MICA and MICB
on pancreatic cancer cells. Moreover, we provide evi-
dence to confirm that the VPA-induced upregulation of
MICA and MICB in pancreatic cancer cells is dependent
on the PI3K/Akt signaling pathway. This data implies
the potential of VPA in immunotherapy for patients with
pancreatic cancer by upregulation of MICA and MICB.
Considering the dependence of VPA effect on PI3K signal-
ing activation, PI3K inhibitors should not be administered
as anti-cancer drugs in patients with pancreatic cancer
undergoing NK cell-mediated adoptive immunotherapy.

Additional files

Additional file 1: Tables S1-S3. Table S1. The primers used in RT-PCR
analysis; Table S2. The siRNA sequences used for PI3KCA knock down;
Table S3. MICA and MICB expression and clinical characteristics of
pancreatic cancer.

Additional file 2: Figure S1. MICA and MICB expression in pancreatic
cancer by immunohistochemical analysis. The antibody recognizes both
MICA and MICB was used in the experiment. The positive staining for
MICA and MICB was mainly distributed diffusely in the stroma of cancer
cells in the duct-like structures. The MICA and MICB expression showed
a decrease in poorly differentiated tumors. (A) Isotype control for
immunohistochemical analysis. MICA and MICB expression in paracancerous
tissues (B), well differentiated tumor (C), moderately differentiated tumor (D)
and in poorly differentiated tumor (E).

Additional file 3: Figure S2. Expression and phosphorylation of Erk
in pancreatic cancer cells. 1 mM VPA treatment for 24 hours did not
increase the phosphorylation of Erk in PANC-1, MIA PaCa-2 and BxPC-3
cells.

Additional file 4: Figure S3. VPA has no significant effect on the
proliferation of pancreatic cancer cells. PANC-1, MIA PaCa-2 and BxPC-3
cells were treated with 1 mM VPA for 24 hours, then cultured for 72 hours
in normal medium. MTT assay show that there was no significant effect
of VPA on the proliferation of PANC-1, MIA PaCa-2 and BxPC-3 cells. The
result was reproducible in three independent experiments. ns P > =0.05.
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